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Disclaimer

This presentation and associated materials are provided for
informational and educational purposes. Views expressed in
this work are the author’s views.

In particular, this presentation is by no means linked to any
present and future wording regarding global regulation of CCR
including EMIR and CRR (CRD IV).
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Counterparty credit risk - Outline I

Suppose there are two parties who are trading a portfolio of
OTC derivative contracts such as, e. g., a portfolio of CDSs.
(Bilateral) counterparty credit risk (CCR) is the risk that at least
one of those two parties in that derivative transaction will
default prior to the expiration of the contract and will be unable
to make all contractual payments to its counterpart.

Future cashflow exchanges are not known with certainty today.
The main feature that distinguishes CCR from the risk of a
standard loan is the uncertainty of the exposure at any future
date. Hence, regarding the modelling of the exposure a
simulation of future cashflow exchanges is necessary.
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Counterparty credit risk - Outline II

What has to be analysed in CCR?

• Modelling of the “exposure”, i. e., the expected loss to a
party when their counterparty defaults before maturity of
the financial contract;

• Calculation of the default probability of each of the both
trading parties (can be derived e. g. from CDS prices in the
market);

• Analysis of a dependence between exposure and default
time (“Wrong-Way Risk” and “Right-Way-Risk”);

• Calculation of a value adjustment on top of the “CCR free”
market value of a transaction, implying a “pricing of CCR”;

• Basel III capital charge for the “value adjustment volatility
risk”;

• Impact of central clearing through a CCP.
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CCR - The framework I

Consider two arbitrary parties who trade with each other
according to an underlying financial contract - “party 0” and
“party 2”, say. Let k ∈ {0, 2} and T > 0 the final maturity of this
financial contract.

• Let X = (X(t))0≤t≤T denote a stochastic process describing
a cash flow between party 0 and party 2 (or a random
sequence of prices). If, at time t, Xt is seen from the point
of view of party k, we denote its value equivalently as Xt(k)
or Xt(k, 2− k) or Xk(t) - depending on its eligibility.

• We will make use of the important notation Yt(k | l) to
describe a random cash flow amount from the point of view
of party k at time t contingent on the default of party l,
where l ∈ {0, 2}.
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CCR - The framework II

• “Contingent cash flows” between two trading parties can be
embedded into the model of a generalised weighted and
directed Erdős-Rényi random graph (“network”), consisting
of counterparties as nodes and current exposures as
edges, leading to matrix-valued stochastic processes of
type (ω, t) 7→ A(ω, t), where A(ω, t)k,l := Yt(k | l)(ω)
describes a contingent cash flow between the nodes k and
l, given that l will default until T (with probability 1).

• Clearing through a central counterparty (CCP) changes
this graph to a (possibly disconnected) tree.

• Notice that the permutation s : {0, 2} −→ {0, 2}, k 7→ 2− k
is bijective. It satisfies s ◦ s = s. (If s should permute the
numbers 1 and 2 instead, then put s(k) := 3− k.)
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Modelling of default times

Let τ0 denote the default time of the investor and τ2 the default
time of the counterparty. Suppose that the underlying financial
market model is arbitrage-free. Let (Ω,G,G,Q) be a filtered
probability space (satisfying the usual conditions) such that for
all t ≥ 0 the σ-algebra Gt contains both, the market information
up to time t and the information whether the default of the
investor or its counterpart has occurred or not up to time t. Q is
a (not necessarily unique) “spot martingale measure”.

Let τ := min{τ0, τ2} (i. e., the “first-to-default time”). Both, τ0 and
τ2 are G-stopping times. Consider the G-stopping time
τ∗ := min{τ,T}. As we will see, a stochastic analysis of CCR
builds on a consequent and repeated use of the positive
functions x+ := max{x, 0} and x− := x+ − x = (−x)+ =
max{−x, 0} (x ∈ R).
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All possible bilateral CCR scenarios

Let k ∈ {0, 2}. Consider the following sets:

• N := {τ0 > T and τ2 > T} (i. e., both, party 0 and party 2 do
not default until T);

• A−k := {τk ≤ T and τk < τ2−k} (i. e., party k defaults first -
until T);

• Ak := {τk ≤ T and τk = τ2−k} = A2−k =: Asim (i. e., party 0
and party 2 default simultaneously - until T).

Observation

Ω = N ·∪ A−0 ·∪ A−2 ·∪ Asim .

Moreover, N ∈ Gτ∗ , A−k ∈ Gτ∗ and hence also
Asim =

(
N ·∪ A−0 ·∪ A−2

)c ∈ Gτ∗ .

10 / 60



All possible bilateral CCR scenarios

Let k ∈ {0, 2}. Consider the following sets:
• N := {τ0 > T and τ2 > T} (i. e., both, party 0 and party 2 do

not default until T);

• A−k := {τk ≤ T and τk < τ2−k} (i. e., party k defaults first -
until T);

• Ak := {τk ≤ T and τk = τ2−k} = A2−k =: Asim (i. e., party 0
and party 2 default simultaneously - until T).

Observation

Ω = N ·∪ A−0 ·∪ A−2 ·∪ Asim .

Moreover, N ∈ Gτ∗ , A−k ∈ Gτ∗ and hence also
Asim =

(
N ·∪ A−0 ·∪ A−2

)c ∈ Gτ∗ .

10 / 60



All possible bilateral CCR scenarios

Let k ∈ {0, 2}. Consider the following sets:
• N := {τ0 > T and τ2 > T} (i. e., both, party 0 and party 2 do

not default until T);
• A−k := {τk ≤ T and τk < τ2−k} (i. e., party k defaults first -

until T);

• Ak := {τk ≤ T and τk = τ2−k} = A2−k =: Asim (i. e., party 0
and party 2 default simultaneously - until T).

Observation

Ω = N ·∪ A−0 ·∪ A−2 ·∪ Asim .

Moreover, N ∈ Gτ∗ , A−k ∈ Gτ∗ and hence also
Asim =

(
N ·∪ A−0 ·∪ A−2

)c ∈ Gτ∗ .

10 / 60



All possible bilateral CCR scenarios

Let k ∈ {0, 2}. Consider the following sets:
• N := {τ0 > T and τ2 > T} (i. e., both, party 0 and party 2 do

not default until T);
• A−k := {τk ≤ T and τk < τ2−k} (i. e., party k defaults first -

until T);
• Ak := {τk ≤ T and τk = τ2−k} = A2−k =: Asim (i. e., party 0

and party 2 default simultaneously - until T).

Observation

Ω = N ·∪ A−0 ·∪ A−2 ·∪ Asim .

