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Disclaimer

This presentation and associated materials are provided for
informational and educational purposes only. Views expressed
in this work are the author’s views and are not necessarily
shared by the German Federal Financial Supervisory Authority
(and past employers).

This is work in progress. In particular, definitions, abbreviations
and symbolic language in this work can be subject of change
(ambiguity of terms in the literature).
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On CCR I

Suppose there are two parties who are trading a portfolio of
OTC derivative contracts such as, e. g., a portfolio of CDSs.
(Bilateral) counterparty credit risk (CCR) is the risk that at least
one of those two parties in that derivative transaction will
default prior to the expiration of the contract and will be unable
to make all contractual payments to its counterpart.

A derivative’s underlying in general depends on further parties
which might default (partially or even altogether) before the final
settlement of the transaction’s cash flows.⇒ “infectious
defaults” respectively multivariate dependence of random
default times and market risk factors.
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On CCR II

• CCR is of bilateral nature, based on a contractual
exchange of cashflows between two parties over a period
of time.

• Future cashflow exchanges are not known with certainty
today. The main feature that distinguishes CCR from the
risk of a standard loan is the uncertainty of the exposure at
any future date.⇒ Regarding the modelling of exposure a
simulation of future cashflow exchanges is necessary (MC,
AMC, SDEs, PDEs, SPDEs, grid computing . . .).

• Wrong-Way Risk (WWR): Strong relationship between
credit risk and market risk (dependence between default
time and MtM value at default time).⇒We need a truly
dynamic (portfolio) credit risk model for both parties: static
copula models are not enough. Default intensities should
depend on economic factors.
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Formalisation of CCR I
Let us consider an investor (Alice) and its counterparty (Bob),
trading a portfolio of N derivative contracts, expiring completely
at final maturity T > 0. Fix an arbitrary contract of this portfolio,
contract i, say. Assume that Bob will default before Alice and
before T. Firstly, let us assume that neither Alice nor Bob
receives or posts collateral until T.

The contract’s market value V(i)
Alice(t; T) viewed from the

perspective of Alice is known at t = 0 only. For any other t, the
value V(i)

Alice(t; T) is unknown to all agents in the market, hence a
random variable.

Since Bob defaults at time τBob ≤ T, the trade has to be
closed-out at τBob by Alice (who survives Bob) at the random(!)
market value V(i)

Alice(τBob; T), and it has to be replaced. The
close-out practice of Alice proceeds as follows:
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Formalisation of CCR II

• If V(i)
Alice(τBob; T) > 0, Alice receives R(i)

Bob · V
(i)
Alice(τBob; T) > 0

from Bob, where 0 < R(i)
Bob ≤ 1 is Bob’s recovery rate. Yet

she has to pay V(i)
Alice(τBob; T) to a third party in order to

replace the contract. Thus, Alice’s net loss is given by
LGD(i)

Bob · V
(i)
Alice(τBob; T), where LGD(i)

Bob := 1− R(i)
Bob.

• If V(i)
Alice(τBob; T) ≤ 0 Alice receives −V(i)

Alice(τBob,T) from a
further and replacing counterparty but she has to forward
this amount to Bob. Thus, Alice’s net loss = 0.

Thus, given that Bob defaults before Alice and before T, at τBob,
the amount of Alice’s loss equals LGD(i)

Bob · (V(i)
Alice(τBob; T))+,

where x+ := max{x, 0}. At t the number (V(i)
Alice(t; T))+ is her

current exposure to Bob (aka as replacement cost) with respect
to contract i at t.
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Formalisation of CCR III

Note that we did not specify the random structure of LGD(i)
Bob.

LGD(i)
Bob might depend on τBob as well.

Natural Question (. . . DVA?)
What would be Alice’s (net) loss if she defaulted before Bob
and before T?

