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0. Preface

He is onto us and how, on the one hand, we take pride in building an
elegant world utterly divorced from the demands of reality and, on the other, claim
that our ideas underlie virtually all technological developments of significance.

D. Mumford (from the Preface to [Ens]).

Pure mathematics is an immense organism built entirely and exclusively of ideas
that emerge in the minds of mathematicians and live within these minds.

If one wishes to shake off the somewhat uneasy feeling that such a statement can
provoke, there are at least three escape routes.

First, one can simply identify mathematics with the contents of mathematical
manuscripts, books, papers and lectures, with the increasingly growing net of the-
orems, definitions, proofs, constructions, conjectures (should I include software as
well ?...) – with what contemporary mathematicians present at the conferences,
keep in the libraries and electronic archives, take pride in, award each other for, and
occasionally bitterly dispute the origin of. In short, mathematics is simply what
mathematicians are doing, exactly in the same way as music is what musicians are
doing.

Second, one can argue that mathematics is a human activity deeply rooted in
reality, and permanently returning to reality. From counting on one’s fingers to
moon–landing to Google, we are doing mathematics in order to understand, create,
and handle things, and perhaps this understanding is mathematics rather than in-
tangible murmur of accompanying abstractions. Mathematicians are thus more or
less responsible actors of human history, like Archimedes helping to defend Syra-
cuse (and to save a local tyrant), Alan Turing cryptanalyzing Marshal Rommel’s
intercepted military dispatches to Berlin, or John von Neumann suggesting high
altitude detonation as an efficient tactics of bombing. Accepting this viewpoint,
mathematicians can defend their trade by stressing its social utility. In this role,
a mathematician can be as morally confused as the next person, and if I were to
put on display some trade–specific particularities of such a confusion, I could not
find anything better than the bitter irony of [B-BH] (p. 11): “[...] mathematics
can also be an indispensable tool. Thus, when the effect of fragmentation bombs
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on human bodies was to be tested but humanitarian concerns prohibited testing on
pigs (italics mine. Yu. M.), mathematical simulation was put into play.”

Or, third, there is a noble vision of the great Castle of Mathematics, towering
somewhere in the Platonic World of Ideas, which we humbly and devotedly discover
(rather than invent). The greatest mathematicians manage to grasp outlines of the
Grand Design, but even those to whom only a pattern on a small kitchen tile is
revealed, can be blissfully happy. Alternatively, if one is inclined to use a semiotic
metaphor, Mathematics is a proto–text whose existence is only postulated but
which nevertheless underlies all corrupted and fragmentary copies we are bound to
deal with. The identity of the writer of this proto–text (or of the builder of the
Castle) is anybody’s guess, but Georg Cantor with his vision of infinity of infinities
directly inspired by God, and Kurt Gödel with his “ontological proof”, seemingly
had no doubts on this matter.

Various shades and mixes of these three attitudes, social positions, and impli-
cated choices of the individual behavior, color the whole discussion that follows.
The only goal of this concise Preface is to make the reader conscious of the intrin-
sic tensions in our presentation, rather than imitate clear vision and offer definite
judgements where there are none.

One last warning about historical references in this exposition. There are two
different modes of reading old texts: one, to understand the times and ethnos they
were written in, another - to throw some light on the values and prejudices of
our times. In the history of mathematics, the polar attitudes are represented by
“ethnomathematics” vs Bourbaki style history.

For the sake of this presentation, I explicitly and consciously adopt the “mod-
ernizing” viewpoint.

Acknowledgement. Silke Wimmer–Zagier provided some sources on the history
of Chinese and Japanese mathematics and discussed their relevance to this project.
Dmitri Manin explained me Google’s strategy of page ranking. I gratefully ac-
knowledge their generous help.

I. Mathematical knowledge

I.1. Bird’s eye view. Sir Michael Atiyah starts his report [At] with the
following broad outline: “The three great branches of mathematics are, in historical
order, Geometry, Algebra and Analysis. Geometry we owe essentially to Greek
civilization, Algebra is of Indo–Arab origin and Analysis (or the Calculus) was the
creation of Newton and Leibniz, ushering in the modern era.” He then explains
that in the realm of physics, these branches correspond respectively to the (study
of) Space/Time/Continuum: “There is little argument about Geometry being the
study of space, but it is perhaps less obvious that Algebra is the study of time. But,
any algebraic system involves the performance of sequential operations (addition,
multiplication, etc.) and these are conceived as being performed one after another.
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In other words Algebra requires time for its meaning (even if we usually only need
discrete instants of time).”

One can argue for an alternative viewpoint on Algebra according to which it has
most intimate relations not with Physics but with Language. In fact, observing
the graduate emergence of place–value notation for numbers, and later algebraic
notation for variables and operations, one can recognize two historical stages.

At the first stage, notation serves principally to shorten and unify the symbolic
representation of a certain pool of meanings. At this stage, a natural language could
(and did) serve the same goal, only less efficiently. Therefore one can reasonably
compare this process with the development of a specialized sub–dialect of the nat-
ural language. The so–called Roman numerals still in use for ornamental purposes
are fossilized remnants of this stage. As another helpful comparison, perhaps more
streamlined and better documented, one can invoke the emergence and evolution
of chemical notation.

At the second stage, algorithms for addition/multiplication and later division
of numbers in a place–value notation are devised. In a parallel development, vari-
ables and algebraic operations start to be combined into identities and equations,
and then to strings of equations obeying universal rules of identical transforma-
tions/deductions. At this stage, expressions in the new (mathematical) dialect
become not so much carriers of certain meanings as a grist for the mill of compu-
tations. It is this shift of the meaning, from the more or less explicit semantics
of notation to the hidden semantics of algorithms transforming strings of symbols,
that was the crucial chain of events marking the birth of Algebra.

Nothing similar to this second stage happened to the natural languages. To the
contrary, when in the 60s of the twentieth century large computers made possible
first experiments with algorithmic processing of texts in English, Russian, French
(e.g. for implementing automatic translation), it became clear how unsuitable for
computer processing natural languages were. Huge data bases for vocabularies were
indispensable. Intricate and illogical nets of rules governed morphology, word order,
and compatibility of grammatical constructions; worse, in different languages these
rules were capriciously contradictory. And after all efforts, automatic translation
without subsequent editing by a human being never produced satisfactory results.

This property of human languages – their resistance to algorithmic processing
– is perhaps the ultimate reason why only mathematics can furnish an adequate
language for physics. It is not that we lack words for expressing all this E = mc2

and
∫

eiS(φ)Dφ stuff – words can be and are easily invented – the point is that we
still would not be able to do anything with these great discoveries if we had only
words for them.

But we cannot just skip words and deal only with formulas either. Words in
mathematical and scientific texts play three basic roles. First, they furnish multi-
ple bridges between the physical reality and the world of mathematical abstractions.
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Second, they carry value judgements, sometimes explicit, sometimes implicit, gov-
erning our choices of particular chains of mathematical reasonings, in the vast tree
of “all” feasible but mostly empty formal deductions. And last but not least, they
allow us to communicate, teach and learn.

I will conclude with a penetrating comment of Paul Samuelson regarding use of
words vs mathematical symbols in economic models (cited from [CaBa]): “When
we tackle them [the problems of economic theory] by words, we are solving the
same equations as when we write out those equations. [...] Where the really big
mistakes are is in the formulation of premises. [...] One of the advantages of the
mathematical medium – or, strictly speaking, of the mathematician’s customary
canons of exposition of proof, whether in words or in symbols – is that we are
forced to lay our cards on the table so that all can see our premises.”