Moreover, N ∈ Gτ∗ , A−k ∈ Gτ∗ and hence also
Asim =

(
N ·∪ A−0 ·∪ A−2

)c ∈ Gτ∗ .

10 / 60



All possible bilateral CCR scenarios

Let k ∈ {0, 2}. Consider the following sets:
• N := {τ0 > T and τ2 > T} (i. e., both, party 0 and party 2 do

not default until T);
• A−k := {τk ≤ T and τk < τ2−k} (i. e., party k defaults first -

until T);
• Ak := {τk ≤ T and τk = τ2−k} = A2−k =: Asim (i. e., party 0

and party 2 default simultaneously - until T).

Observation

Ω = N ·∪ A−0 ·∪ A−2 ·∪ Asim .

Moreover, N ∈ Gτ∗ , A−k ∈ Gτ∗ and hence also
Asim =

(
N ·∪ A−0 ·∪ A−2

)c ∈ Gτ∗ .

10 / 60



All possible bilateral CCR scenarios

Let k ∈ {0, 2}. Consider the following sets:
• N := {τ0 > T and τ2 > T} (i. e., both, party 0 and party 2 do

not default until T);
• A−k := {τk ≤ T and τk < τ2−k} (i. e., party k defaults first -

until T);
• Ak := {τk ≤ T and τk = τ2−k} = A2−k =: Asim (i. e., party 0

and party 2 default simultaneously - until T).

Observation

Ω = N ·∪ A−0 ·∪ A−2 ·∪ Asim .

Moreover, N ∈ Gτ∗ , A−k ∈ Gτ∗ and hence also
Asim =

(
N ·∪ A−0 ·∪ A−2

)c ∈ Gτ∗ .

10 / 60



Mark-to-Market value (MtM)

The trading book of a bank is based on the principle of “fair
value accounting” (FAS 157 (US), respectively IAS 39 (EU)). It
refers to accounting for the “fair value” of an asset or liability
based on the current market price. Positions are “marked to
market” on daily basis (via calibration of models to market
data).

Deals are “fair” at the commencement of the financial
transaction. I. e., their net present value at t = 0 equals zero:
M(0) := NPV(0) := 0. However, as time goes by, the financial
transaction is “marked to market”, implying that at 0 < t ≤ T
M(t) ≡ NPV(t) 6= 0.

Seen from t = 0, M(t) : Ω→ R is a real-valued random variable
(which can have a negative value if the trade is “out-of-the-
money”).
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Money conservation property I

We follow a basic accounting property according to which a
liability for party k represents an asset for k’s counterparty 2− k
itself (and conversely).

An important special case of the basic
accounting property is given by all processes satisfying the

Definition (Money Conservation Property)
Let 0 ≤ t ≤ T and k ∈ {0, 2}. A cash flow X = (Xt)0≤t≤T between
two trading parties satisfies the Money Conservation Property
(MCP) at t iff there exists k ∈ {0, 2} such that

Xt(k) = −Xt(2− k) .
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Money conservation property I

Moreover, we follow a basic accounting property according to
which a liability for party k represents an asset for k’s
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Money conservation property II

In particular, (at t) such “MCP processes” X satisfy the following
important property in relation to CCR:(

Xt(k, 2− k)
)+

=
(
Xt(2− k, k)

)− ∀k ∈ {0, 2}

Standing Assumption
Any “non-vulnerable” cash flow (i. e., any cash flow which is not
accounting for CCR) is assumed to satisfy the MCP at any
t ∈ [0,T].

Example
The following processes do not satisfy the MCP at t:

(i) Yt(k, 2− k)(ω) := 11A−
k

(ω) + 11A−
2−k

(ω) sin(t)LGDk;

(ii) Λt(k, 2− k) := Mk(t)− LGD2−k(Mk(t))+.
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Representation of the MtM value M -
FTAP I

Fix k ∈ {0, 2} and let 0 ≤ s ≤ t ≤ T.

Consider the random
variable

Π
(s,t]
k := D(0, s)−1

∫
(s,t]

D(0, u)dΦk(u) ,

where Φk (viewed from party k) denotes a non-vulnerable
cumulative dividend process of the portfolio over the time
horizon [s, t] and D(0, ·) a continuous G-adapted discount factor
process (which both are assumed to be of finite variation).
D(0, s)Π(s,t]

k =
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Representation of the MtM M value -
FTAP II

Assume throughout that our financial market model does not
allow arbitrage and that each CCR free contingent claim
between party k and party 2− k in the portfolio (or netting set)
is attainable therein.

Thus, seen from party k’s point of view the
CCR free mark-to-market process
Mk = (Mk(t))0≤t≤T ≡ (Mt(k))0≤t<T is then given by

Mk(t) = EQ
[
Π

(t,T]
k

∣∣∣Gt

]
= EQ

[∫
(t,T]

D(t, u)dΦk(u)
∣∣∣Gt

]
= −M2−k(t) ,

where Q is a “spot martingale measure” (due to the risk-neutral
valuation formula). In the following we fix Q and occasionally
omit its extra description in the notation of (conditional)
expectation operators.
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The main CCR building blocks

Π
(t,u]
k = −Π

(t,u]
2−k Random CCR free cumulative cash

flow from the claim in (t, u], discounted
to time t – seen from k’s point of view

Mk(t) = EQ[Π
(t,T]
k |Gt] Random NPV (or MtM) of Π

(t,u]
k – repre-

= −M2−k(t) sented as conditional expectation
w.r.t. Q, given the “information” Gt

0 ≤ Rk < 1 k’s (random) recovery rate; i. e., the
portion of the payoff from the MtM
paid by party k to party 2− k in
case of k’s default

0 < LGDk := 1− Rk ≤ 1 k’s (random) Loss Given Default
D(t, u) := D(0, u)/D(0, t) discount factor at time t for time u > t

(can be random)
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Valuation of defaultable claims I

Defaultable claims can be valued by interpreting them as
portfolios of claims between non-defaultable counterparties
including the riskless claim and mutual default protection
contracts. Let k ∈ {0, 2}. Seen e. g. from the point of view of
party k the latter says:

Party k sells to party 2− k default protection on party 2− k
contingent to an amount specified by an ISDA close-out rule.

Let t ∈ [0,T] such that ]]t, τ∗]] 6= ∅. Let
• Mt(k) be the mark-to-market value to party k in case both,

party k and party 2− k do not default until T;
• CVAt(k | 2− k) be the value of default protection that party k

sells to party 2− k contingent on the default of party 2− k.
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Valuation of defaultable claims II

At t party k requires a payment of the “CCR risk premium”
CVAt(k | 2− k) from party 2− k to be compensated for the risk of
a default of party 2− k.