Answer
Actually, Alice would not loose. It’s namely Bob who would
loose: swap the roles of Alice and Bob! Consequently, if Bob’s
loss is the negative of Alice’s gain (money conservation) Alice
would gain the following positive amount:

LGD(i)
Alice · (V(i)

Bob(τAlice; T))+ = LGD(i)
Alice · (V(i)

Alice(τAlice; T))−,

where x− := x+ − x = (−x)+.
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Netting agreements I
Some of Alice’s derivative trades with Bob could offset each
other. If all trades i = 1, . . . ,N were settled separately at t,
Alice’s total loss amount would be given as∑N

i=1 LGD(i)
Bob(V(i)

Alice(τBob; T))+, implying that even completely
offsetting trades could generate a strictly positive total loss
amount - such as the following two ones:

1/3·100+1/3·(−100) = 0 < 1/3·100+0 = 1/3·100++1/3·(−100)+.

Retrospection
A netting agreement is a legally binding agreement between
two parties stipulating that if a party defaults, legal obligations
arising from derivative transactions covered by this agreement
must be based solely on the net value of such transactions. A
set consisting of all non-single trades under a single netting
agreement or a single (non-nettable) trade is called netting set.
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Netting agreements II
Consequently, in each netting set derivatives with positive value
at the time of default offset the ones with negative value (at
least partially).

Suppose that the portfolio of derivatives of Alice is a disjoint
union of K netting sets Nk, k = 1, . . . ,K. Per netting set Nk

Alice’s total loss amount would be given as

LGD(k)
Bob ·

(∑
i∈Nk

V(i)
Alice(τBob; T)

)+
. Thus, her total loss amount is

given by
K∑

k=1

LGD(k)
Bob ·

(∑
i∈Nk

V(i)
Alice(τBob; T)

)+
.

Consequently, the exposure at portfolio level is simply the sum
of the exposures of the sub-portfolios in the netting sets. Thus,
WLOG we may restrict our investigation to a single netting set
(K := 1), consisting of a single derivative contract.
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Bilateral CCR in a financial network

Consider the following 3 parties (embedded in a financial
network, consisting of a finite number of trading parties as
nodes): an investor (Alice), a reference credit, and the
investor’s counterpart (Bob). Let us number them by 0, 1, and 2
(where 1 subscripts the reference credit). Let τk denote the
random default time of party k and T the final maturity of the
payoff of the traded portfolio of derivatives. Fix k ∈ {0, 2}. Put
N := {τ0 > T and τ2 > T} and Gk := {τk ≤ T}. Then Gk can be
written as the disjoint union of the sets Ak := {τk ≤ T and
τk = τ2−k} = A2−k (simultaneous default before T) and
Ω \ Ak = A−k ·∪A+

k , where A−k := {τk ≤ T and τk < τ2−k} and
A+

k := {τk ≤ T and τk > τ2−k}. Note that A+
k ⊆ A−2−k. Hence,

Ω = N ·∪G0 ·∪G2
X
=N ·∪A−0 ·∪A−2 ·∪A0.
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Money conservation

Definition (Money Conservation Principle)
Let x be an arbitrary amount of money (which could be a
negative number), measured in a single fixed currency unit U
(e.g., U : = e). Let k ∈ {0, 2}. TFAE:
• Party k receives x currency units U from party 2− k;
• Party 2− k pays x currency units U to party k;
• Party 2− k receives −x currency units U from party k.

Thus, paying x currency units U is by definition equivalent to
receiving −x currency units U for all real money values x (a loss
(resp. liability) is a negative gain (resp. asset)). Consequently,
for any point in time 0 ≤ t ≤ T any cash flow Πt to party 2 (an
asset if Πt ≥ 0), is precisely the cash flow −Πt to party 0 (a
liability if Πt ≥ 0).
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The role of partial information

Fix 0 ≤ t < u ≤ T and k ∈ {0, 2}. Let Ft denote the information
of a specific investor at t, representing all observable market
quantities but the default events or any factors that might be
linked to credit ratings of the both parties, and let Gt represent
the investor’s enlarged information at time t, consisting of
knowledge of the behaviour of market prices up to time t as well
as (possible) default times until t. With respect to the
information Ft defaults until t would arrive suddenly, as
opposed to the case of the enlarged information Gt.