Returning to the large scale map of mathematical provinces, Geometry/Algeb-
ra/Analysis, one should find a place on it for (mathematical) Logic, with its modern
impersonation into the Theory of Algorithms and Computer Science. There are
compelling arguments to consider it as a part of broadly conceived Algebra (pace
Frege.) And if one agrees on that, Atiyah’s insight about association of Algebra
with Time, becomes corroborated. In fact, the great shift in the development of
Logic in the 30s of the twentieth century occurred when Alan Turing used a physics
metaphor, “Turing machine”, for the description of an algorithmic computation.
Before his work, Logic was considered almost exclusively in para–linguistic terms,
as we did above. Turing’s vision of a finite automaton moving in discrete steps
along one–dimensional tape and writing/erasing bits on it, and theorem about
existence of a universal machine of this type, stress exactly this temporal aspect
of all computations. Even more important, the idea of computation as a physical
process not only helped create modern computers, but also opened way to thinking
in physical terms, both in classical and quantum mode, about general laws of storing
and processing information.

I.2. Objects of mathematical knowledge. When we study biology, we study
living organisms. When we study astronomy, we study celestial bodies. When we
study chemistry, we study varieties of matter and of ways it can transform itself.

We make observations and measurements of raw reality, we devise narrowly
targeted experiments in a controlled environment (not in astronomy however), and
finally we produce an explanatory paradigm, which becomes a current milestone of
science.

But what are we studying when we are doing mathematics?

A possible answer is this: we are studying ideas which can be handled as if
they were real things. (P. Davis and R. Hersh call them “mental objects with
reproducible properties”).

Each such idea must be rigid enough in order to keep its shape in any context
it might be used. At the same time, each such idea must have a rich potential
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of making connections with other mathematical ideas. When an initial complex
of ideas is formed (historically, or pedagogically), connections between them may
acquire the status of mathematical objects as well, thus forming the first level of a
great hierarchy of abstractions.

At the very base of this hierarchy are mental images of things themselves and
ways of manipulating them. Miraculously, it turns out that even very high level
abstractions can somehow reflect reality: knowledge of the world discovered by
physicists can be expressed only in the language of mathematics.

Here are several basic examples.

I.2.1. Natural numbers. This is arguably the oldest proto–mathematical idea.
“Rigidity” of 1, 2, 3, ... is such that first natural numbers acquire symbolic and
religious meanings in many cultures. Christian Trinity, or Buddhist Nirvana come
to mind: the latter evolved from Sanskrit nir–dva–n–dva where dva means “two”,
and the whole expression implies that the state of absolute blessedness is attained
through the extinction of individual existence and becoming “one” with Universe.
(These negative connotations of the idea of “two” survive even in modern European
languages where it carries association with the idea of “doubt” : cf. Latin dubius,
German Zweifeln, and Goethe’s description of Mephistopheles).

Natural number is also a proto–physical idea: counting material objects (and
later immaterial objects as well, such as days and nights) is the first instance of
measurement, cf. below.

Natural number becomes a mathematical idea when:

a) Ways of handling natural numbers as if they were things are devised: adding,
multiplying.

b) The first abstract features of the internal structure of the totality of all natural
numbers is discovered: prime numbers, their infinity, existence and uniqueness of
prime decomposition.

These two discoveries were widely separated historically and geographically; ar-
guably, culturally and philosophically as well. Place–value system marks the origin
of what we nowadays call applied mathematics, primes mark the origin of what used
to be called pure mathematics. Here are a few details.

At first, both numbers and ways of handling them are encoded by specific mate-
rial objects: fingers and other body parts, counting sticks, notches. Notch is already
a sign, not a proper thing, and it may start signifying not 1, but 10 or 60, depend-
ing on where in the row of other symbols it is situated. A way to the early great
mathematical discovery, that of place–value numeration system is open. However,
a consistent place–value system also requires a sign for “zero”, which came late and
marked a new level of mathematical abstraction.

An expressive summary in [B-BH] sketches the following picture:
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“In c. 2074 BCE, king Shulgi organized a military reform in the Sumerian Em-
pire, and the next year an administrative reform (seemingly introduced under the
pretext of a state of emergency but soon made permanent) enrolled the larger part
of the working population in quasi–servile labour crews and made overseer scribes
accountable for the performance of their crews, calculated in abstract units worth
1/60 of a working day (12 minutes) and according to fixed norms. In the ensuing
bookkeeping, all work and output therefore had to be calculated precisely and con-
verted into these abstract units, which asked for multiplications and divisions en
masse. Therefore, a place value system with base 60 was introduced for interme-
diate calculations. Its functioning presupposed the use of tables of multiplication,
reciprocals and technical constants and the training for their use in schools; the
implementation of a system whose basic idea was “in the air” for some centuries
therefore asked for decisions made at the level of the state and implemented with
great force. Then as in many later situations, only war provided the opportunity
for such social willpower.”

Primes, on the other hand, seem to spring off from pure contemplation, as well
as the idea of a very concrete infinity, that of natural numbers themselves, and that
of prime numbers.

The proof of infinity of primes codified in Euclid’s Elements is a jewel of an early
mathematical reasoning. Let us recall it briefly in modern notation: having a finite
list of primes p1, . . . , pn, we can add one more prime to it by taking any prime
divisor of p1 . . . pn + 1.

This is a perfect example of handling mathematical ideas as if they were rigid
material objects. And at this stage, they are already pure ideas bafflingly unrelated
to any vestiges of Sumerian or whatever material notation. Looking at the modern
decimal notation of a number, one can easily tell whether it is even or divisible by 5,
but not whether it is prime. Generations of mathematicians after Euclid marveled
at an apparent randomness with which primes pop up in the natural series.

Observation, controlled experimentation, and recently even engineering of primes
(producing and recognizing large primes by computationally feasible algorithms, for
security applications) became a trademark of much of modern number theory.

1.2.2. Real numbers and “geometric algebra”. Integers resulted from
counting, but other real numbers came from geometry, as lengths and surfaces,
volumes. The discovery by Pythagoras of the incommensurability of the diagonal of
a square with its side was at the same time the demonstration that there were more
“magnitudes” that “numbers”. Magnitudes were later to become real numbers.

Arithmetical operations on integers evolved from putting together sticks and
notches to systematic handling normalized notations in an ordered way. Algebraic
operations on reals evolved from drawing and contemplating sketches which could
intermittently be plans of building sites or results of surveying, and renderings of
Euclidean circles, squares and angles.
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Historians of mathematics in the twentieth century argued pro and contra in-
terpretation of a considerable part of Greek mathematics as “geometric algebra”.
One example of it is a sketch of a large square subdivided into four parts by two
lines parallel to the orthogonal sides so that two of the parts are again squares.
This sketch can be read as an expression and a proof of the algebraic identity
(a + b)2 = a2 + b2 + 2ab.