Conversely, party 2− k requires a
payment of CVAt(2− k | k) from party k to be compensated for
the risk of a default of party k. Note that Asim 6= ∅ is not explicitly
excluded! Therefore, given the MCP party k reports at t the
“bilaterally CCR-adjusted” value (defined as “fair value” in FAS
157):

k offers a payment of Mt(k) to start a deal with 2− k .
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CCR - Closing out practice I

Suppose, party k defaults (first).

The surviving party 2− k should then evaluate all terminated
transactions to claim for at least a partial reimbursement (after
the application of “netting rules”) to fix the transactions
(including the collateral).

In order to maintain its market position, party k enters into a
similar financial contract with another counterparty.

Since the market position of k is unchanged after replacing the
contract, the loss is determined by the contract’s “replacement
value” at (or shortly after) τk. In general, the partial
reimbursement to party 2− k involves a payment of
(100 LGDk)% of the “replacement value” at (or shortly after) τk.
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CCR - Closing out practice II

This process is known as “close-out”. The ISDA Master
Agreement defines the term “close-out amount” to be the
amount of the losses or costs of the surviving party 2− k that
would incur by replacement or provision of an economic
equivalent. To this end, ISDA introduced so called “close-out
rules”.

This leads us to the introduction of a useful definition which
generalises the ISDA close-out approach (as we will see very
soon).
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CCR - Closing out practice III

Definition (Generalised close-out cash flow)
Let k ∈ {0, 2} and f , g : [0, 1]× R+ × R+ → R. Let Hk be the
stochastic process (seen from the viewpoint of party k), defined
as

Hk(t) := f
(
LGD2−k, (M2−k(t))−, (M2−k(t))+

)
11A−

2−k

− f
(
LGDk, (Mk(t))−, (Mk(t))+

)
11A−

k

+ g
(
LGD2−k, (M2−k(t))−, (M2−k(t))+

)
11Asim

− g
(
LGDk, (Mk(t))−, (Mk(t))+

)
11Asim

where 0 ≤ t ≤ T. If Hk(T) = 0, then Hk is called a (symmetric)
generalised close-out cash flow.
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CCR - Closing out practice IV

Notice that - by construction - a generalised close-out cashflow
already satisfies the MCP (due to its symmetry!) and Hk11N ≡ 0.

Further important pieces of notation:
Let τ : Ω −→ R+ ∪ {∞} be an arbitrary random “time” (e. g., a
stopping time) and X : R+ × Ω −→ R a (real-valued) stochastic
process. On {τ <∞} the random variable Xτ : Ω −→ R is
defined through

Xτ (ω) := Xτ(ω)(ω) = X(τ(ω), ω) .

Suppose that Ω \ N 6= ∅. Choose ω ∈ Ω \ N. Given the -
simplifying - assumption that there is no strictly positive margin
period of risk, a non-zero close-out has to be settled at
τ∗(ω) = min{τ0(ω), τ2(ω),T}. For simplicity, let us also assume
that no collateral is exchanged between party k and party 2− k
(until τ∗).

24 / 60



CCR - Closing out practice IV

Notice that - by construction - a generalised close-out cashflow
already satisfies the MCP (due to its symmetry!) and Hk11N ≡ 0.
Further important pieces of notation:

Let τ : Ω −→ R+ ∪ {∞} be an arbitrary random “time” (e. g., a
stopping time) and X : R+ × Ω −→ R a (real-valued) stochastic
process. On {τ <∞} the random variable Xτ : Ω −→ R is
defined through

Xτ (ω) := Xτ(ω)(ω) = X(τ(ω), ω) .

Suppose that Ω \ N 6= ∅. Choose ω ∈ Ω \ N. Given the -
simplifying - assumption that there is no strictly positive margin
period of risk, a non-zero close-out has to be settled at
τ∗(ω) = min{τ0(ω), τ2(ω),T}. For simplicity, let us also assume
that no collateral is exchanged between party k and party 2− k
(until τ∗).

24 / 60



CCR - Closing out practice IV

Notice that - by construction - a generalised close-out cashflow
already satisfies the MCP (due to its symmetry!) and Hk11N ≡ 0.
Further important pieces of notation:
Let τ : Ω −→ R+ ∪ {∞} be an arbitrary random “time” (e. g., a
stopping time) and X : R+ × Ω −→ R a (real-valued) stochastic
process. On {τ <∞} the random variable Xτ : Ω −→ R is
defined through

Xτ (ω) := Xτ(ω)(ω) = X(τ(ω), ω) .

Suppose that Ω \ N 6= ∅. Choose ω ∈ Ω \ N. Given the -
simplifying - assumption that there is no strictly positive margin
period of risk, a non-zero close-out has to be settled at
τ∗(ω) = min{τ0(ω), τ2(ω),T}. For simplicity, let us also assume
that no collateral is exchanged between party k and party 2− k
(until τ∗).

24 / 60



CCR - Closing out practice IV

Notice that - by construction - a generalised close-out cashflow
already satisfies the MCP (due to its symmetry!) and Hk11N ≡ 0.
Further important pieces of notation:
Let τ : Ω −→ R+ ∪ {∞} be an arbitrary random “time” (e. g., a
stopping time) and X : R+ × Ω −→ R a (real-valued) stochastic
process. On {τ <∞} the random variable Xτ : Ω −→ R is
defined through

Xτ (ω) := Xτ(ω)(ω) = X(τ(ω), ω) .

Suppose that Ω \ N 6= ∅. Choose ω ∈ Ω \ N. Given the -
simplifying - assumption that there is no strictly positive margin
period of risk, a non-zero close-out has to be settled at
τ∗(ω) = min{τ0(ω), τ2(ω),T}. For simplicity, let us also assume
that no collateral is exchanged between party k and party 2− k
(until τ∗).
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1 Simultaneous defaults and total bilateral counterparty credit
risk

2 Total bilateral valuation adjustment

3 Unilateral CVA and Basel III
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Bipartite ISDA CCR free close-out I

In the following we fix a very important building block which will
appear repeatedly. It plays a fundamental role in ISDA’s CCR
free close-out rule. Let k ∈ {0, 2} and 0 ≤ t ≤ T. We put

Λk(t) := Mk(t)− LGD2−k(Mk(t))+

(!)
= f ∗(LGD2−k, (M2−k(t))−, (M2−k(t))+)

where f ∗(l,m−,m+) := m−(1− l)− m+ for all

(l,m−,m+) ∈ [0, 1]× R+ × R+ (why?). Notice that Λk(T)
(!)
= 0.
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Bipartite ISDA CCR free close-out II

Let k ∈ {0, 2}. Next, we will give a precise representation of the
generalised close-out cash flow random variable Hk(τ

∗) (seen
from the viewpoint of party k), if both parties “symmetrically”
apply the same ISDA close-out rule.