Throughout this presentation, the letter ω always describes a
random “event”. We consider functions of type 11A, where
11A(ω) := 1 if ω ∈ A and 11A(ω) := 0 if ω /∈ A. Moreover, CCR
analysis is based on the functions x+ := max{x, 0} and
x− := x+ − x = (−x)+ = max{−x, 0}. We now introduce the
following very important notation:
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The main CCR building blocks

Π
(t,u]
k

(!)
= −Π

(t,u]
2−k Party k’s received random CCR

clean net cash flow from the
claim in (t, u], discounted to time t

Vk(t; T) := EQ[Π
(t,T]
k |Gt] Random NPV (or MtM) of Π

(t,u]
k

= −V2−k(t; T) given as conditional expectation
w.r.t. a risk neutral measure
Q, given the information Gt (cf. [2])

0 ≤ Rk < 1 k’s (rdm.) recovery rate; i. e., the
portion of the payoff from the MtM
paid by party k to party 2− k in
case of k’s default

0 < LGDk := 1− Rk ≤ 1 k’s (random) Loss Given Default
D(t, u) = exp

(
−
∫ u

t r(s)ds
)

random discount factor at time t for
time u
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Example – Part 1

Example (One-Period CDS)
Let r, c,T > 0. Put k := 0, t := 0, and let D(0,T) = e−rT . Assume
that τ0 = +∞ (i. e., no default of party 0). Let τ1 be the default
time of a third party (a reference name). Assume that
0 < q1 := Q(τ1 ≤ T) < 1. Party 0 is the protection buyer of the
following simple CDS with notional 1, sold by party 2. If party 2
does not default until T, party 0 will receive the following net
cash flow:

Π
(0,T]
0 (ω) :=

{
−c · e−rT , if τ1(ω) > T
1 · e−rT if τ1(ω) ≤ T

Thus, V0(0; T) = EQ
[
Π

(0,T]
0

]
= e−rT(−c(1− q1) + q1) =

e−rT(−c + q1(1 + c)).
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Example – Part 2

Problem
Given the assumption that party 2 could default before T, how
would then party 0’s net cashflow change if party 2 had to pay 1

3
at T if the reference name defaulted before T, and if party 2
defaulted before the reference name? Assume further that if the
reference name defaulted after T, the protection buyer still
would have to pay c.

What would be a “fair price” which should be paid by party 2 to
the protection buyer (i. e., to party 0) at t = 0 to compensate for
a possible default of protection?
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ISDA’s Full Two-Way Payment Rule

Fix k ∈ {0, 2}, and assume that party 2− k defaults first.
Suppose that close-out is settled at τ2−k. According to the Full
Two-Way Payment Rule under ISDA Master Agreements (in a
given netting set) we obtain the following table:

Vk(τ2−k; T) > 0 Vk(τ2−k; T) ≤ 0
Party k receives R2−k · Vk(τ2−k; T) 0
from party 2− k
Party k pays to 0 −Vk(τ2−k; T)
party 2− k

In the following, given that k ∈ {0, 2} and 0 ≤ t ≤ u < T (T fixed),

Uk(t, u) := D(t, u)Vk(u; T)

will denote party k’s received MtM at u, discounted back to t.
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Vulnerable cash flows I
Definition (risk-free close-out cash flow - according to
ISDA)
Let k ∈ {0, 2} and 0 ≤ t ≤ min {τ0, τ2}. If party 2− k defaults
first, the risk-free (or CCR clean) close-out cash flow seen from
the perspective of party 2− k at τ2−k is given by
−R2−k(Vk(τ2−k; T))+ + (Vk(τ2−k; T))− and hence by
−R2−k(U2−k(t, τ2−k))

− + (U2−k(t, τ2−k))
+ at t.

Thus, a strict use of the Money Conservation Principle (MCP)
leads to the important

Proposition
Let k, l ∈ {0, 2} and 0 ≤ t ≤ min {τ0, τ2}. If party l defaults first,
the risk-free close-out cash flow seen from the perspective of
party k at t is given by

(−1)
k+l

2 ·
(

LGDl · (Ul(t, τl))
− + Ul(t, τl)

)
.
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Vulnerable cash flows II

In the following, let us assume that 0 ≤ t < min {τ0, τ2} (on Ω).
Fix k ∈ {0, 2}, and let Π̂

(t,T]
k denote party k’s discounted

received payoff of a generic defaultable claim at t.
The subsequently following construction of Π̂