Our modernizing perspective suggests a more general consideration of several
modes of mental processes, in particular those related to mathematics. The follow-
ing two are the basic ones:

a) Conscious handling of a finite and discrete symbolic system, with explicitly
prescribed laws of formation of meaningful strings of symbols, constructing new
strings, and less explicit rules of deciding which strings are “interesting” (left brain,
linguistic, algebraic activity).

b) Largely subconscious handling of visual images, with implicit reliance upon
statistics of past experience, estimating probabilities of future outcomes, but also
judging balance, harmony, symmetry (right brain, visual arts and music, geometry).

Mental processes of mathematicians doing research must combine these two
modes in many sophisticated ways. This is not an easy task, in particular be-
cause information processing rates are so astonishingly different, of the order 10
bit/sec for conscious symbolic processing, and 107 bit/sec for subconscious visual
processing (cf. [Nø]).

Probably because of inner tension created by this (and other) discrepancies,
they tend to be viewed emotionally, as an embodiment of values – cold intellect
against warm feeling, bare logic vs. penetrating intuition. See beautiful articles by
David Mumford [Mu1] and [Mu2] who eloquently defends statistics against logic,
but invokes mathematical statistics, which is built, as any mathematical discipline,
in an extremely logical way.

Returning to real numbers and the “geometric algebra” of the Greeks, we rec-
ognize in it a sample of right brain treatment of a subject which later historically
evolved into something dominated by the left brain. Or, as Mumford puts it, mod-
ern algebra is a grammar of actions with objects which are inherently geometric,
and Greek algebra is an early compendium of such actions.

Perhaps the continuity of Greek geometric thinking as a cognitive phenomenon
can be traced not only in modern geometry but also in theoretical physics. The
last decades have seen such a vigorous input of insights, conjectures, and sophis-
ticated constructions, from physics to mathematics, that an expression “physical
mathematics” was coined. The theoretical thinking underlying the creative use of
Feynman’s path integral, strikes us by the richness of results constructed on a foun-
dation which is mathematically shaky by any standards. This can be considered
as an additional justification of the notion that “geometric algebra” was a reality,
and not only our reconstruction of it.
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I.2.3. eπi = −1: a tale of three numbers. Arguably, Euler’s formula eπi =
−1 is the most beautiful single formula in all mathematics.

It combines in a highly unexpected way three (or four, if one counts −1 sepa-
rately) constants that were discovered in various epochs, and emanate an aura of
very different motivations.

Very briefly, π = 3, 1415926... is a legacy of the Greeks (again). Even its existence
as a real number, that is (the length of) a line segment, or surface of a square, is not
something that can be grasped without an additional mental effort. The problem
of “squaring the circle” is not just the next geometric problem, but a legitimacy
test, with an uncertain outcome.

By contrast, e = 2, 7128128... emerged in the already mature, if not fully devel-
oped Western mathematics (mid–seventeenth century). It is a combined theoretical
by–product of the invention of logarithm tables as a tool of optimization of numer-
ical algorithms (addition replacing multiplication) and the problem of “squaring
the hyperbole”. None of the classical geometric constructions led to e and none
suggested any relation between e and π.

Finally, the introduction of i =
√
−1, an “imaginary” number, a monstrosity for

many contemporaries, was literally imposed on Cardano by the formulas for roots
of a cubic equation expressed in radicals. When all three roots are real, formulas
required complex numbers in intermediate calculations.

Euler’s formula is a remarkable example of “infinite” identities of which he (and
later Srinivasa Ramanujan) was a great practitioner. In fact, eπi = −1 is a partic-
ular case of the series eix =

∑
∞

n=0(ix)n/n! which gives a more general expression
eix = cos x + i sin x.

Further progress in our understanding of real numbers and theory of limits rele-
gated the Euler and Ramanujan great skills of dealing with “infinite identities” to
backstage. G. Hardy, describing Ramanujan’s mathematical psyche, was at a loss
trying to interiorize it. This story does tell something about the logic vs statistics
dichotomy, but I cannot pinpoint even a tentative statement.

As a totally unrelated development, eix = cos x + i sin x turned out to be at
the base of an adequate description of one of the most important and unexpected
discoveries of the physics of twentieth century: quantum probability amplitudes,
their wave–like behaviour, and quantum interference.

I.2.4. Cantorian set: the ultimate mathematical object. In the original
description by Cantor,

Unter einer ‘Menge’ verstehen wir jede Zusammenfassung M von bestimmten
wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche
die ‘Elemente’ von M genannt werden) zu einem Ganzen.

“By a ‘set’ we mean any collection M into a whole of definite, distinct objects
m (called the ‘elements’ of M) of our perception or our thought.”
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German syntax allows Cantor to mirror the meaning of the sentence in its struc-
ture: Objekten m unserer Anschauung etc are packed between the opening bracket
Zusammenfassung and the closing bracket zu einem Ganzen.

Contemplating this definition for the first time, it is difficult to imagine what
kind of mathematics or, for that matter, what kind of mental activity at all, can
be performed with such meager means. In fact, it is precisely this parsimony which
allowed Cantor to invent his “diagonal process”, to compare infinities as if they
were physical objects, and to discover that the infinity of real numbers is strictly
larger than that of integers.

Simultaneously, Cantor’s intuition underlies most of foundational work in the
mathematics of the twentieth century: it is either vigorously refuted by logicists
of various vintages, or works as a great unification project, in both guises of Set
Theory and its successor, Category Theory.

I.2.5. “All men are mortal, Kai is a man ...”: from syllogisms to
software. Aristotle codified elementary forms of statements and basic rules of
logical deductions. The analogies between them and elementary arithmetics were
perceived early, but made precise late; we recognize Boole’s role in this development.
Philosophers of science disagreed about hierarchical relationships between the two.
Frege, for example, insisted that arithmetic was a part of logic.

The 20th century has seen a sophisticated fusion of both realms when in the
thirties Gödel, Tarski and Church produced mathematical models of mathematical
reasoning going far beyond the combinatorics of finite texts. One of the important
tools was the idea, going back to Leibniz, that one can use a computable enumer-
ation of all texts by integers allowing to replace logical deductions by arithmetical
operations.

Tarski modeled truth as “truth in all interpretations”, and found out that the set
of (numbers of) arithmetical truths cannot be expressed by an arithmetical formula.
Infinitarity of Tarski’s notion of truth is connected with the fact that logical formu-
las are allowed to contain quantifiers “for all” and “there exists”, so interpretation
of a finite formula involves potentially infinite sequence of verifications.

Gödel, using a similar trick, demonstrated that the set of arithmetical truths
deducible from any finite system of axioms and deduction rules cannot coincide with
the set of all true formulas. Self–referentiality was an essential common feature of
both proofs.

Among other things, Gödel and Tarski showed that the basic hierarchical relation
is that between a language and a metalanguage. Moreover, only their interrelation
and not absolute status is objective. One can use logic to describe arithmetics,
and one can use arithmetics to discuss logic. A skillful mixture of both levels
unambiguously shows inherent restrictions of pure logic as a cognitive tool, even
when it is applied “only” to pure logic itself.
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Turing and Church during the same decade analyzed the idea of “computability”,
which had a more arithmetic flavor from the start. Alan Turing made a decisive
step by substituting a physical image (Turing machine) in place of the traditional
linguistic embodiments for logic and computation dominating both Tarski’s and
Gödel’s discourses. This was a great mental step preparing the subsequent techno-
logical evolution: the emergence of programmable electronic calculators.