To this end, recall that for all k ∈ {0, 2} we always have

Hk(τ
∗)
X
= Hk(τ

∗)11A0− + Hk(τ
∗)11A2− + Hk(τ

∗)11Asim ,

since no non-zero close-out is required if both parties do not
default strictly before T. In fact, by construction, we have
Hk(τ

∗)11N = Hk(T)11N = 0 X= H2−k(τ
∗)11N for all k ∈ {0, 2}.
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Bipartite ISDA CCR free close-out I
Fix k ∈ {0, 2}. Firstly, suppose A−2−k 6= ∅. Let ω ∈ A−2−k. Seen
from the viewpoint of party k the (symmetrically) bipartite ISDA
CCR free close-out rule (in a given netting set) is reflected in
the following table:

Mk(τ2−k)(ω) > 0 Mk(τ2−k)(ω) ≤ 0
Party k receives R2−k(ω) ·Mk(τ2−k)(ω) 0
from party 2− k
Party k pays to 0 −Mk(τ2−k)(ω)
party 2− k

Let 0 ≤ t ≤ T. Let Hk(t) := Ht(k, 2− k) denote the random
amount of the close-out cash flow at t seen from the viewpoint
of party k. Since in any case A−2−k ⊆ {τ2−k = τ∗} (and 11∅ = 0)
the above table shows that in fact Hk(τ

∗)
∣∣A−2−k = Λk(τ

∗)
∣∣A−2−k ,

which is equivalent to:
11A−

2−k
Hk(τ

∗) = 11A−
2−k

(
R2−k(Mk(τ

∗))+−(−Mk(τ
∗))+

) X
= 11A−

2−k
Λk(τ

∗) .
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Bipartite ISDA CCR free close-out II

Fix k ∈ {0, 2} and suppose now that A−k 6= ∅. Let ω ∈ A−k . Seen
from the viewpoint of party 2− k the (symmetrically) bipartite
ISDA CCR free close-out rule (in a given netting set) is
reflected in the following table:

M2−k(τk)(ω) > 0 M2−k(τk)(ω) ≤ 0
Party 2− k receives Rk(ω) ·M2−k(τk)(ω) 0
from party k
Party 2− k pays to 0 −M2−k(τk)(ω)
party k

Hence,

11A−
k

H2−k(τ
∗) = 11A−

k

(
Rk(M2−k(τ

∗))+−(−M2−k(τ
∗))+

)
= 11A−

k
Λ2−k(τ

∗) .
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Bipartite ISDA CCR free close-out III
Observe that H2−k(τ

∗) is seen from the viewpoint of party 2− k.
Hence, a strict implication of our basic accounting property and
the MCP again implies the following important

Observation
Fix k ∈ {0, 2}. Firstly let us assume that there are no
simultaneous defaults (i. e., Asim = ∅). Then the ISDA CCR free
close-out cash flow random variable at τ∗ seen from the point
of view of party k is given by Fk(τ

∗), where

Fk(τ
∗) := 11A−

2−k
Λk(τ

∗)− 11A−
k

Λ2−k(τ
∗)

= 11A−
k

LGDk(M2−k(τ
∗))+ − 11A−

2−k
LGD2−k(Mk(τ

∗))+

− 11A−
k

M2−k(τ
∗) + 11A−

2−k
Mk(τ

∗)

(MCP)
= 11A−

k
LGDk(M2−k(τ

∗))+ − 11A−
2−k

LGD2−k(Mk(τ
∗))+

+ (11A−
0 ∪A−

2
)Mk(τ

∗).
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Bipartite ISDA CCR free close-out IV

Fix k ∈ {0, 2}. The case of simultaneous defaults – seen from
the point of view of party k - can be treated in the same way.
Hence, by another application of the MCP we arrive at the
following ISDA CCR free close-out cash flow random variable at
τ∗ (coinciding with the fourth term in formula (5) of Gregory’s
paper [6]):

Gk(τ
∗) := 11AsimΛk(τ

∗)− 11AsimΛ2−k(τ
∗)

(MCP)
= 11AsimLGDk(M2−k(τ

∗))+ − 11AsimLGD2−k(Mk(τ
∗))+

+ 11Asim2Mk(τ
∗).
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Bipartite ISDA CCR free close-out V

Observation
Let k ∈ {0, 2}. The total ISDA CCR free close-out cash flow
random variable at τ∗ seen from the point of view of party k is
given by H∗k (τ∗) := Fk(τ

∗) + Gk(τ
∗).

By considering all possible cases (including the possibility of
simultaneous defaults) a remaining simple bit of algebra
therefore gives us - step by step - the important general
representation of H∗k (τ∗):

H∗k (τ∗) = Fk(τ
∗) + Gk(τ

∗)

= 11A−
k

LGDk(M2−k(τ
∗))+ − 11A−

2−k
LGD2−k(Mk(τ

∗))+

+ (11A−
0 ·∪A−

2
)Mk(τ

∗)

+ 11Asim

(
2Mk(τ

∗)− LGD2−k(Mk(τ
∗))+ + LGDk(M2−k(τ

∗))+
)
.
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Bipartite ISDA CCR free close-out VI

Thus,

Proposition
Let k ∈ {0, 2} and t ∈ [0,T]. Seen from the viewpoint of party k,
the random variable H∗k (τ∗) is given as

H∗k (τ∗) = Mk(τ
∗)− Bτ∗(k, 2− k)

= Mk(τ
∗)−

(
X2−k(τ

∗)− Xk(τ
∗)
)
,

where Bτ∗(k, 2− k) = X2−k(τ
∗)− Xk(τ

∗)
X
= −Bτ∗(2− k, k) and

Xk(t) :=
(
11A−

k ·∪Asim
LGDk − 11Asim

)
(M2−k(t))+.
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Bipartite ISDA CCR free close-out VII
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Bipartite ISDA CCR free close-out VIII

Having an axiomatic approach in our sight, let us explicitly write
down the following

Observation (ISDA CCR free restrictions)
Let k ∈ {0, 2} and t ∈ [0,T]. Then

(i) Bt(k, 2− k)11A−
k

= −LGDk(M2−k(t))+11A−
k

(ii) Bt(k, 2− k)11Asim =
(
Rk(M2−k(t))+ − R2−k(Mk(t))+

)
11Asim

(iii) Bt(k, 2− k)11N = 0.

