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Abstract. Valuing, hedging and securitizing counterparty credit risk involves analyzing large
portfolios of netting sets over time horizons spanning decades. Theory dictates that the simula-
tion measure should be coherent, i.e. arbitrage free. It should also be used consistently both to
simulate and to value all instruments.

This article describes the Mathematics and the software architecture of a risk system that
accomplishes this task. The usage pattern is based on an offline phase to calibrate and generate
model libraries. Valuation and simulation algorithms are planned offline with portfolio specific
optimizations. The interactive user-driven phase includes a coherent global market simulation
taking a few minutes and a real time data exploration phase with response time below 10 seconds.
Data exploration includes 3-dimensional risk visualization of portfolio loss distributions and
sensitivities. It also includes risk resolution capability for outliers from the global portfolio level
down to the single instrument level and hedge ratio optimization.

The network bottleneck is bypassed by using heterogeneous boards with acceleration. The
memory bottleneck is avoided at the algorithmic level by adapting the mathematical framework
to revolve around a handful of compute-bound algorithms.

1. Introduction

In the aftermath of the 2007 crisis, new issuance of credit structured products and fixed
income derivatives slowed down quite suddenly. However, the crisis certainly didn’t reduce the
complexity of the valuation tasks at hand. Quite to the contrary, computational complexity in
pricing theory has reached all time highs.

The traditional abstraction of pricing individual instruments in isolation revealed its limits.
A qualitative shift occurred because of the renewed emphasis on counterparty credit risk (CCR)
which motivates the development of pricing methodologies embedding in a consistent fashion
global market information. A renewed theoretical research effort is thus needed as the staggering
increase in algorithmic complexity prompts a reassessment of the mathematical formalism within
the context of current computing technologies.
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Figure 1. Flow charts for CCR management schemes, via an internal desk (left)
or by securitization (right)

Business practices for CCR management have also evolved. Leading financial intermediaries
aggregate CCR exposures in portfolios of insurance contracts covering the risk of default on
derivative positions and hold them at a designated CCR desk. A typical portfolio entails thou-
sands of netting sets. A netting set is a sub-portfolio of CCR insurance contracts sharing the
same contractual netting agreement with a specific counterparty.

A netting agreement is a legal contract that regulates collateral posting obligations throughout
the life of the referenced deals and liquidation procedures in case one of the parties defaults. It
makes reference to two legal entities: a subsidiary of the portfolio holder and either a subsidiary
of a counterparty entity or the entity itself. Different subsidiaries are characterized by different
collateral allocation while all the subsidiaries corresponding to any given counterparty can safely
be assumed to default in a synchronized manner.

An emerging pattern involves externalizing CCR desks into regulated entities acting as Central
Counterparty Clearing Houses (CCPs) and operating in open markets. The CCPs would fund
themselves by issuing several classes of debt, thus securitizing CCR insurance portfolios to
facilitate risk transfer from commercial banks to several classes of investors by tranching. See
figure 1 for an illustration.

The challenge is to value and hedge portfolios of netting sets by projecting out at regular
time intervals scenarios over time horizons as long as the portfolio life itself, i.e. typically
decades. Scenarios must be drawn with probabilities ”consistent” with all available market
information. Consistency means that scenarios for market factors and credit defaults ought
to be generated under the very same measure which is used to value all instruments in the
portfolio. The requirement for consistency descends from the Fundamental Theorem of Finance
itself according to which the existence of a single unified pricing measure is equivalent to the
condition of global arbitrage freedom.