Theoretically, both Church and Turing discovered that there existed a “final”
notion of computability embodied in the universal recursive function, or universal
Turing machine. This was not a mathematical theorem, but rather a “physical
discovery in a metaphysical realm”, justified not by a proof but by the fact that all
subsequent attempts to conceive an alternative version led to an equivalent notion.
A “hidden” (at least in popular accounts) part of this discovery was the realization
that the correct definition of computability includes elements of un–computability
that cannot be avoided at any cost: a recursive function is generally not everywhere
defined, and we cannot decide at which points it is defined and at which not.

Computers which are functioning now, embody a technologically alienated form
of these great insights.

I.3. Definitions/Theorems/Proofs. I will briefly describe now tangible
traces of “pure” mathematics as a collective activity of the contemporary pro-
fessional community. I will stress not so much organizational forms of this activity
as external reflection of the inner structure of the world of mathematical ideas.

Look at any contemporary paper in one of the leading research journals like An-
nals of Mathematics or Inventiones mathematicae. Typically, it is subdivided into
reasonably short patches called Definitions, Theorems (with Lemmas and Propo-
sitions as subspecies), and Proofs, that can be considerably longer. These are the
basic structure blocks of a modern mathematical exposition; frills like motivation,
examples and counterexamples, discussion of special cases, etc., make it livelier.

This tradition of organizing mathematical knowledge is inherited from the Greeks,
especially Euclid’s Elements. The goal of a definition is to introduce a mathemati-
cal object. The goal of a theorem is to state some of its properties, or interrelations
between various objects. The goal of a proof is to make such a statement convincing
by presenting a reasoning subdivided into small steps each of which is justified as
an “elementary” convincing argument.

To put it simply, we first explain, what we are talking about, and then explain
why what we are saying is true (pace Bertrand Russell).

Definitions. The first point is epistemologically subtle and controversial, be-
cause what we are talking about are extremely specific mental images not present
normally in an untrained mind (what is a a real number? a random variable? a
group?). Presenting some basic objects above, I used narrative devices to make
them look more graphic or vivid, but gave no real definitions in the technical sense
of the word.
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Euclid’s definitions usually consist of a mixture of explanations involving visual
images, and “axioms” involving some idealized properties that we want to impose
on them.

In contemporary mathematics, one can more or less explicitly restrict oneself to
the basic mental image of a Cantorian “set”, and a limited inventory of properties of
sets and constructions of new sets from given ones. Each of our Definitions then can
be conceived as a standardized description of a certain structure, consisting of sets,
their subsets etc. This is a viewpoint that was developed by the Bourbaki group and
which proved to be an extremely influential, convenient and widely accepted way of
organizing mathematical knowledge. Inevitably, a backlash ensued, aimed mostly at
the value system supporting this neo–Euclidean tradition, but its pragmatic merits
are indisputable. At the very least, it enabled a much more efficient communication
between mathematicians coming from different fields.

If one adopts a form of Set Theory as a basis for further constructions, only
set–theoretic axioms remain “axioms” in Euclid’s sense, something like intuitively
obvious properties accepted without further discussion (but see below), whereas
the axioms of real numbers or of plane geometry become provable properties of
explicitly constructed set–theoretic objects.

Bourbaki in their multivolume treatment of contemporary mathematics devel-
oped this picture and added to it a beautiful notion of “structures–mères” (the
issue [Sci] is dedicated to the history of the Bourbaki group).

In a broader framework, one can argue that mathematicians have developed a
specific discursive behavior which might be called “culture of definitions”. In this
culture, many efforts are invested into clarification of the content (semantics) of
basic abstract notions and syntax of their interrelationships, whereas the choice of
words (or even to a larger degree, notations) for these notions is a secondary matter
and largely arbitrary convention, dictated by convenience, aesthetic considerations,
by desire to invoke appropriate connotations. This can be compared with some
habits of humanistic discourse where such terms as Dasein or différance are rigidly
used as markers of a certain tradition, without much fuss about their meaning.

I.4. Problems/Conjectures/Research Programs. From time to time, a
paper appears which solves, or at least presents in a new light, some great problem,
or conjecture, which was with us for the last decades, or even centuries, and resisted
many efforts. Fermat’s Last Theorem (proved by Andrew Wiles), the Poincaré
Conjecture, the Riemann Hypothesis, the P/NP–problem these days even make
newspapers headlines.

David Hilbert composed his talk at the second (millennium) International Con-
gress of Mathematicians in Paris on August 8, 1900, as a discussion of ten out-
standing mathematical problems which formed a part of his list of 23 problems
compiled in the published version. One can argue about their comparative merit
in pure scientific terms, but certainly they played a considerable role in focusing
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efforts of mathematicians on well defined directions, and providing clear tasks and
motivation for young researchers.

Whereas a problem (a yes/no question) is basically a guess about validity or
otherwise of a certain statement (like Goldbach’s problem: every even number ≥ 4
is a sum of two primes), a Research Program is an outline of a broad vision, a map
of a landscape some regions of which are thoroughly investigated, whereas other
parts are guessed on the base of analogies, experimentation with simple special
cases, etc.

The distinction between the two is not absolute. Problem Number one, the
Continuum Hypothesis, which in the epoch of Cantor and Hilbert looked like a
yes/no question, generated a vast research program which established, in particular,
that neither of the two answers is deducible within the generally accepted axiomatic
Set Theory.

On the other hand, the explicit formulation of a research program can be a risky
venture. Problem Number 6 envisioned the axiomatization of physics. In the next
three decades or so physics completely changed its face.

Some of the most influential Research Programs of the last decades were expres-
sions of insights into the complex structure of Platonian reality. A. Weil guessed
the existence of cohomology theories for algebraic manifolds in finite characteris-
tics. Grothendieck constructed them, thus forever changing our understanding of
the relationships between continuous and discrete.

When Poincaré said that there are no solved problems, there are only problems
which are more or less solved, he was implying that any question formulated in a
yes/no fashion is an expression of narrow–mindedness.

The dawning of the twenty first century was marked by the publication by the
Clay Institute of the list of Millenium Problems. There are exactly seven of them,
and they are all yes/no questions. For the first time a computer science–generated
problem appears: the famous P/NP conjecture. Besides, Clay Problems come with
a price tag: USD 106 for a solution of any one of them. Obviously, free market
forces played no role in this pricing policy.

II. Mathematics as a Cognitive Tool

II.1. Some history. Old texts that are considered as sources for history
of mathematics show that it started as a specific activity answering the needs of
commerce and of state, servicing large communal works and warfare: cf the excerpt
above about Sumero–Babylonian administrative reform.

As another example, turn to the Chinese book “The nine chapters on mathemat-
ical procedures” compiled during the Han dynasty around the beginning of our era.
We rely here upon the report of K. Chemla at the Berlin ICM 1998, [Che]. The
book generally is a sequence of problems and of their solutions which can be read
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as special cases of rather general algorithms so that a structurally similar problem
with other values of parameters could be solved as well. According to Chemla,
problems “regularly invoke concrete questions with which the bureaucracy of the
Han dynasty was faced, and, more precisely, questions that were the responsibil-
ity of the “Grand Minister of Agriculture” (dasinong), such as renumerating civil
servants, managing granaries or enacting standard grain measures. Moreover, the
sixth of The nine chapters takes its name from an economic measure actually ad-
vocated by a Grand Minister of Agriculture, Sang Hongyang (152–82 B.C.E), to
levy taxes in a fair way, a program for which the Classic provides mathematical
procedures.”