(t,T]
k is built on

first-to-default scenarios. We assume the validness of the
Money Conservation Principle, and we are going to implement
the risk-free Full Two-Way Payment Rule under ISDA Master
Agreements. Let us further assume that there are (almost) no
simultaneous defaults. Hence, we may put 11A0 = 11A2 = 0.
Consequently, due to the previous Proposition it immediately
follows that
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Vulnerable cash flows III

Π̂
(t,T]
k = 11N ·Π(t,T]

k + 11A−
2−k
·Π(2−k)

k + 11A−
k
·Π(k)

k , (1)

where the 2× 2 random matrix (Π
(l)
k )l,k∈{0,2} is given by

Π
(l)
k := Π

(t,τl]
k + (−1)

k+l
2 ·
(

LGDl · (Ul(t, τl))
− + Ul(t, τl)

)
for all l ∈ {k, 2− k}. Observe that Π̂

(t,T]
k

X
= −Π̂

(t,T]
2−k (i.e., the MCP

carries over to the “CCR cash flows”). Moreover,
11N · Π̂(t,T]

k = 11N ·Π(t,T]
k and 11A−

l
· Π̂(t,T]

k = 11A−
l
·Π(l)

k for all
l ∈ {k, 2− k} (due to equation (1)). To uncover the general
structure of CVA and DVA, we have to take a closer look at the
both random variables Π

(k)
k and Π

(2−k)
k .
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Vulnerable cash flows IV

Lemma
Let 0 ≤ s < t < u < T, k ∈ {0, 2} and assume that there are no
arbitrage opportunities. Then

(i) Π
(s,t]
k + D(s, t) ·Π(t,u]

k = Π
(s,u]
k .

(ii) Vk(s; u)− Vk(s; t) = EQ[D(s, t) · Vk(t; u)|Gs].

Proof.
Exercise. Hint: EsEt = Es, where Ex := EQ[·|Gx].
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Vulnerable cash flows V

Firstly note that

(−1)
k+l

2 · Ul(t, τl)
(!)
= Uk(t, τl) (2)

for all l ∈ {k, 2− k} (due to a second application of the MCP).
Hence,

Π
(l)
k = Π

(t,τl]
k + (−1)

k+l
2 · Ul(t, τl) + (−1)

k+l
2 · LGDl · (Ul(t, τl))

−

(2)
= Π

(t,τl]
k + Uk(t, τl) + (−1)

k+l
2 · LGDl · (Ul(t, τl))

−
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FtDCVA I
Consequently, due to the above Lemma and the definition of
MtM, an application of the conditional expectation operator
EQ[·|Gt] to 11A−

l
Π

(l)
k further implies that

EQ

[
11A−

l
Π

(l)
k

∣∣Gt

]
= 11A−

l
EQ

[
Π

(l)
k

∣∣Gt

]
= 11A−

l
Vk(t; τl)

+ 11A−
l

(
Vk(t; T)−Vk(t; τl)

)
+ (−1)

k+l
2 EQ

[
11A−

l
LGDl(Ul(t, τl))

−∣∣Gt

]
for all l ∈ {k, 2− k}. In particular,

EQ

[
11A−

l
Π̂

(t,T]
k

∣∣Gt

]
= 11A−

l
Vk(t; T) + (−1)

k+l
2 EQ

[
11A−

l
LGDl(Ul(t, τl))

−∣∣Gt

]
for all l ∈ {k, 2− k}.
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FtDCVA II

Consequently, since 1 = 11N + 11A−
2−k

+ 11A−
k

, we finally obtain

EQ
[
Π̂

(t,T]
k |Gt

]
= Vk(t; T)

− EQ

[
11A−

2−k
LGD2−k(U2−k(t, τ2−k))

−∣∣Gt

]
+ EQ

[
11A−

k
LGDk(Uk(t, τk))

−∣∣Gt

]
,

Since Ft ⊆ Gt and Vk(t; T) = EQ
[
Π

(t,T]
k |Gt

]
, the tower property of

the conditional expectation operator finally implies that
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FtDCVA III

EQ
[
Π̂

(t,T]
k |Ft

]
= EQ

[
Π

(t,T]
k |Ft

]
− EQ

[
11A−

2−k
LGD2−k(U2−k(t, τ2−k))

−∣∣Ft

]
+ EQ

[
11A−

k
LGDk(Uk(t, τk))

−∣∣Ft

]
.