We should clarify here the intended meaning of the expression ”global arbitrage freedom”
in the previous paragraph. The original de Finetti statement and proof of the Fundamental
Theorem of Finance in [18] predates the introduction of the modern expression ”arbitrage free-
dom” in the Finance jargon. (See also [7] for a derivation in modern language). In the original
paper, arbitrage freedom is referred to as ”coherence condition”. ”Coherence” and ”arbitrage
freedom” are thus synonyms: both mean that there is no self-financing investment strategy in
the securities traded globally which would lead to a certain profit within any fixed time period.
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The Black-Scholes-Merton papers [11] [32] re-derive the Fundamental Theorem in the special
case of geometric Brownian motion by showing that this result follows from the existence of a
dynamic replication strategy. The validity of the Fundamental Theorem does not rest on the
possibility of dynamic replication and in fact holds true in the general case in which perfect
replication is not possible. The Black-Scholes-Merton formulation however is fascinating as it
comes with the promise of replicability and hedgeability of derivative portfolios.

The Black-Scholes-Merton model was then extended into an all-encompassing empirical method-
ology based on the notion of local valuation according to which portfolio positions should be
priced with deal specific arbitrage free models admitting dynamic replication. Having done that,
the methodology prescribes that portfolio level hedge ratios are empirically derived by summing
over deal specific hedge ratios. This procedure is based on a ”local” (i.e. deal specific) notion
of arbitrage freedom. It is not rigorous and lacks of theoretical justification, but it has virtues
from a practical standpoint. In fact, it fits very well with cluster computing schemes based on
large grids of small 32-bit nodes where parallelism does not involve inter-node communication
and is brokered transparently by middleware.

Local valuation was endorsed in VaR methodologies [33], banking regulation [10]. It is broadly
reflected in derivative valuation schemes based on adjusters to ”turn good prices into great
prices” [23], some of which are even patented [37]. Hedging strategies in current use are also
based on the use of numerous mutually inconsistent local models, see for instance [22].

The domain of applicability of local valuation is confined to short term derivative portfolios
subject to one or very few risk factors. In fact, within short time horizons, dynamic models
tend to become similar to each other and the impact of model risk is limited. However, model
inconsistencies tend to amplify dynamically with the passage of time and lack of coherence
becomes particularly worrisome for long-run dynamic portfolio simulations and risk analysis
involving numerous factors and large portfolios. Since this is precisely the situation we encounter
in the case of CCR management and securitization in which we are interested, local valuation
is not a viable option in our case.

A second consideration that motivates us to insist on global valuation is related to technology.
Our solution achieves high throughput portfolio processing on a single computational node, not
in a grid environment with hundreds of small nodes. Hence local valuation does not present a
computational advantage but would rather be a penalty. Using single node technology, we are
not confined to trivial parallelism and can orchestrate complex multi-threading schemes. As we
explain below, global models are favored as they allow for portfolio-level algorithmic optimiza-
tions which would otherwise not be possible. These optimizations are such that performance
per instrument for the global market simulation grows with the portfolio size. By persisting in
memory all detailed information collected during the simulation phase, one can then enable real
time data exploration based on 3-d risk visualization and risk resolution schemes. On the basis
of this risk analysis, hedging and replication strategies can be optimized at the portfolio level
without having to resort to the theoretically dubious practice of aggregating sensitivities from
a myriad of inconsistent models.

The paper is organized as follows. In Section 2, we discuss metrics for CCR exposures. In
Section 3, we elaborate on the notion of algorithmic complexity in light of the latest developments
in computer engineering. Section 4 outlines design patterns for financial software based on
model libraries. Section 5 elaborates on the use of single precision floating point arithmetics,
fast exponentiation and the central role played by the CFL condition. Model specifications
for interest rates are outlined in 6, for foreign exchange rate models are reviewed in 7 and
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credit models are in 9. Section 8 reviews quanto and stochastic interest rate corrections which
are relevant when analyzing large multi-currency portfolios. Finally, Section 10 discusses a
case study with performance benchmarks and 3-dimensional risk representations for a sizeable
counterparty credit risk portfolio.

2. Metrics for Counterparty Credit Risk

Early attempts to tackle CCR valuation rest on the idea of reducing complexity by restricting
the focus to the narrow class of additive risk measures given by expected loss. See [21], [15],
[12], [14], [13], [16], [28], [31] and [36].