Yet another description of the preoccupations of Chinese mathematicians is given
in [Qu]:

“In the long history of the Chinese empire, mathematical astronomy was the
only subject of the exact sciences that attracted great attention from rulers. In
every dynasty, the royal observatory was an indispensable part of the state. Three
kinds of expert – mathematicians, astronomers and astrologers – were employed
as professional scientists by the emperor. Those who were called mathematicians
took charge of establishing the algorithms of the calendar–making systems. Most
mathematicians were trained as calendar–makers. [...]

Calendar–makers were required to maintain a high degree of precision in pre-
diction. Ceaseless efforts to improve numerical methods were made in order to
guarantee the precision required for astronomical observation [7]. It was neither
necessary nor possible that a geometric model could replace the numerical method,
which occupied the principal position in Chinese calendar–making system. [...] As a
subject closely related to numerical method, algebra, rather than geometry, became
the most developed field of mathematics in ancient China.”

Western tradition goes back to Greece. According to Turnbull [Tu], we owe
the word “mathematics” and the subdivision of mathematics into Arithmetic and
Geometry to Pythagoras (569 – 500 BC). More precisely, Arithmetic (and Music)
studies the discrete, whereas Geometry and Astronomy study the continued. The
secondary dichotomy Geometry/Astronomy reflects the dichotomy The stable/The
moving.

With small modifications, this classification was at the origin of the medieval
“Quadrivium of knowledge”, and Michael Atiyah’s overall view of mathematics
still bears distinctive traces of it.

Plato (429–348 BC) in Republic, Book VII, 525c, explains why the study of
arithmetic is essential for an enlightened statesman:

“Then this is a kind of knowledge, Glaucon, which legislation may fitly prescribe;
and we must endeavour to persuade those who are prescribed to be the principal
men of our State to go and learn arithmetic, not as amateurs, but they must carry
on the study until they see the nature of numbers with the mind only; nor again,
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like merchants or retail-traders, with a view to buying or selling, but for the sake
of their military use, and of the soul herself; and because this will be the easiest
way for her to pass from becoming to truth and being.”

With gradual emergence of “pure mathematics”, return to practical needs began
to be classified as applications. The opposition pure/applied mathematics as we
know it now certainly has already crystallized by the beginning of the nineteenth
century. In France, Gergonne was publishing the Annales de mathématiques pures
et appliquées which ran from 1810 to 1833. In Germany Crelle founded in 1826 the
Journal für die reine und angewandte Mathematik.

II.2. Cognitive tools of mathematics. In order to understand how mathe-
matics is applied to the understanding of real world, it is convenient to subdivide
it into the following three modes of functioning: model, theory, metaphor.

A mathematical model describes a certain range of phenomena qualitatively or
quantitatively but feels uneasy pretending to be something more.

From Ptolemy’s epicycles (describing planetary motions, ca 150) to the Stan-
dard Model (describing interactions of elementary particles, ca 1960), quantitative
models cling to the observable reality by adjusting numerical values of sometimes
dozens of free parameters (≥ 20 for the Standard Model). Such models can be
remarkably precise.

Qualitative models offer insights into stability/instability, attractors which are
limiting states tending to occur independently of initial conditions, critical phe-
nomena in complex systems which happen when the system crosses a boundary
between two phase states, or two basins of different attractors. A recent report
[KGSIPW] is dedicated to predicting of surge of homicides in Los Angeles, using
as methodology the pattern recognition of infrequent events. Result: “We have
found that the upward turn of the homicide rate is preceded within 11 months by a
specific pattern of the crime statistics: both burglaries and assaults simultaneously
escalate, while robberies and homicides decline. Both changes, the escalation and
and the decline, are not monotonic, but rather occur sporadically, each lasting some
2–6 months.”

The age of computers has seen a proliferation of models, which are now produced
on an industrial scale and solved numerically. A perceptive essay by R. M. Solow
([Sol], written in 1997) argues that modern mainstream economics is mainly con-
cerned with model–building.

Models are often used as “black boxes” with hidden computerized input proce-
dures, and oracular outputs prescribing behavior of human users, e. g. in financial
transactions.

What distinguishes a (mathematically formulated physical) theory from a model
is primarily its higher aspirations. A modern physical theory generally purports
that it would describe the world with absolute precision if only it (the world)
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consisted of some restricted variety of stuff: massive point particles obeying only
the law of gravity; electromagnetic field in a vacuum; and the like. In Newton’s law
for the force Gm

r2 acting on a point in the central gravity field, Gm and r might be

concessions to measurable reality, but 2 in r2 is a rock solid theoretical 2, not some
2, 000000003..., whatever experimentalists might measure to the contrary. A good
quantitative theory can be very useful in engineering: a machine is an artificial
fragment of the universe where only a few physical laws are allowed to dominate in
a well isolated material environment. In this function, the theory supplies a model.

A recurrent driving force generating theories is a concept of a reality beyond and
above the material world, reality which may be grasped only by mathematical tools.
From Plato’s solids to Galileo’s “language of nature” to quantum superstrings, this
psychological attitude can be traced sometimes even if it conflicts with the explicit
philosophical positions of the researchers.

A (mathematical) metaphor, when it aspires to be a cognitive tool, postulates
that some complex range of phenomena might be compared to a mathematical
construction. The most recent mathematical metaphor I have in mind is Artificial
Intelligence (AI). On the one hand, AI is a body of knowledge related to computers
and a new, technologically created reality, consisting of hardware, software, Internet
etc. On the other hand, it is a potential model of functioning of biological brains
and minds. In its entirety, it has not reached the status of a model: we have
no systematic, coherent and extensive list of correspondences between chips and
neurons, computer algorithms and brain algorithms. But we can and do use our
extensive knowledge of algorithms and computers (because they were created by
us) to generate educated guesses about structure and function of the central neural
system: see [Mu1] and [Mu2].

A mathematical theory is an invitation to build applicable models. A mathe-
matical metaphor is an invitation to ponder upon what we know. Susan Sontag’s
essay about (mis)uses of the “illness” metaphor in [So] is a useful warning.

Of course, the subdivision I have just sketched is not rigid or absolute. Statistical
studies in social sciences often vacillate between models and metaphors. With a
paradigm change, scientific theories are relegated to the status of outdated models.
But for the sake of our exposition, it is a convenient way to organize synchronic
and historical data.

I will now give some more details about these cognitive tools, stressing models
and related structures.

II.3. Models. One can analyze the creation and functioning of a mathematical
model by contemplating the following stages inherent in any systematic study of
quantifiable observations.

i) Choose a list of observables.

ii) Devise a method of measurement: assigning numerical values to observables.
Often this is preceded by a more or less explicit ordering of these values along an
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axis (“more – less” relation); then measurement is expected to be consistent with
ordering.

iii) Guess the law(s) governing the distribution of observables in the resulting,
generally multidimensional, configuration space. The laws can be probabilistic or
exact. Equilibrium states can be especially interesting; they are often characterized
as stationary points of an appropriate functional defined on the whole configuration
space. If time is involved, differential equations for evolution enter the game.