The ISDA CCR free restrictions simply say that both parties,
party 0 and party 2 close-out their positions according to the
lines of the bipartite ISDA CCR free close-out rule by taking into
account precisely all - possible - default scenarios.
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Bipartite ISDA CCR free close-out IX

Definition
Let k ∈ {0, 2}, t ∈ [0,T] and

f ∗(l,m−,m+) := m−(1− l)− m+ ,

where (l,m−,m+) ∈ [0, 1]× R+ × R+.

Then the stochastic
process H∗, defined via

H∗k (ω, t) := 11A−
2−k ·∪Asim

(ω) f ∗
(
LGD2−k, (M2−k(ω, t))−, (M2−k(ω, t))+

)
− 11A−

k ·∪Asim
(ω) f ∗

(
LGDk, (Mk(ω, t))−, (Mk(ω, t))+

)
is called a symmetrically bipartite ISDA CCR free close-out
cash flow (seen from the viewpoint of party k).
Hence, H∗ is a special case of a generalised close-out cash
flow in our sense.
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Vulnerable cash flows I

Fix k ∈ {0, 2} and t ∈ [0,T]. Let t ≤ τ∗(ω). Based on our
previous representation of H∗k (τ∗)(ω) discounting to t
immediately implies

Theorem and Definition
Let t ∈ [0,T]. On {t ≤ τ∗} the t-discounted bipartite ISDA CCR
free close-out cash flow amount seen from the point of view of
party k at t is given by D(t, τ∗)H∗k (τ∗). I. e.,

D(t, τ∗)H∗k (τ∗) = D(t, τ∗) Mk(τ
∗)− D(t, τ∗)Bτ∗(k, 2− k)

on {t ≤ τ∗}, where (as before) Bτ∗(k, 2− k) = X2−k(τ
∗)− Xk(τ

∗)
and

Xk(τ
∗) =

(
11A−

k ·∪Asim
LGDk − 11Asim

)
(M2−k(τ

∗))+ .

37 / 60



Vulnerable cash flows I

Fix k ∈ {0, 2} and t ∈ [0,T]. Let t ≤ τ∗(ω). Based on our
previous representation of H∗k (τ∗)(ω) discounting to t
immediately implies

Theorem and Definition
Let t ∈ [0,T]. On {t ≤ τ∗} the t-discounted bipartite ISDA CCR
free close-out cash flow amount seen from the point of view of
party k at t is given by D(t, τ∗)H∗k (τ∗).

I. e.,

D(t, τ∗)H∗k (τ∗) = D(t, τ∗) Mk(τ
∗)− D(t, τ∗)Bτ∗(k, 2− k)

on {t ≤ τ∗}, where (as before) Bτ∗(k, 2− k) = X2−k(τ
∗)− Xk(τ

∗)
and

Xk(τ
∗) =

(
11A−

k ·∪Asim
LGDk − 11Asim

)
(M2−k(τ

∗))+ .

37 / 60



Vulnerable cash flows I

Fix k ∈ {0, 2} and t ∈ [0,T]. Let t ≤ τ∗(ω). Based on our
previous representation of H∗k (τ∗)(ω) discounting to t
immediately implies

Theorem and Definition
Let t ∈ [0,T]. On {t ≤ τ∗} the t-discounted bipartite ISDA CCR
free close-out cash flow amount seen from the point of view of
party k at t is given by D(t, τ∗)H∗k (τ∗). I. e.,

D(t, τ∗)H∗k (τ∗) = D(t, τ∗) Mk(τ
∗)− D(t, τ∗)Bτ∗(k, 2− k)

on {t ≤ τ∗},

where (as before) Bτ∗(k, 2− k) = X2−k(τ
∗)− Xk(τ

∗)
and

Xk(τ
∗) =

(
11A−

k ·∪Asim
LGDk − 11Asim

)
(M2−k(τ

∗))+ .

37 / 60



Vulnerable cash flows I

Fix k ∈ {0, 2} and t ∈ [0,T]. Let t ≤ τ∗(ω). Based on our
previous representation of H∗k (τ∗)(ω) discounting to t
immediately implies

Theorem and Definition
Let t ∈ [0,T]. On {t ≤ τ∗} the t-discounted bipartite ISDA CCR
free close-out cash flow amount seen from the point of view of
party k at t is given by D(t, τ∗)H∗k (τ∗). I. e.,

D(t, τ∗)H∗k (τ∗) = D(t, τ∗) Mk(τ
∗)− D(t, τ∗)Bτ∗(k, 2− k)

on {t ≤ τ∗}, where (as before) Bτ∗(k, 2− k) = X2−k(τ
∗)− Xk(τ

∗)
and

Xk(τ
∗) =

(
11A−

k ·∪Asim
LGDk − 11Asim

)
(M2−k(τ

∗))+ .

37 / 60



Vulnerable cash flows II
Fix k ∈ {0, 2}. Let 0 ≤ t ≤ u ≤ T. Recall that Π

(t,u]
k defines the

random CCR free cumulative cash flow from the claim in (t, u],
discounted to time t (seen from k’s point of view).

Let us
similarly denote by Π̂

(t,T]
k the random cumulative cash flow from

the claim in (t,T], discounted to time t (seen from k’s point of
view), yet accounting for CCR now.

By construction Π̂
(t,T]
k should include both first-to-default

scenarios and the scenario of a simultaneous default of both
parties. To derive the structure of Π̂

(t,T]
k , we again assume that

the MCP holds, as well as our basic accounting principle, and
that each party applies the bipartite ISDA CCR free close-out
rule.
Hence, on {t ≤ τ∗} we put

Π̂
(t,T]
k := Π

(t,τ∗]
k + D(t, τ∗)H∗k (τ∗)
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Vulnerable cash flows III

Recall that we also assume that the No-Arbitrage Principle is
satisfied. Hence, under inclusion of all those listed
assumptions, we obtain the following

Lemma (Representation of Π̂
(t,T]
k )

Let k ∈ {0, 2} and t ∈ [0,T]. On {t ≤ τ∗}, the random variable
Π̂

(t,T]
k can be written as

Π̂
(t,T]
k = Π

(t,T]
k −D(t, τ∗)Bτ∗(k, 2− k) + D(t, τ∗)

(
Mk(τ

∗)−Π
(τ∗,T]
k

)
.