The ”Credit Valuation Adjustment” (CVA) of a derivative position is defined as the discounted
expected loss due to counterparty default risk. More precisely, the CVA of a portfolio of netting
sets is

(2.1) CVA = E0

[∑
n

∫ ∞

0

e−
∫ t
0 rsds(P n

t )+dπn
t

]
where (x)+ denotes max(x, 0), n is an index for netting sets, P n

t is the price process of the
portfolio corresponding to the netting set n, rt is the process for the domestic short rate and πn

t

is the process followed by the cumulative probability of default up to time t for netting set n.
The CVA can thus be decomposed as follows:

(2.2) CVA =
∑

n

CVAn

where

(2.3) CVAn = E0
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]
,

i.e. the CVA of a portfolio of netting sets is given by the sums of the CVAs of each individual
netting set. Netting set specific CVAs also admit the following time decomposition:

(2.4) CVAn =

∫ ∞

0

γn(t)dt.

The function γn(t) is the term structure of point-in-time CVA and is defined as follows

(2.5) γn(t)dt = E0

[
e−
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]
,

More informative decompositions can be formulated in terms of loss distributions

(2.6) CVA =

∫ ∞

0

∫ ∞

0

Λ(t, l)dtdl

where Λ(t, l) is the density of the measure such that

(2.7)
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0
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[ ∫ T

0

e−
∫ t
0 rsds min((P n
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]
.

The function Λ(t, l) is called term structure of loss distributions and is our main focus of atten-
tion. Given the term structure of loss distributions, not only one can reconstruct the CVA of
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a portfolio, but one can also derive more general risk metrics such as the tranche point-in-time
CVA defined as follows:

(2.8) γ(t, l0, l1)dt =

∫ l1

l0

Λ(t, l)dtdl

where l0 ≥ 0 and l1 > l0 are the tranche attachment and detachment points, respectively.

Figure 2. Portfolio loss distribution and tranched point-in-time CVA for a port-
folio of 302 netting sets. Tranches are given as percentages of expected exposures.

Figure 3. Portfolio loss distribution and tranched point-in-time CVA for a port-
folio of 62 netting sets in the financial sector. Tranches are given as percentages
of expected exposures.

See Figure 2 for examples of loss distributions for a portfolio of 302 netting sets in the case
study example discussed in Section 10. By comparison, Figure 3 shows the graphs relative to
the smaller and less diversified sub-portfolio containing only the 62 netting sets corresponding to
counterparties in the financial sector. Notice how the lesser degree of diversification is reflected
in a much higher relative value for the tranche CVA corresponding to the range above 30% of
expected loss. This is an indication that, if losses were to occur in this sector, they would appear
as more highly clustered than in the global portfolio.
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Neither loss distributions nor tranched CVAs are additive across netting sets. Hence they need
to be computed while processing the portfolio of netting sets as a whole. The plain CVA instead
can be evaluated by firstly carrying out the calculation independently for each netting set and
then aggregating results by taking sums over netting sets. Additivity of the plain CVA descends
from the fact that this measure is independent of default correlation. Thanks to additivity, the
plain CVA can be evaluated using grid computing as the task is trivially parallelizable. Instead,
the calculation of loss distributions and other non-additive risk metrics necessitates compute
boards which are sufficiently powerful and capable to process global portfolios in their entirety
without partitioning them and to support high-throughput data exploration and visualization.

Default arrival times of counterparties have a tendency to cluster during crisis periods. This
clustering is perhaps the single most important risk factor that can potentially deplete the
economic capital provisioned to CCR portfolios and is not reflected in a measure of expected
loss. Additive risk metrics such as the CVA may appear conservative but are neither prudent nor
very useful and in fact give a distorted representation of risk as they neglect credit correlations.
In our opinion, effective hedging requires a process of data exploration and risk resolution of the
outliers that ought to be based on the visualization of the full loss distribution.