Regarding the idea of “axis”, one should mention its interesting and general
cultural connotations expounded by Karl Jaspers. Jaspers postulated a transition
period to modernity around 500 BC, an “axial time” when a new human mentality
emerged based on the opposition between immanence and transcendence. For us
relevant here is the image of oppositions as opposite orientations of one and the
same axis, and the idea of freedom as a freedom of choice between two incompatible
alternatives. This is also the imagery behind the standard physical expression
“degrees of freedom”, which is now almost lost, as usually happens to images when
they become terms.

The idea of measurement, which is the base of modern science, is so crucial that
it is sometimes uncritically accepted in model–building. It is important to keep in
mind its restrictions.

In the quantum mode of description of the microworld, a “measurement” is a
very specific interaction which produces a random change of the system state, rather
than furnishing information about this state.

In economics, money serves as the universal axis upon which “prices” of whatever
are situated. “Measurement” is purportedly a function of market forces.

The core intrinsic contradiction of the market metaphor (including the outra-
geous “free market of ideas”) is this: we are projecting the multidimensional world
of incomparable and incompatible degrees of freedom to the one–dimensional world
of money prices. As a matter of principle, one cannot make it compatible with
even basic order relations on these axes, much less compatible with non–existent
or incomparable values of different kinds.

In this respect, the most oxymoronic use of the market metaphor is furnished by
the expression “free market of ideas”.

Only one idea is on sale at this market: that of “free market”.

II.3.1. A brief glossary of measurement. A general remark about measure-
ment: for each “axis” we will be considering, the history of measurements starts
with the stage of “human scale” and involves direct manipulation with material ob-
jects. Gradually it evolves to much larger and much smaller scales, and in order to
deal with the new challenges posed by this evolution, more and more mathematics
is created and used.
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COUNTING. We suggest to the reader to reread the subsection on Natural
Numbers above as a glimpse into the history of counting (and accounting). It
shows clearly how the transition from counting small quantities of objects (“human
scale”) to the scale of state economy stimulated the creation and codification of a
place–value notation.

Skipping other interesting developments, we must briefly mention what Georg
Cantor justifiably considered as his finest achievement: counting “infinities” and the
discovery that there is an infinite scale of infinities of growing orders of magnitude.

His central argument is structurally very similar to the Euclid’s proof that there
are infinitely many primes: if we have a finite or infinite set X , then the set of all
its subsets P (X) has a strictly larger cardinality. This is established by Cantor’s
famous “diagonal” reasoning.

Cantor’s theory of infinite sets produces an incredible extension of both aspects
of natural numbers: each number measures “a quantity”, and they are ordered by
the relation “x is larger than y”. Infinities, respectively, are “cardinals” (measure
of infinity) and “ordinals” which are points on the ordered axis of growing infinities.

The mysteries of Cantor’s scale led to a series of unsolved (and to a considerable
degree unsolvable) problems, and became the central point of many epistemological
and foundational discussions in the twentieth century. The controversies and bitter
arguments about the legitimacy of his mental constructions made the crowning
achievement of his life also the source of a sequence of nervous breakdowns and
depressions which finally killed him as the world war I was slowly grinding the last
remnants of Enlightenment’s belief in reason.

SPACE AND TIME. Human scale measurements of length must have been in-
extricably related to those of plots, and motivated by agriculture and building. A
stick with two notches, or a piece of string, could be used in order to transport a
measure of length from one place to another.

Euclid’s basic abstraction: an infinitely rigid and infinitely divisible plane, with
its hidden symmetry group of translations and rotations, with its points having no
size, lines stretching uninterrupted in two directions, perfect circles and triangles,
must have been a refined mental image of the ancient geodesy. Euclid’s space
geometry arguably was even closer to the observable world, and it is remarkable,
that he systematically produced and studied abstractions of two–, one–, and zero–
dimensional objects as well.

Pythagoras’s theorem was beautifully related to arithmetic in the practice of
Egyptian builders: the formula 32+42 = 52 could be transported into a prescription
for producing a right angle with the help of a string with uniformly distanced knots
on it.

When Eratosphene of Alexandria (ca 200 BC) devised his method for producing
the first really large scale scientific length measurement, that of the size of the Earth,
he used the whole potential of Euclid’s geometry with great skill. He observed that
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at noon on the day of summer solstice at Syene the sun was exactly at the zenith
since it shined down a deep well. And at the same time at Alexandria the distance
of the sun to the zenith was one fiftieth of the circumference. Two additional
pieces of observational data were used. First, that the distance between Syene
and Alexandria, which was taken to be 5000 Greek stades (this is also a large
scale measurement, probably, based upon the time needed to cover this distance).
Second, the assumption that Syene and Alexandria lie on the same meridian.

The remaining part of Eratosphene’s measurement method is based upon a theo-
retical model. Earth is supposed to be round, and Sun to be at an essentially infinite
distance from its center, so that the lines of sight from Syene and Alexandria to
the Sun are parallel.

Then an easy Euclidean argument applied to the cross–section of the Earth
and outer space passing through Syene, Alexandria, and the Sun, shows that the
distance between Syene and Alexandria must be one fiftieth of the Earth circum-
ference, which gives for the latter the value 250000 stades. (According to modern
evaluation of Greek stade, this is a pretty good approximation.)

Implicit in this argument is an extended symmetry group of the Euclidean plane
including, with translations and rotations, also rescalings: changing all lengths
simultaneously in the same proportion. The practical embodiment of this idea,
that of a map, was crucial for an immense amount of human activities, including
geographical discoveries all over the globe.

The attentive reader has remarked already that time measurements crept into
this description (based upon a book of Cleomedes “De motu circulari corporum
caelestium”, middle of the first century BC). In fact, how do we know that we
are looking at the position of sun at the same moment in Alexandria and Syene,
distanced by 5000 stades?

The earliest human scale time measurement were connected with periodical cy-
cles of day/night and approximate position of sun on the sky. Sky dials, referred
to by Cleomedes and Eratosthenes, translate time measurements into space mea-
surements.

The next large scale measurements of time are related to the seasons of the year
and periodicity of religious events required in the community. Here to achieve the
necessary precision, mathematical observational astronomy is needed. It is used first
to register irregularities in the periodicity of year, so basically in the movement of
Earth in the solar system. The mathematics which is used here involves numerical
calculation based on interpolation methods.

Next level of large scale: chronology of “historical time”. This proved to be a
rather un–mathematical endeavor.

Geological and evolutionary time returns us to science: the evolution of Earth
structures and of life is traced on the background of a well developed understand-
ing of physical time which is highly mathematicized; however, the changes are so
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gradual and the evidence so scattered that precision of measurements ceases to be
accessible or essential. Besides the plethora of observational data, brilliant guesses,
and very elementary accompanying reasoning, one small piece of mathematics be-
comes essential for dating: the idea that radioactive decay leaves remnants of the
decaying substance whose quantity diminishes exponentially with time. One very
original version of this idea was used in “glottochronology”: the dating of proto–
states of living languages which were reconstructed using methods of comparative
linguistics.

The sheer span of geological and evolutionary time when it was first recognized
and scientifically elaborated presented a great challenge to the dogmata of (Chris-
tian) faith: discrepancy with the postulated age of the World since the time of
Creation became gaping.