In particular, we have Π̂
(t,T]
k

(MCP)
= −Π̂

(t,T]
2−k .

Hence, a consequent application of the conditional expectation
EQ[ · ∣∣Gτ∗] to Π̂

(t,T]
k , together with some stochastic analysis

lead to the following crucial
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Vulnerable cash flows IV

Theorem (Market prices of total bipartite CCR)
Let k ∈ {0, 2} and t ∈ [0,T]. Assume that each party applies the
bipartite ISDA CCR free close-out rule. If both, the No-Arbitrage
Principle and the MCP is satisfied, and if the basic accounting
rule holds, then on {t ≤ τ∗}, we have

EQ[Π̂(t,T]
k |Gt

]
=

Mt(k)

+ EQ
[
D(t, τ∗)

(
11A−

k ·∪Asim
LGDk − 11Asim

)
(M2−k(τ

∗))+
∣∣Gt

]
− EQ

[
D(t, τ∗)

(
11A−

2−k ·∪Asim
LGD2−k − 11Asim

)
(Mk(τ

∗))+
∣∣Gt

]
.
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Vulnerable cash flows V
Latter result contains an important and well-known special
case. Namely the first appearance of “FTDCVA” and “FTDDVA”:

Corollary (Brigo-Capponi (2009))
Let k ∈ {0, 2}, t ∈ [0,T] and assume that each party applies the
bipartite ISDA CCR free close-out rule. Further assume that
both, the No-Arbitrage Principle and the MCP are satisfied and
that the basic accounting rule holds. If there are no
simultaneous defaults (i. e., if Asim = ∅ Q-a. s.) then on
{t ≤ τ∗}, we have

EQ[Π̂(t,T]
k |Gt

] (!)
= Mt(k)

+ EQ
[
11A−

k
LGDkD(t, τ∗)

(
M2−k(τ

∗)
)+∣∣Gt

]
− EQ

[
11A−

2−k
LGD2−kD(t, τ∗)

(
Mk(τ

∗)
)+∣∣Gt

]
.
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Let k ∈ {0, 2}, t ∈ [0,T] and assume that each party applies the
bipartite ISDA CCR free close-out rule. Further assume that
both, the No-Arbitrage Principle and the MCP are satisfied and
that the basic accounting rule holds. If there are no
simultaneous defaults (i. e., if Asim = ∅ Q-a. s.) then on
{t ≤ τ∗}, we have

EQ[Π̂(t,T]
k |Gt

] (!)
= Mt(k)
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TCVA, TDVA and TBVA I

Definition
Let k = 0 or k = 2, t ∈ [0,T] and t ≤ τ∗. Put

TCVAt(k|2− k) := EQ
[(

11A−
2−k ·∪Asim

LGD2−k−11Asim

)
D(t, τ∗)(Mk(τ

∗))+
∣∣Gt

]
,

TBVAt(k, 2− k) := TCVAt(k|2− k)− TCVAt(2− k|k),

and...

TDVAt(k, 2− k) := TCVAt(2− k|k) (??)

:= EQ
[(

11A−
k ·∪Asim

LGDk − 11Asim

)
D(t, τ∗)(M2−k(τ

∗))+
∣∣Gt

]
.
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TCVA, TDVA and TBVA II

Definition (ctd.)

(i) The real-valued Gt-measurable random variable
TCVAt(k | 2− k) is called Total Credit Valuation Adjustment
at t, seen from the viewpoint of party k.

(ii) The real-valued Gt-measurable random variable
TBVAt(k, 2− k) is called Total Bilateral Valuation
Adjustment at t, seen from the viewpoint of party k.

(iii) The real-valued Gt-measurable random variable
TDVAt(k, 2− k) is called Total Debit Valuation Adjustment
at t, seen from the viewpoint of party k.

The word “Total” should reflect the total coverage of all four
possible cases: Ω = N ·∪ A−0 ·∪ A−2 ·∪ Asim.
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TCVA, TDVA and TBVA III

Note that TDVAt(k, 2− k) is defined contingent of the default of
party k itself,

yet not contingent of the default of party 2− k.
Thus, “TDVAt(k, 2− k)” is not a typo! A proper (and more
“network-adequate”) notation probably could be the following
one:

“ TDVAt(k, 2− k
∣∣k) := TCVAt(2− k, k

∣∣k) ′′

(where by definition Xt(a, b|m) is seen from the viewpoint of the
trading party a, given arbitrary trading parties a, b and
m ∈ {a, b})? So, aren’t we actually confronted with the
beginning of an “accounting paradox” here? Even more
puzzling: don’t we simply ignore the right sign here and just
view on k’s double ledger k’s paid default protection premium
TCVAt(2− k|k) as a received amount, simply by renaming
TCVAt(2− k|k) as “TDVAt(k, 2− k)”? Shouldn’t it be
“TDVAt(k, 2− k) := −TCVAt(2− k|k)”? Confused!

44 / 60



TCVA, TDVA and TBVA III

Note that TDVAt(k, 2− k) is defined contingent of the default of
party k itself, yet not contingent of the default of party 2− k.

Thus, “TDVAt(k, 2− k)” is not a typo! A proper (and more
“network-adequate”) notation probably could be the following
one:

“ TDVAt(k, 2− k
∣∣k) := TCVAt(2− k, k

∣∣k) ′′

(where by definition Xt(a, b|m) is seen from the viewpoint of the
trading party a, given arbitrary trading parties a, b and
m ∈ {a, b})? So, aren’t we actually confronted with the
beginning of an “accounting paradox” here? Even more
puzzling: don’t we simply ignore the right sign here and just
view on k’s double ledger k’s paid default protection premium
TCVAt(2− k|k) as a received amount, simply by renaming
TCVAt(2− k|k) as “TDVAt(k, 2− k)”? Shouldn’t it be
“TDVAt(k, 2− k) := −TCVAt(2− k|k)”? Confused!

44 / 60



TCVA, TDVA and TBVA III

Note that TDVAt(k, 2− k) is defined contingent of the default of
party k itself, yet not contingent of the default of party 2− k.
Thus, “TDVAt(k, 2− k)” is not a typo!

A proper (and more
“network-adequate”) notation probably could be the following
one:

“ TDVAt(k, 2− k
∣∣k) := TCVAt(2− k, k

∣∣k) ′′

(where by definition Xt(a, b|m) is seen from the viewpoint of the
trading party a, given arbitrary trading parties a, b and
m ∈ {a, b})? So, aren’t we actually confronted with the
beginning of an “accounting paradox” here? Even more
puzzling: don’t we simply ignore the right sign here and just
view on k’s double ledger k’s paid default protection premium
TCVAt(2− k|k) as a received amount, simply by renaming
TCVAt(2− k|k) as “TDVAt(k, 2− k)”? Shouldn’t it be
“TDVAt(k, 2− k) := −TCVAt(2− k|k)”? Confused!