Notwithstanding all its limitations, an agreement was reached between market participants
and regulators to use the CVA as a metric to set capital adequacy requirements. The sole
justification behind this choice is to lower the algorithmic complexity down to a level at which
it could be handled with the traditional design patterns involving a combination of stochastic
calculus, grids and middleware. Had market participants reviewed the full potential of new
technologies, perhaps they would have considered other options.

In addition to being a poor risk measure, the CVA is sometimes valued using uncontrollable
empirical approximations such as the following ones:

(i) Sometimes the CVA is assessed at the individual instrument level and added across
positions, although this measure is only sub-additive and not additive unless it is applied
at the level of netting sets.

(ii) CVA valuation at the netting set level is sometimes not coherent, i.e. not truly arbi-
trage free, because individual instruments are priced using locally calibrated models with
instrument specific parameters.

(iii) It is a common practice to infer the CVA out of expected positive exposure (EPE)
vectors over future time periods assuming zero correlation between credit and market
risk factors, i.e. to use the following approximation:

(2.9) CVAn ≈
∫ ∞

0

E0

[
e−

∫ t
0 rsds(P n

t )+

]
E0

[
dπn

t

]
,

This assumption neglects the bias toward ”wrong way risk” in intermediaries’ portfolios,
due to the tendency to deal in maturity transformation, i.e. to provide cash upfront to
counterparties in exchange for promises of future payments discounted for credit risk.

(iv) Scenario generation under a measure very different from the one used for valuation is
theoretically inconsistent for pricing purposes. For risk management purposes, this choice
would be admissible only if the market price of risk was carefully and parsimoniously
estimated, which is often not the case.

The situation is further complicated by the regulatory and accounting requirement that market
participants also assess the ”debt value adjustment” (DVA) defined as the putative ”expected
gain” due to the default of the portfolio holder himself. The DVA is often treated as additive
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across netting sets although it is not: in case of default of the portfolio holder, assets and
liabilities across all counterparties will be netted by the appointed liquidator. Nevertheless, the
common practice is to aggregate the DVA linearly across netting sets. Assuming but certainly
not granting that DVA adjustments are justified and useful, aggregating DVAs linearly across
netting sets is devoid of economic meaning and can induce wrong behaviours.

The approach we advocate here is to capture credit correlations by working directly at the
aggregate level of portfolios of netting sets. We don’t place primary emphasis on the CVA but
instead evaluate 3-dimensional risk metrics such as fully detailed loss distributions. Emerging
computing technologies, if correctly interpreted, are quite sufficient for this purpose, even within
the confines imposed by real time usability for visualization and exploratory data analysis.

3. Silicon Economics and Algorithmic Complexity

Traditionally, algorithms could be understood by means of a Turing machine abstraction,
[38], i.e. imagining that computational task are carried out as a sequence of bitwise operations.
In this context, algorithmic complexity is a function of the number of bitwise operations the
arithmetic logic unit (ALU) needs to perform in order to complete the calculation.

Real computing machines don’t operate on isolated bits but on either single precision or
double precision floating point numbers or on integers of various size. Types do matter and affect
performance. But more importantly, real machines have complex physical architectures which
greatly impact performance. The complexities of modern hardware imply that the traditional
notion of algorithmic complexity defined as the number of bitwise operations to execute in order
to accomplish a given task can be quite misleading. In fact, the sort of algorithms we find
optimal necessitate a massively greater number of floating point operations.

To explain how greater performance can be achieved by doing more calculations, let us recall
a few traits of the silicon economics affecting microchip and board designs. In recent times,
there was in fact a radical shift in this landscape.

It used to be that:

(i) Computing capabilities were limited by the ability of ALUs to execute floating point and
integer arithmetics

(ii) Memory was expensive and a scarce resource
(iii) Most algorithms were single-threaded and parallelism was best brokered transparently

by middleware layers dispatching jobs to large grid farms
(iv) Code was best written in native C++ optimized in such a way to speed up the execution

of a great variety of bespoke algorithms.