Time measurements at a small scale become possible with invention of clocks.
Sundials use relative regularity of visible solar motion and subdivide daytime into
smaller parts. Water and sand clocks measure fixed stretches of time. This uses
the idea of reproducibility of some well controlled physical processes. Mechanical
clocks add to this artificial creation of periodic processes. Modern atomic clocks use
subtle enhancing methods for exploiting natural periodic processes on a microscale.

Still, time remains a mystery, because we cannot freely move in it as we do in
space, we are dragged to who knows where, and St Augustine reminds us about
this perennial, un–scientific torment: “I know that I am measuring time. But I
am not measuring the future, for it is not yet; and I am not measuring the present
because it is extended by no length; and I am not measuring the past because it
no longer is. What is it, therefore, that I am measuring? ” (Confessions, Book XI,
XXVI.33).

CHANCE, PROBABILITY, FINANCE. Connotations of the words “chance”
and “probability” in the ordinary speech do not have much in common with math-
ematical probability: see [Cha] for an interesting analysis of semantics of related
words in several ancient and modern European languages. Basically, they invoke
the idea of human confidence (or otherwise) in an uncertain situation.

Measurements of probability, and mathematical handling of the results, refer not
to the confidence itself which is a psychological factor, but to objective numerical
characteristics of reality, initially closely related to count.

If a pack contains 52 cards and they are well shuffled, the probability to pick the
queen of spades is 1/52. Elementary but interesting mathematics enters when one
starts calculating probabilities of various combinations (“good hands”). Implicitly,
such calculations involve the idea of symmetry group: we not only count the number
of cards in the pack, or number of good hands among all possible, but assume that
each one is equally probable if the game is fair.

The mathematics of gambling was one source of probability theory, while an-
other was the statistics of banking, commerce, taxation etc. Frequencies of various
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occurences and their stability led to the notion of empirical probability and to the
more or less explicit idea of “hidden gambling”, the unobservable realm of causes
which produced observable frequences with sufficient regularity in order to fit into
a mathematical theory. The modern definition of a probability space is an axiom-
atization of such an image.

Money started as a measure of value and made a crucial transition to the world
of probability with the crystallization of credit as a main function of a bank system.

The etymology of the word “credit” again refers to the idea of human confidence.
The emergent “culture of finance”, according to the astute analysis of Mary Poovey
in [Po2], drastically differs from an economy of production “which generates profit
by turning labor power into products that are priced and and exchanged in the
market”. Finance generates profit, in particular, “through placing complex wagers
that future prices will raise or fall” ([Po2], p. 27), that is, through pure gambling.
The scale of this gambling is staggering, and the incredible mixture of real and
virtual worlds in the culture of finance is explosive.

INFORMATION AND COMPLEXITY. This is an example of a quite sophisti-
cated and contemporary measurement paradigm.

As with “chance” and “probability”, the term quantity of information, which
became one of the important theoretical notions in the second half of the twentieth
century after the works of Claude Shannon and Andrei Kolmogorov, has some-
what misleading connotations. Roughly speaking, the quantity of information is
measured simply by the length of a text needed to convey it.

In the everyday usage, this measure seems to be rather irrelevant, first, and dis-
orienting, second. We need to know whether information is important and reliable:
these are qualitative rather than quantitative characteristics. Moreover, importance
is a function of cultural, scientific, or political context. And in any case, it seems
preposterous to measure the information content of “War and Peace” by its sheer
volume.

However, quantity of information becomes central if we are handling information
without bothering about its content or reliability (but paying attention to security),
which is the business of the media and communication industry. The total size of
texts transmitted daily by Internet, mass media and phone services is astounding
and far beyond the limits of what we called “human scale”.

Shannon’s basic ideas about measuring quantity of information can be briefly
explained as follows. Imagine first that the information you want to transmit is
simply the answer “yes” or “no” to a question of your correspondent. For this,
it is not even necessary to use words of any natural language: simply transmit 1
for “yes” and 0 for “no”. This is one bit of information. Suppose now that you
want to transmit a more complex data and need a text containing N bits. Then the
quantity of information you transmit is at least bounded from above by N , but how
do you know that you cannot use a shorter text to do the same job? In fact, there
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exist systematic methods of compressing the raw data, and they were made explicit
by Shannon. The most universal of them starts with the assumption that in the
pool of texts you might be wanting to transmit not all are equally probable. In this
case you might change encoding in such a way that the more probable texts will get
shorter codes than less probable ones, and thus save on the volume of transmission,
at least in average.

Here is how one can do it in order to encode texts in a natural language. Since
there are about 30 letters of alphabet, and 25 = 32, one needs 5 bits to encode each
one, and thus to get a text whose bit–length is about 5 times its letter–length. But
some letters statistically are used much more often than others, so one can try to
encode them by shorter bit sequences. This leads to an optimization problem that
can be explicitly solved, and the resulting length of an average compressed text
can be calculated. This is essentially the definition of Shannon’s and Kolmogorov’s
entropy.

Using the statistical paradigm of measurement, the creators of Google found an
imaginative solution for the problem of assigning numerical measure to the relevance
of information as well. Roughly speaking, a search request makes Google produce
a list of pages containing a given word or expression. Typically, the number of
such pages is very large, and they must be presented in the order of decreasing
importance/relevance. How does Google calculate this order?

Each page has hypertext links to other pages. One can model the whole set of
pages on the Web by the vertices of an oriented graph whose edges are links. One
can assume in the first approximation that importance of a page can be measured
by the number of links pointing to it. But this proposal can be improved upon,
by noting that all links are not equal: a link from an important page has propor-
tionately more weight, and a link from a page that links to many other pages has
proportionately less weight. This leads to an ostensibly circular definition (we omit
a couple of minor details): each page imparts its importance to the pages it links
to, divided equally between them; each page’s importance is what it receives from
all pages that link to it. However a classical theorem due to A. Markov shows that
this prescription is well defined. It remains to calculate the values of importance
and to range pages in their decreasing order.

Let us now return to the Shannon’s optimal encoding/decoding procedures. The
reader has noticed that economy on transmission has its cost: encoding at the
source and decoding at the target of information.

What happens if we allow more complex encoding/decoding procedures in order
to achieve further degree of compression?

The following metaphor here might be helpful: an encoded text at the source is
essentially a program P for obtaining the decoded text Q at the target. Let us now
allow to transmit arbitrary programs that will generate Q; perhaps we will be able
to choose the shortest one and to save resources.



22

A remarkable result due to Kolmogorov is that this is a well defined notion: such
shortest programs P exist and their length (the Kolmogorov complexity of Q) does
not depend essentially on the programming method. In other words, there exists
a totally objective measure of the quantity of information contained in a given text
Q.

Bad news, however, crops up here: a) one cannot systematically reconstruct P
knowing Q (unlike the case of Shannon entropy); b) it may take a very long time
decoding Q from P even if P is known and short. A very simple example: if Q is a

sequence of exactly 101010

1’s, one can transmit this sentence, and let the addressee

bother with the boring task of printing 101010

1’s out.

This means that Kolmogorov’s complexity, a piece of beautiful and highly so-
phisticated (although “elementary”) mathematics, is not a practical measure of
quantity of information. However, it can be used as a powerful metaphor elucidat-
ing various strengths and weaknesses of the modern information society.

It allows us to recognize one essential way in which scientific (but also everyday
life) information used to be encoded. The basic physical “laws of nature” (New-
ton’s F = ma, Einstein’s E = mc2, the Schrödinger equation etc. ) are very com-
pressed programs for obtaining relevant information in concrete situations. Their
Kolmogorov complexity is clearly of human size, they bear names of humans asso-
ciated with their discovery, and their full information content is totally accessible
to a single mind of a researcher or a student.