44 / 60



TCVA, TDVA and TBVA III

Note that TDVAt(k, 2− k) is defined contingent of the default of
party k itself, yet not contingent of the default of party 2− k.
Thus, “TDVAt(k, 2− k)” is not a typo! A proper (and more
“network-adequate”) notation probably could be the following
one:

“ TDVAt(k, 2− k
∣∣k) := TCVAt(2− k, k

∣∣k) ′′

(where by definition Xt(a, b|m) is seen from the viewpoint of the
trading party a, given arbitrary trading parties a, b and
m ∈ {a, b})?

So, aren’t we actually confronted with the
beginning of an “accounting paradox” here? Even more
puzzling: don’t we simply ignore the right sign here and just
view on k’s double ledger k’s paid default protection premium
TCVAt(2− k|k) as a received amount, simply by renaming
TCVAt(2− k|k) as “TDVAt(k, 2− k)”? Shouldn’t it be
“TDVAt(k, 2− k) := −TCVAt(2− k|k)”? Confused!

44 / 60



TCVA, TDVA and TBVA III

Note that TDVAt(k, 2− k) is defined contingent of the default of
party k itself, yet not contingent of the default of party 2− k.
Thus, “TDVAt(k, 2− k)” is not a typo! A proper (and more
“network-adequate”) notation probably could be the following
one:

“ TDVAt(k, 2− k
∣∣k) := TCVAt(2− k, k

∣∣k) ′′

(where by definition Xt(a, b|m) is seen from the viewpoint of the
trading party a, given arbitrary trading parties a, b and
m ∈ {a, b})? So, aren’t we actually confronted with the
beginning of an “accounting paradox” here?

Even more
puzzling: don’t we simply ignore the right sign here and just
view on k’s double ledger k’s paid default protection premium
TCVAt(2− k|k) as a received amount, simply by renaming
TCVAt(2− k|k) as “TDVAt(k, 2− k)”? Shouldn’t it be
“TDVAt(k, 2− k) := −TCVAt(2− k|k)”? Confused!

44 / 60



TCVA, TDVA and TBVA III

Note that TDVAt(k, 2− k) is defined contingent of the default of
party k itself, yet not contingent of the default of party 2− k.
Thus, “TDVAt(k, 2− k)” is not a typo! A proper (and more
“network-adequate”) notation probably could be the following
one:

“ TDVAt(k, 2− k
∣∣k) := TCVAt(2− k, k

∣∣k) ′′

(where by definition Xt(a, b|m) is seen from the viewpoint of the
trading party a, given arbitrary trading parties a, b and
m ∈ {a, b})? So, aren’t we actually confronted with the
beginning of an “accounting paradox” here? Even more
puzzling: don’t we simply ignore the right sign here and just
view on k’s double ledger k’s paid default protection premium
TCVAt(2− k|k) as a received amount, simply by renaming
TCVAt(2− k|k) as “TDVAt(k, 2− k)”?

Shouldn’t it be
“TDVAt(k, 2− k) := −TCVAt(2− k|k)”? Confused!

44 / 60



TCVA, TDVA and TBVA III

Note that TDVAt(k, 2− k) is defined contingent of the default of
party k itself, yet not contingent of the default of party 2− k.
Thus, “TDVAt(k, 2− k)” is not a typo! A proper (and more
“network-adequate”) notation probably could be the following
one:

“ TDVAt(k, 2− k
∣∣k) := TCVAt(2− k, k

∣∣k) ′′

(where by definition Xt(a, b|m) is seen from the viewpoint of the
trading party a, given arbitrary trading parties a, b and
m ∈ {a, b})? So, aren’t we actually confronted with the
beginning of an “accounting paradox” here? Even more
puzzling: don’t we simply ignore the right sign here and just
view on k’s double ledger k’s paid default protection premium
TCVAt(2− k|k) as a received amount, simply by renaming
TCVAt(2− k|k) as “TDVAt(k, 2− k)”? Shouldn’t it be
“TDVAt(k, 2− k) := −TCVAt(2− k|k)”?

Confused!

44 / 60



TCVA, TDVA and TBVA III

Note that TDVAt(k, 2− k) is defined contingent of the default of
party k itself, yet not contingent of the default of party 2− k.
Thus, “TDVAt(k, 2− k)” is not a typo! A proper (and more
“network-adequate”) notation probably could be the following
one:

“ TDVAt(k, 2− k
∣∣k) := TCVAt(2− k, k

∣∣k) ′′

(where by definition Xt(a, b|m) is seen from the viewpoint of the
trading party a, given arbitrary trading parties a, b and
m ∈ {a, b})? So, aren’t we actually confronted with the
beginning of an “accounting paradox” here? Even more
puzzling: don’t we simply ignore the right sign here and just
view on k’s double ledger k’s paid default protection premium
TCVAt(2− k|k) as a received amount, simply by renaming
TCVAt(2− k|k) as “TDVAt(k, 2− k)”? Shouldn’t it be
“TDVAt(k, 2− k) := −TCVAt(2− k|k)”? Confused!

44 / 60



TCVA, TDVA and TBVA IV

Observation
Let k = 0 or k = 2, t ∈ [0,T] and t ≤ τ∗.

(i) If Asim = ∅ Q-a. s., then we have (Q-a. s.)

TCVAt(k | 2− k) = EQ
[
11A−

k
LGDkD(t, τ∗)(M2−k(τ

∗))+
∣∣Gt

]
≥ 0

(ii) If A−k = ∅ Q-a. s., then we have (Q-a. s.)

TCVAt(k | 2− k) = −EQ
[
11Asim Rk D(t, τ∗)(M2−k(τ

∗))+
∣∣Gt

]
≤ 0

So, what would (ii) say if in addition both parties did default
simultaneously? Does then (ii) just state that the required
partial reimbursement Rk(M2−k(τ

∗))+ of party 2− k by party k
could be ignored by party k then?
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Market price of total bilateral CCR I

Recall that we also have assumed that the discount factor
process D(0, ·) is G-adapted.