Put

FtDCVAk(t; T) := EQ

[
11A−

2−k
LGD2−k(U2−k(t, τ2−k))

−∣∣Ft

]
= EQ

[
11A−

2−k
LGD2−kD(t, τ2−k)(Vk(τ2−k; T))+

∣∣Ft

]
FtDDVAk(t; T) := FtDCVA2−k(t; T) and

BFtDCVAk(t; T) := FtDCVAk(t; T)− FtDDVAk(t; T) .
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FtDCVA IV

Definition
Let k = 0 or k = 2. Let Q be a risk neutral probability measure
and Ft represent the information about all observable market
quantities but the default events at t. Let 0 ≤ t < min {τ0, τ2}
Q− a.s..
(i) The positive Ft-measurable random variable FtDCVAk(t; T)

is called First-to-Default Credit Valuation Adjustment at t,
paid by party 2− k to party k.

(ii) 0 ≤ FtDDVAk(t; T) := FtDCVA2−k(t; T) is called
First-to-Default Debit Credit Valuation Adjustment at t, paid
by party k to party 2− k.

(iii) BFtDCVAk(t; T) := FtDCVAk(t; T)− FtDDVAk(t; T) is called
Bilateral First-to-Default Credit Valuation Adjustment at t,
viewed from party k’s perspective.
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FtDCVA V

Observe that in general it is not possible to position 11A−
l

in front
of the conditional expectation operator EQ

[
·
∣∣Ft
]
! Given the

observable market quantities but the default events Ft only, a
possible default of party l is not encoded in Ft.

So, we have arrived at the following crucial result (cf. [4]):
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FtDCVA VI

Theorem (Brigo-Capponi)
Let Q be a “risk neutral” probability measure. Let
0 ≤ t < min {τ0, τ2} Q− a.s. and Ft denote the information at t,
representing all the observable market quantities but the default
events. Assume that the MCP holds. Under ISDA’s risk-free Full
Two-Way Payment Rule it follows that

EQ

[
11A−

l
Π̂

(t,T]
k

∣∣Ft

]
− EQ

[
11A−

l
Π

(t,T]
k

∣∣Ft

]
= (−1)

k+l
2 · FtDCVA2−l(t; T)

for all k, l ∈ {0, 2}, and

EQ
[
Π̂

(t,T]
k |Ft

]
= EQ

[
Π

(t,T]
k |Ft

]
− BFtDCVAk(t; T)

= EQ
[
Π

(t,T]
k |Ft

]
− FtDCVAk(t; T) + FtDDVAk(t; T)

for all k ∈ {0, 2}.
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UCVAk(t;T) as a special case of
FtDCVAk(t;T)

Special Case (A single default only Basel III)
Fix k ∈ {0, 2}. Assume that in addition τk = +∞ (i. e., no default
of party k). Then A−2−k = {τ2−k ≤ T} and A−k = ∅. Consequently,
FtDDVAk(t; T) = 0,

EQ
[
Π̂

(t,T]
k |Ft

]
= EQ

[
Π

(t,T]
k |Ft

]
− FtDCVAk(t; T) ,

and
EQ
[
Π̂

(t,T]
2−k |Ft

]
= EQ

[
Π

(t,T]
2−k |Ft

]
+FtDDVA2−k(t; T).

Hence, if party k were the investor, and if τk = +∞ the
Unilateral CVA 0 ≤ UCVAk(t,T) := FtDCVAk(t,T) would have to
be paid by party 2− k to the default free party k at t to cover a
potential default of party 2− k after t.
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Structure of BFtDCVAk(t;T) I

Note the very important fact that always

BFtDCVAk(t; T) = FtDCVAk(t; T)− FtDDVAk(t; T)

= EQ

[
11A−

2−k
LGD2−kD(t, τ2−k)(Vk(τ2−k; T))+

∣∣Ft

]
− EQ

[
11A−

k
LGDkD(t, τk)(Vk(τk; T))−

∣∣Ft

]
Thus, for all t ∈ [0,T], FtDCVAk(t; T) actually describes the
t-risk neutral price of a derivative reveiling a complex structure,
bought by party 2− k from party k. Hence, party 2− k pays
FtDCVAk(t; T) to party k. The derivative is an European Call
with strike zero, giving party 2− k the right (yet not the
obligation) to “buy” party k’s loss (or “residual value”)
11A−