Nowadays, such endeavors as the Human Genome projects provide us with huge
quantities of scientific data whose volume in any compressed form highly exceeds the
capability of any single mind. Arguably, similar databases that will be created for
understanding the central nervous system (brain) will present the same challenge,
having Kolmogorov complexity of comparable size with their volume.

Thus, we are already studying those domains of material world whose descrip-
tions have much higher information content (Kolmogorov complexity) than the
ones that constituted the object of classical science. Without computers, neither
the collective memory of observational data nor their processing would be feasible.

What will happen when the total essential new scientific “knowledge” and its
handling will have to be relegated to large computer databases and nets?

III. Mathematical Sciences and Human Values

III.1. Introduction. Commenting on the fragments of the Rhind papyrus, a
handbook of Egyptian mathematics written about 1700 BC, the editor of the whole
anthology [WM] James R. Newman writes (vol. I, p. 178, published in 1956) :

“It seems to me that a sound appraisal of Egyptian mathematics depends upon a
much broader and deeper understanding of human culture than either Egyptologists
or historians of science are wont to recognize. As to the question how Egyptian
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mathematics compares with Babylonian or Mesopotamian or Greek mathematics,
the answer is comparatively easy and comparatively unimportant. What is more
to the point is to understand why the Egyptians produced their particular kind of
mathematics, to what extent it offers a culture clue, how it can be related to their
social and political institutions, to their religious beliefs, their economic practices,
their habits of daily living. It is only in these terms that their mathematics can be
judged fairly.”

By 1990, this became a widely accepted paradigm, and D’Ambrosio coined the
term “Ethnomathematics” for it (cf [MAC]). Our collage, and the whole project
of which it is a part, is a brief self–presentation of ethnomathematics of Western
culture, observed from the vantage point of the second half of the twentieth century.

Probably the most interesting intracultural interactions involving mathematics
are those that are not direct but rather proceed via the mediation of value systems.
A value system influences activities in each domain and practically determines
their cultural interpretation. Conversely, an emerging value system in one part of
cultural activity (e.g. scientific) starts a process of reconsideration of other ones,
their reformation, sometimes leading to their extinction or total remodeling.

This is why in the last section I briefly touch upon human values in the context
of mathematical creativity.

III.2. Rationality. Let us listen again to J. R. Newman (Introduction to vol.
I of [WM]):

“... I began gathering the material for an anthology which I hoped would convey
something of the diversity, the utility and the beauty of mathematics”.

The book [WM] “... presents mathematics as a tool, a language and a map; as
a work of art and an end to itself; as a fulfillment of the passion for perfection. It
is seen as an object of satire, a subject for humor and a source of controversy; as
a spur to wit and a leaven to the storyteller imagination; as an activity which has
driven men to frenzy and provided them with delight. It appears in broad view as
a body of knowledge made by men, yet standing apart and independent of them.”

In this private and emotional list of values associated with mathematics one is
conspicuously absent: rationality. One possible explanation is that in the Anglo–
Saxon tradition, this basic value of the Enlightenment came to be associated with
economic behavior, and often gets a narrow interpretation: a rational actor is the
one that consistently promotes self–interest.

Another explanation is that being rational is not really delightful: “Cogito ergo
sum” is an existence proof but it lacks the urgency which a living soul feels without
thinking.

Still, rationality in the Renaissance sense, “Il natural desiderio di sapere” (cf.
[Ce]), and the drive to be consistently rational is a force without which the existence
of mathematics through the centuries, and its successes in bringing its share to the
technological progress of society would be impossible.
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III.3. Truth. Extended and complex, subtle and mutually contradictory views
were expounded on the problem “truth in mathematics”: see [Tr] for a fairly recent
review. Here I simply state that axiologically, this is one of the central values
associated with mathematics, whatever its historical and philosophical correlates
might be.

Authority, practical efficiency, success in competition, faith, all these clashing
values must recede in the mind of a mathematician when he or she sets down to do
their job.

III.4. Action and contemplation. By the nature of their trade, mathemati-
cians are inclined more to contemplation than to action.

The Romans, who were actors par excellence and revered Greek culture, skipped
Greek mathematics. The imperial list of virtues – valor, honor, glory, service – did
not leave much place for geometry.

This tradition continued through centuries, but as with any tradition, there
were exciting exceptions, and I will conclude this essay with a sketch of a great
mathematician of the last century, John von Neumann.

Neumann Jànos was born on October 28, 1903 in Budapest, and died in Wash-
ington, D.C., on February 8, 1957. During this relatively short life span, he partici-
pated in, and made crucial contributions to: the foundations of set theory, quantum
statistics and ergodic theory, game theory as a paradigm of economic behavior,
theory of operator algebras, the architecture of modern computers, the implosion
principle for the creation of the hydrogen bomb, and much more.

Here are two samples of his thinking and modes of expression, marking the
beginning and the end of his career.

Contemplation: The von Neumann Universe. Cantor’s description of a set as
an arbitrary collection of distinct elements of our thought is too generous in many
contexts, and the von Neumann Universe consists only of sets whose elements are
also sets. The potentially dangerous self–referentiality is avoided by postulating
that any family of sets Xi such that Xi is an element of Xi+1 has a least element;
and the ultimate set, the least of all, is empty. Thus von Neumann Universe is
born from a “philosophical vacuum”: its first elements are ∅ (the empty set), {∅}
(one–element set whose only element is the empty set), {{∅}}, {∅, {∅}} etc. Stingy
curly brackets replace Cantor’s Zusammenfassung . . . zu einem Ganzen, and this
operation, which can be iteratively repeated, is the only one that produces new sets
from the already constructed ones. Iteration can be, of course, transfinite, which
was another great insight of Cantor’s.

It is difficult to imagine a purer object of contemplation than this quiet and
powerful hierarchy.

Action: Hiroshima. Excerpts from von Neumann’s letter to R. E. Duncan, IBM
War History section, dated December 18, 1947 ([Neu], pp. 111–112):
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‘ Dear Mr. Duncan

In reply to your letter of December 16, [...] I can tell you the following things:
I did initiate and carry out work during the war on oblique shock reflection. This
did lead to the conclusion that large bombs are better detonated at a considerable
altitude than on the ground, since this leads to the higher oblique–incidence pressure
referred to. [...]

I did receive the Medal for Merit (October, 1946) and the Distinguished Service
Award (July, 1946). The citations are as follows:

“Citation to Accompany the Award of
The Medal for Merit

to
Dr. John von Neumann

DR. JOHN VON NEUMANN, for exceptionally meritorious conduct in the per-
formance of outstanding services to the United States from July 9, 1942 to August
31, 1945. Dr. von Neumann, by his outstanding devotion to duty, technical leader-
ship, untiring cooperativeness, and sustained enthusiasm, was primarily responsible
for fundamental research by the United States Navy on the effective use of high
explosives, which has resulted in the discovery of a new ordnance principle for of-
fensive action, and which has already been proved to increase the efficiency of air
power in the atomic bomb attacks over Japan. His was a contribution of inestimable
value to the war effort of the United States.

HARRY TRUMAN”
[...]’
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