Let’s sum up what we have seen
so far:

Theorem
Let k ∈ {0, 2} and t ∈ [0,T]. Assume that each party applies the
bipartite ISDA CCR free close-out rule. If both, the No-Arbitrage
Principle and the MCP is satisfied, and if the basic accounting
rule holds, then on {t ≤ τ∗}, we have

EQ[Π̂(t,T]
k |Gt

]
= Mt(k)− TBVAt(k),

where the stopped process D(0, · ∧ τ∗)TBVAτ
∗
(k, 2− k) is a

G-martingale under Q (seen from the viewpoint of party k),
satisfying TBVAτ

∗
(k, 2− k) = −TBVAτ

∗
(2− k, k).
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satisfying TBVAτ

∗
(k, 2− k) = −TBVAτ

∗
(2− k, k).
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Market price of total bilateral CCR II

Theorem (ctd.)
Moreover,

TBVAτ∗(k, 2− k) = Bτ∗(k, 2− k),

where Bτ∗(k, 2− k) is a G-adapted stochastic process,
satisfying the ISDA CCR free restrictions and
B·(k, 2− k) = −B·(2− k, k).

In particular, we have EQ[Π̂(t,T]
k |Gt

]
= −EQ[Π̂(t,T]

2−k |Gt
]
, implying

that both parties 0 and 2 would then agree on the “Q-market
price of total bilateral CCR”.

In fact, we not only have an existence result. The listed
properties already lead to the following “uniqueness” result:
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Market price of total bilateral CCR III

Theorem
Let k ∈ {0, 2} and t ∈ [0,T].

Consider
Zt(k) := Mt(k)−∆t(k, 2− k), where (as usual in this talk)
Mt(k) = EQ[Π(t,T]

k |Gt
]

denotes the CCR free mark-to-market
value of the portfolio to party k. Assume that
• ∆τ∗(0, 2) = −∆τ∗(2, 0) for all s ∈ [0,T];
• Both, ∆·(0, 2) and ∆·(2, 0) satisfy the ISDA CCR free

restrictions at τ∗;
• D(0, ·) is G-adapted,
• The stopped process D(0, · ∧ τ∗)∆τ∗(k, 2− k) is a càdlàg

G-martingale.
If the No-Arbitrage Principle and the MCP is satisfied, and if the
basic accounting rule holds, then on {t ≤ τ∗}, we have
∆t(k, 2− k) = TBVAt(k, 2− k) and Zt(k) = EQ[Π̂(t,T]

k |Gt
]
.
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1 Simultaneous defaults and total bilateral counterparty credit
risk

2 Total bilateral valuation adjustment

3 Unilateral CVA and Basel III
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Basel III and unilateral CVA

The confusion continues since:

Special Case (Basel III only one party defaults!)

Fix k ∈ {0, 2}. Assume that in addition τk = +∞ (i. e., no default
of party k). Then A−2−k = {τ2−k ≤ T}, A−k = ∅ and Asim = ∅.
Consequently, TDVAt(k, 2− k) = 0,

EQ[Π̂(t,T]
k |Gt

]
= Mt(k)− TCVAt(k | 2− k) ,

and
EQ[Π̂(t,T]

2−k |Gt
]

= Mt(2− k)+TDVAt(2− k, k).

Hence, if party k were the investor, and if τk = +∞ the
unilateral CVA UCVAt(k | 2− k) := TCVAt(k | 2− k) would have
to be paid by party 2− k to the default free party k at t to cover
a potential default of party 2− k after t.
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Excerpt from Basel III (ACVA, Para 98)
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CVA risk in Basel III: Flaws I

An analysis of “CVA volatility risk” and its capitalisation should
particularly treat the following serious flaws:

(i) CVA risk (and hedges) extend far beyond the risk of credit
spread changes. It includes all risk factors that drive the
underlying counterparty exposures as well as dependent
interactions between counterparty exposures and the
credit spreads of the counterparties (and their underyings).
By solely focusing on credit spreads, the Basel III UCVA
VaR and stressed VaR measures in its advanced approach
for determining a CVA risk charge do not reflect the real
risks that drive the P&L and earnings of institutes.
Moreover, banks typically hedge these non-credit-spread
risk factors. The Basel III capital calculation does not
include these hedges.
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CVA risk in Basel III: Flaws II

(ii) The non-negligible and non-trivial problem of a more
realistic inclusion of WWR should be analysed deeply. In
particular, the “alpha” multiplier 1.2 ≤ α should be revisited,
and any unrealistic independence assumption should be
strongly avoided.

(iii) Credit and market risks in UCVA are not different from the
same risks, embedded in many other trading positions
such as corporate bonds, CDSs, or equity derivatives. CVA
risk can be seen as just another source of market risk.
Consequently, it should be managed within the trading
book. Basel III requires that the CVA risk charge is
calculated on a stand alone basis, separated from the
trading book. This seems to be an artificial segregation. A
suitable approach would be to include UCVA and all of its
hedges into the trading book capital calculation.
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CVA risk in Basel III: Flaws III

(iv) Basel III considers unilateral CVA only. More precisely, the
regulatory calculation of the ACVA is based on UCVA0 – as
opposed to the calculations of CVA in FAS 157 respectively
IAS 39! Latter explicitly include the (U)DVA0. Hence, there
exists a non-trivial mismatch between regulation and
accounting! Moreover, as we have seen a thorough and
appropriate treatment of a market price of (bilateral) CCR
leads to TBVA0 and not to UCVA0. Consequently, further
research is necessary. There is work in progress such as
e.g. the running “Fundamental Review of the Trading Book”
or running projects in the RTF subgroup of the BCBS –
hopefully leading to necessary improvements of Basel III.
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Structure of TCVAt(k | 2− k)

Although we write “TCVAt(k | 2− k)” it always should be kept in
mind that we actually are working with a very complex object,
namely:

TCVAk(t,T,LGD2−k, τk, τ2−k,D(t, τ∗),Mk(τ
∗)) !

Basel III considers the case t = 0 “only”. Why? The case
0 < t ≤ τ∗ requires an in depth analysis of the conditional joint
default process(

Q
(
τk ≤ T and τ2−k ≤ τk

∣∣Gt
))

t∈[0,T]
.

To cover dynamically changing stochastic dependence between
all embedded risk factors, a truly dynamic copula model has to
be constructed ( Bielecki, Crépey, Frey, Jeanblanc and many
more).
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Further important topics (not discussed
here)

Finally let us list further – important – topics which could not be
considered in this talk (due to time limitation).

• Risk mitigants such as collateral and margins;
• Re-hypothecation of collateral and funding;
• Margin period of risk;
• TBVA and clearing through a CCP (a CCP could also

default) systemic risk?!
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Thank you for your attention!

Are there any questions, comments or remarks?
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