2−k
· LGD2−k · Vk(τ2−k; T) for price 0 at T.
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Structure of BFtDCVAk(t;T) II

• By construction

BFtDCVAk(t; T)
(!)
= −BFtDCVA2−k(t; T) =: −BFtDDVAk(t; T)

for all 0 ≤ t < min {τ0, τ2}; reflecting an “agreed CCR price”
between the two parties k and 2− k. A symmetry of this
type breaks down for the unilateral case since in general
0 ≤ UCVAk(t; T) 6= −UCVA2−k(t; T) ≤ 0. BFtDCVAk(·; T)
could change its sign very often (caused by an irregular
oscillation, for example)!

• If the discounted MtM Vk decreases (in time),
(Uk)

− = (U2−k)
+ increases. Consequently, if all other risk

factors did not change, FtDDVAk would increase in time.
Hence, given an increase of party k’s credit-spreads, the
risk-neutral price of the defaultable claim to party k would
increase as well (due to Brigo-Capponi)! So, would party k
gain from an approximation to its own default?
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Structure of BFtDCVAk(t;T) III

Consequently, to avoid this “DVA paradox” in first-to-default
scenarios (by assuming the preclusion of the existence of
arbitrage opportunities) one of the following assumptions is
wrong and has to be reviewed:
• The validness of the Money Conservation Principle (MCP);
• The usefulness of the CCR clean (“risk-free”) Full Two-Way

Payment Rule under ISDA Master Agreements.
Here, the paper [1] suggests alternatives. In particular, we
investigate the impact of substituting the CCR clean (“risk-free”)
Full Two-Way Payment Rule under ISDA Master Agreements
through an extended “CCR including” version, suggested by
ISDA in 2009, implying the need for a thorough understanding
of accounting rules such as IFRS and US-GAAP though.
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Structure of BFtDCVAk(t;T) IV
Although we write “FtDCVAk(t; T)” (or “FtDCVAt(k; T)” in [1]), it
always should be kept in mind that we actually are working with
a very complex object, namely:

FtDCVAk(t,LGD2−k, τk, τ2−k,D(t, τ2−k),Vk(τ2−k; T)) !

Remark (BFtDCVA as Difference of “Expected Losses”)
BFtDCVAk(0; T) = ELk − EL2−k, where

ELk := EQ

[
11A−

2−k
LGD2−kD(0, τ2−k)(Vk(τ2−k; T))+

]
.

FtDCVAk(0; T) = ELk is also known as “Asset Charge” and
FtDDVAk(0; T) = EL2−k as “Liability Benefit”.

Brainstorming
Recall the derivation of the (advanced) IRBA in Basel II . . .
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Just the case t = 0

In the following, we consider the case t = 0 “only”. Why?

The case 0 < t < T requires the use of a rather advanced
mathematics including an in depth analysis of the conditional
joint default process

(
Q
(
τk ≤ T and τ2−k ≤ τk

∣∣∣Ft
))

0≤t≤T
under

partial market information.

To cover dynamically changing stochastic dependence between
all embedded risk factors, a truly dynamic copula model has to
be constructed ( Bielecki, Crépey, Jeanblanc et al).
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UCVA in Basel III - Part I
Firstly we list a very restrictive case of a possible calculation of
UCVA, encoded in the much too simple “CVA = PD ∗ LGD ∗EE”
formula which however seems to be used often in financial
institutes.

Proposition (Rough Approximation – Part I)
Assume that
(i) party k will not default until T: τk := +∞;
(ii) LGD2−k is constant and non-random;
(iii) (Uk(0, τ2−k))

+ = D(0, τ2−k) · (Vk(τ2−k; T))+ and τ2−k are
independent under Q (i. e., WWR or RWR is ignored
completely).

Then

UCVAk(0; T) = Q(τ2−k ≤ T) · LGD2−k · EQ
[
(Uk(0, τ2−k))

+
]
.
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UCVA in Basel III - Part II
Suppose there exists a further random variable M (a “market
risk factor”) so that Vk(τ2−k; T) is a function of M as well,
Vk(τ2−k,M; T) say.