Although these practices are still widespread in the transition period we are living, the un-
derling technology has now shifted quite radically.

(a) Nowadays, it is relatively cheap to populate microchips with highly capable ALU cores.
The 8-socket CPU boards of the emerging generation entail as many as 80 cores capable
of hyperthreading in the case of Intel or 96 cores in the case of AMD. Even more extreme
ALU counts are seen in the GPU space where the AMD Firepro GPUs have 1600 cores
and nVidia Fermis have 512.

(b) Memory is relatively cheap and readily available up to terabyte scale, thus enabling single
node technology for portfolio processing as a viable alternative to grid computing.
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(c) The clock frequency and bandwidths of data paths are not keeping pace with the compute
power of ALUs and the massive memory available, rendering the memory bottleneck
tighter than ever within the bounds of cost effective designs.

(d) Vastly different microchip architectures have emerged, including SIMD multiprocessors
with up to 16-32 data registers located in discrete GPU parts as in the nVidia Fermi
and ATI Firestream, the multicore MIMD designs on CPU boards by Intel and AMD
and the emerging MIMD-SIMD hybrid fusion architectures, the Intel Sandybridge and
AMD Booldozer.

(e) MIMD and SIMD designs are characterized by radically different threading models:
SSE2/SSE3/AVX primitives rule with CPUs while the lightweight, no-frills threading
models in CUDA/OpenCL are used for GPUs.

(f) Cache hierarchies for MIMD architectures are complex and involve up to 2 MB per core.
GPUs instead are nearly cacheless except for a modest amount of shared memory located
on individual SIMD microprocessors.

(f) On the programming language side we see the merit a bifurcation away from catch-
all C++ coding. On the one hand, the variety of architectures motivates a revival of
interest in low-level optimization of basic building block algorithms. On the other hand,
the complexity of multi-threaded orchestration in shared memory designs using large
scale in-memory processing motivates the use of higher level languages. Features such as
garbage collection, managed thread pools and support for service oriented architectures
are in fact essential for complexity management.

Mathematical Finance is founded upon frameworks of Applied Mathematics and Probability
Theory which have roots in the pre-computer era when floating point calculations were carried
out manually. Keeping the number of floating point operations to a minimum was the leading
guiding principle underlying the invention of those techniques based on analytic closed form
solutions and sparse matrix methods which lie at the heart of virtually all named valuation
models for derivatives. The shift in cost structure for board design has now tightened the
memory bottleneck to a point that it actually throws off balance the ecosystem of numerical
algorithms and renders closed form valuations and sparse matrix methods highly inefficient.

To take the innovations in computer engineering to fruition one needs to refresh the formalism
of Mathematical Finance, starting from the meta-mathematical question of defining relevance
of mathematical inventions in terms of hardware performance. The traditional definition of
algorithmic complexity measured in terms of flop count is valid in a world where algorithms are
compute bound, i.e. the bottleneck lies in the ability of the ALU to carry out floating point
operations. Until a decade ago, this used to be the case for most algorithms. However, with
the turn of the third millennium, the relative cost structure and performance characteristics of
computer parts have diverged at exponential rate. ALUs and memory have become very cheap
and easily available in massive quantities, while the data paths connecting the two has became
much costlier in relative terms.

In the changed ecosystem of computer engineering where the memory bottleneck is tighter
than ever, the objective of optimizing execution time can be reached by architecting software
solutions around the precious few algorithms which are known to admit compute bound imple-
mentations. The ones of particular relevance to our application are of four types:

• Full matrix-matrix multiplication and tensor variations thereof (the standard Level 3 and
the Level 4 BLAS extensions in [7]). To understand why these can be made compute
bound, consider a square matrix of dimension N has N2 elements and requires O(N3)
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operations to be squared: by choosing N large enough, the data to flops ratio can be
arbitrarily reduced.