Proposition (Rough Approximation – Part II)
Assume that
(i) Party k will not default until T: τk := +∞;
(ii) LGD2−k is constant and non-random;
(iii) For all t D(0, t) does not depend on M;
(iv) M and τ2−k are independent under Q.
Then

UCVAk(0; T) = LGD2−k

∫ T

0
D(0, t)EQ[(Vk(t,M; T))+] dFQ

τ2−k
(t),

where FQ
τ2−k

(t) := Q(τ2−k ≤ t) for all t ∈ R (unconditional df).
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Proof.
Put Φ(t,m) := 11[0,T](t) · ψ(t,m), where (t,m)> ∈ R+ × R and
ψ(t,m) := D(0, t) · (Vk(t,m; T))+. Let FQ

(τ2−k,M) denote the
bivariate df of the random vector (τ2−k,M) w.r.t. Q. Then

UCVAk(0; T)
(i),(ii)

= LGD2−kEQ[Φ(τ2−k,M)]

= LGD2−k

∫
R+×R

Φ(t,m)dFQ
(τ2−k,M)(t,m)

(iv),Fubini
= LGD2−k

∫
[0,T]

(∫
R
ψ(t,m)dFQ

M(m)
)

dFQ
τ2−k

(t)

(iii)
= LGD2−k

∫ T

0
D(0, t)EQ[(Vk(t,M; T))+]dFQ

τ2−k
(t).
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Wrong-Way Risk and Right-Way
Risk I

EE(M)
k (t) := EQ[(Vk(t,M; T))+] is known as party k’s Expected

Exposure at t. In general it can be identified by MC simulation
only.

The situation where Q(τ2−k ≤ t) is positively dependent on
EE(M)

k (t), is referred to as Wrong-Way Risk (WWR). In the case
of WWR, there is a tendency for party 2− k to default when
party k’s exposure to party 2− k is relatively high. The situation
where Q(τ2−k ≤ t) is negatively dependent on EE(M)

k (t) is
referred to as Right-Way Risk (RWR). In the case of RWR,
there is a tendency for party 2− k to default when party k’s
exposure to party 2− k is relatively low (cf. [5], [6]).
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Wrong-Way Risk and Right-Way
Risk II

A simple way to include WWR is to use the “alpha” multiplier α
of Basel II to increase EE(M)

k (t) if EE(M)
k (t) and Q(τ2−k ≤ t) are

assumed to be independent. The effect of α is to increase
UCVA. Basel II sets α := 1.4 or allows banks to use their own
models, with α ≥ 1.2. This means that, at minimum, the UCVA
has to be 20% higher than that one given in the case of the
independence assumption. If a bank does not have its own
model for WWR it has to be 40% higher. Estimates of α
reported by banks range from 1.07 to 1.10 (cf. [6]).
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Is the ISDA formula (Para 98) of
Basel III true?

Technical Remark
Regarding the calculation of UCVAk(0; T) in Basel III (para 98),
observe that the integral in the above Proposition in fact is a
Lebesgue-Stieltjes integral. Hence, if t 7→ EE(M)

k (t) were not
continuous (in time) and if it oscillated too strongly, that integral
would not necessarily be a Riemann-Stieltjes integral, implying
that we seemingly cannot simply approximate it numerically
through a Riemann-Stieltjes sum of the type

UCVAk(0; T) ≈
n∑

i=1

D(0, t∗i ) · EE(M)
k (t∗i ) · (FQ

τ2−k
(ti)− FQ

τ2−k
(ti−1))

=

n∑
i=1

D(0, t∗i ) · EE(M)
k (t∗i ) ·Q(ti−1 < τ2−k ≤ ti), (3)
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Basel III UCVA slightly modified
where 0 = t0 < . . . < tn = T and t∗i :=

ti−1+ti
2 . However:

Corollary
Assume that
(i) The assumptions (i), (ii) and (iv) of the previous

Proposition are satisfied;
(ii) For all i = 1, . . . , n, for all t ∈ [ti−1, ti],

Q(τ2−k > t) = exp
(
− λ(i)2−k t

)
, where λ(i)2−k > 0 is a constant;

(iii) For all i = 1, . . . , n, for all t ∈ [ti−1, ti], r(t) ≡ ri is constant;
(iv) LGD2−k is calibrated from a CDS curve with constant CDS

spread s(i)2−k on each [ti−1, ti].