• Discrete convolutions of a generic function times a function supported in two points.
• Discrete Fourier transforms.
• Carefully orchestrated Monte Carlo scenario generation schemes based on look up tables

which can be persisted in third level cache long enough to marginalize memory access
times while also avoiding cache snooping.

As we explain in [7], we find that the SIMD microprocessors in GPUs are ideally suited to
perform linear algebra, convolution and Fourier transform logic. MIMD cores in CPUs excel
at implementing the threading schemes needed for Monte Carlo scenario generation as they are
endowed with large caches and are not slowed down by asynchronous branching.

4. A System Architecture based on Model Libraries

Modeling flexibility has paramount importance in applications of Mathematics. The tradi-
tional approach has been to design models around techniques to solve them. Found a hammer,
a mathematician would go look for a nail to bang. As Jacobi stated in his 1847 lectures [27]:

”The main difficulty in integrating a given differential equation lies in introducing
convenient variables, which there is no rule for finding. Therefore we must travel
the reverse path and after finding some notable substitution, look for problems
to which it can be successfully applied.”

This is the traditional approach of Mathematics aimed at solving complex problems by car-
rying out the few operations required to evaluate special functions. Named valuation models in
current use have been built around the same principles, by adapting well known techniques from
19th century Physics literature. However efficient for manual calculations and on last century’s
hardware, this approach gives rise to severe limitations on the modeling side. Hardy expresses
this concept quite bluntly in the short essay A Mathematician’s Apology [24]:

”Most of the finest products of an applied mathematician’s fancy must be re-
jected, as soon as they have been created, by the brutal but sufficient reason that
they do not fit the facts.”

The availability of GPUs as powerful matrix engines changes all this and redefines financial
modeling as GPU computing finally allows one bypass the need of using analytical shortcuts.
Since generic Markov processes can now be effectively solved numerically, there is neither the
need nor the justification for using named models built around ingenious mathematical shortcuts
to exploit analytic solutions.

The motivation for using sparse matrix algebra is also greatly diminished as these algorithms
tend to be memory bound as the have a high data/flop count ratio. As we explain in the next
section 5, sparse matrix methods are typically used to implement unconditionally marginally
stable schemes which are less robust and less flexible from the modeling viewpoint.

This shift has far reaching repercussions on several levels. We were led to the design of a
software architecture for valuation and portfolio simulation based on libraries of global models
that are calibrated offline. A global market model is built by correlating dynamically marginal
processes for individual risk factors. Whenever one is tasked with a given portfolio to value,
be it a single swap or a large portfolio of netting sets, the valuation engine queries the model
library for the appropriate marginal specification and correlation dynamics. The valuation
engine also queries the portfolio database for pre-processed contractual information and cash
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flow generators. Then assembles these two sources of information and executes a pricing function,
combining multi-pass backward induction with simple or nested Monte Carlo simulations.

The main traits of our system can be summarized as follows (see also Figure 4):

(i) Realistic marginal distributions: Models for marginal single factor processes can
be specified on the basis of the study of econometric time series aimed at achieving
a parsimonious and economically realistic representation. This is possible because the
constraint of analytic solvability has become irrelevant.

(ii) Aggregate portfolio pricing: The most effective strategy to parallelize portfolio pric-
ing is to organize valuation tables into matrices and distribute the load according to
complex multi-threading patterns. This is contrary to the widespread strategy of valu-
ing assets one by one in isolation on grid computing equipment.

(iii) Global calibration layer: In order to take advantage of the ability to formulate econo-
metrically realistic models and to achieve a coherent specification of a global market
simulation engine, models need to be of high quality and be calibrated against a large
number of liquid derivatives comprising hundreds of data points. (A technical problem
in this respect is that the very large number of targets gives rise to high frequency dis-
turbances and lack of smoothness in the objective function. We tackled this difficulty by
developing a new optimization algorithm called ”rotating frames” that is documented in
[4]).