Then s(i)2−k = λ
(i)
2−k · LGD2−k (“Credit Triangle”), and

UCVAk(0; T) =

n∑
i=1

s(i)2−k

∫ ti

ti−1

e−ri tEE(M)
k (t) exp

(
−

s(i)2−kt
LGD2−k

)
dt.

46 / 55



CVA risk in Basel III (Para 99)
Assuming the validity of approximation (3) of Basel III together
with the “spread representation”

Q(t∗i−1 < τ2−k ≤ t∗i ) = e
(
s(i−1)

2−k , t
∗
i−1
)
− e
(
s(i)2−k, t

∗
i
)
,

where e(s, t) := exp(−s · t/LGD2−k), a Taylor series
approximation of 2nd order leads to the so called “CVA risk” of
Basel III, i. e., to a delta/gamma approximation for UCVAk(0; T),
viewed as a function f (s2−k) of the n-dimensional spread vector
s2−k ≡ (s(1)2−k, . . . s

(n)
2−k)

> only:

f (s2−k + h)− f (s2−k)
(‖h‖ small )
≈

n∑
i=1

D(0, t∗i )EE(M)
k (t∗i ) hi

(
t∗i e
(
s(i)2−k, t

∗
i
)
− t∗i−1e

(
s(i−1)

2−k , t
∗
i−1
))

+

1
2 LGD 2−k

n∑
i=1

D(0, t∗i )EE(M)
k (t∗i ) h2

i
(
t∗2i−1e

(
s(i−1)

2−k , t
∗
i−1
)
− t∗2i e

(
s(i)2−k, t

∗
i
))
.
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CVA risk in Basel III: key shortfalls I

A Fundamental Review of CVA risk and its capitalisation should
particularly treat the following key shortfalls:

(i) CVA risk (and hedges) extend far beyond the risk of credit
spread changes. It includes all risk factors that drive the
underlying counterparty exposures as well as dependent
interactions between counterparty exposures and the
credit spreads of the counterparties (and their underyings).
By solely focusing on credit spreads, the Basel III UCVA
VaR and stressed VaR measures in its advanced approach
for determining a CVA risk charge do not reflect the real
risks that drive the P&L and earnings of institutes.
Moreover, banks typically hedge these non-credit-spread
risk factors. The Basel III capital calculation does not
include these hedges.
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CVA risk in Basel III: key shortfalls II

(ii) The non-negligible and non-trivial problem of a more
realistic inclusion of WWR should be analysed deeply. In
particular, the “alpha” multiplier 1.2 ≤ α should be revisited,
and any unrealistic independence assumption should be
strongly avoided.

(iii) Credit and market risks in UCVA are not different from the
same risks, embedded in many other trading positions
such as corporate bonds, CDSs, or equity derivatives. CVA
risk can be seen as just another source of market risk.
Consequently, it should be managed within the trading
book. Basel III requires that the CVA risk charge is
calculated on a stand alone basis, separated from the
trading book. This seems to be an artificial segregation. A
suitable approach would be to include UCVA and all of its
hedges into the trading book capital calculation.
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CVA risk in Basel III: key shortfalls III

(iv) Basel III requires the calculation of UCVA VaR and
stressed VaR based on regulatory IMM expected exposure
profiles and stressed exposure profiles. According to ISDA,
this seems to be inconsistent with the way institutes mark
to market, measure risk of and hedge their UCVA.

(v) Basel III has not considered DVA risk yet. This should be
analysed more deeply.

(vi) Our investigation clearly shows that BFtDCVA should be
implemented as opposed to UCVA as it is the case in the
current version of Basel III.

(vii) Points not discussed here, yet heavy work in progress (in
RMG): Para 75 of Basel III: how to derecognise own-credit
related gains and losses from derivatives in Common
Equity Tier 1 Capital? The role of DVA here?
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Thank you for your attention!

Are there any questions, comments or remarks?
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