(iv) Bidirectional character: As explained in Section 5, conditionally strongly stable meth-
ods such as fast exponentiation on GPUs yield an unprecedented degree of smoothness
in kernel calculations. Since kernels are now directly available, it is possible to use mod-
els consistently in both time directions for forward induction, backward induction and
Monte Carlo simulations. Named models instead privilege one temporal direction over
the other: some are best solved backwards and others are best used for forward Monte
Carlo simulations.

(v) Global Monte Carlo simulations: multi-factor correlations are modeled most nat-
urally by means of dynamic copulas. For performance reasons, it is most efficient to
simulate all market factors at once on a single high density CPU node on the basis of
kernels and valuation tables produced by a GPU matrix factory.

(vi) Correlation modeling: In a global market simulation, correlation strengths don’t
have to be necessarily stationary but may and should depend on the realized scenarios
for collective market behavior.

(vii) FX polygonal relationships: Correlations between foreign exchange crosses are often
highly non-stationary because of the triangular and more generally polygonal relation-
ships tieing up the various crosses with each other. It is thus essential to select a proper
sufficient basis of anchor currencies as a reference frame to maximize stationarity, see
also Section 7.

(viii) Unified valuation and simulation engine: One of the benefits of not having to rely
on analytic shortcuts is that software implementations for financial models can have
a high degree of polymorphism. The basic algorithms of forward induction, backward
induction and scenario generation can and should be implemented just once in a highly
efficient manner and applied to all market factors across all asset classes. The only bit
of information that a unified valuation and simulation engine needs to be aware of is a
boolean flag indicating wether the model dynamics refers to an interest rate or to some
other factor, as there is an impact on discounting rules.
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(ix) Instrument capture: contractual specifications need to be captured and encoded as
payoff generation objects which are not only containers of instrument attribute lists but
also embed methods giving a full description of risk factor dependencies and conditional
payoffs. These objects provide thus a semantically isomorphic representation of contrac-
tual information. Most importantly, these objects should also not involve any valuation
logic. Finally, the valuation engine should be designed to interface with generic speci-
fications of payoff logic. These principles were first pioneered in [29] a decade ago and
can now come to fruition to the full spectrum of valuation tasks thanks to the technical
feasibility of payoff agnostic valuation engines.

(x) Data-bound pre-processing: to achieve real time performance, portfolio parsing tasks
and all other memory-bound pre-processing chores must be attached to the data itself
and executed offline.

(xi) High throughput data-processing: While the input data channels used for calibra-
tion need to comprise as much data as possible, the output data bandwidth must yield
the most detailed risk information and allow for real time exploratory data analysis. For
counterparty risk applications, this means having loss distributions available dynamically
for large portfolios of netting sets and all sub-portfolios thereof, along with sensitivities.

(xii) In-memory visualization database To prepare for real time data exploration, it is
useful to envisage a user driven simulation stage executing in a 3-10 minutes time frame
which persists fine grained simulation information into an in-memory database, out of
which one can then reconstruct an answer to all the questions of interest.

(xii) Real time 3-d visualization and data exploration layers: Having formed an in-
memory database, a user-driven risk analytics layer should execute with a 1-10 seconds
response time and allow for exploratory analysis of risk profiles. The user would likely
want to perform the analysis in cycles, starting from a global portfolio view, identify-
ing features and outliers and then resolve them by drilling down to the lower levels of
sub-portolios of netting sets, individual netting sets and individual deals. In addition,
the user will want the ability to incrementally add positions interactively, experiment
with definitions for tranche attachment and detachment points to gauge the impact on
equilibrium tranche spreads, query for risk sensitivities and hedging information, etc...

5. Fast Exponentiation, the CFL Condition and Single Precision Arithmetics

To bring to fruition the emerging computing technologies where full matrix algebra is a priv-
ileged algorithm, we make use of a formulation of Mathematical Finance based on operator
methods. The intent of this framework is to make use of matrix-multiplication engines to nu-
merically evaluate transition probability kernels as large matrices and then obtain all quantities
of financial interest out of multiplying, differentiating, Fourier transforming and taking tensor
products of these matrices. In this section, we give a brief description of the key ideas, referring
the reader to [7] and references therein for more details.

To model the evolution of a risk factor, its values are associated to a state variable x = 0, ..d−1
by means of a (possibly time dependent) map. We find that the most convenient values for the
total number of state variables d are the multiples of 64 between 512 and 1280: the divisibility by
64 maximizes efficiency of memory read-write transactions, the upper bound at 1280 is useful not
to exceed GPU memory and the lower bound of 512 is necessary to have a sufficient resolution.

To describe a process, we give a matrix uδt(x, y; t) whose elements are interpreted as the
transition probabilities to evolve from the state variable x to the state variable y at any given
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Figure 4. Flow chart describing the general architecture.

date t and over a fixed but small time interval δt. In practical applications, δt is equal to one
day for interest rate models and a fraction thereof such as 12 or 6 hours for foreign exchange
models. This matrix is called elementary transition probability kernel. To be valid, an elementary
transition probability kernel must satisfy the following two properties:

(i) Positivity: uδt(x, y; t) ≥ 0,
(ii) Probability conservation:

∑
y uδt(x, y; t) = 1 ∀x.

The first property states that transition probabilities are positive, the second that they add
up to 1. A convenient way of expressing an elementary transition probability kernel is via a
Markovian matrix L(x, y; t) such that

(5.1) uδt(x, y; t) = δxy + δtL(x, y; t).

In order for the representation to be acceptable, the following three conditions need to be
satisfied for all t:

(i’) Positivity: L(x, y; t) ≥ 0, for all x 6= y
(ii’) Probability conservation:

∑
y L(x, y; t) = 0 for all x

(iii’) CFL condition: δt ≤ 1
maxx|L(x,x;t)|

The third condition is named after Courant, Friedrichs and Lewy as they first proposed it in
[17].

To find the kernel over time horizons longer than δt, one can make use of matrix multipli-
cations. In fact, the law of compounded probability indicates that the transition probability
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kernel over the double length interval 2δt is given by

(5.2) u2δt(x, y) =
∑

z

uδt(x, z)uδt(z, y).

Notice that this rule amounts to the rule of matrix multiplication. Iterating this equation, we
then arrive at kernels over time steps of length 4δt, 8δt, etc.... In formulas, we iterate as follows:

(5.3) u2δt = u2
δt, u4δt = u2

2δt, ..... u2nδt = u2
2n−1δt.

Fast exponentiation uses repeated squaring and has ancient roots. Egyptians used extensively
repeated doublings as they carried out arithmetic calculations in a basis 2 representation for
rational numbers and then translated into basis 10 hieroglyphics, [1]. In the 10-th century, al-
Biruni succeeded in the feat of expressing 264 in basis 10 by using repeated squarings. Nowadays,
fast modular exponentiation algorithms are used in public-key cryptosystems, [35], while the use
for probabilistic modeling that we advocate is still not widely adopted.

When using fast exponentiation, the length of the elementary time interval δt can be chosen
very small. In fact, halving this interval has only the marginal impact of adding one more step
in the iteration. It turns out that there is a critical threshold given by the so called Courant
condition [17] such that whenever the elementary time interval is below that threshold, the
resulting long step kernels are very smooth.

Smoothness is of great practical importance because operator methods are all about manip-
ulating kernel matrices: if these operations were affected by a high level of noise deriving from
floating point errors, errors would propagate exponentially fast.

Very remarkably, this is not the case: the roundoff errors one inevitably incurs at each step
largely compensate against each other, the positive errors offsetting the negative errors, thus
cleaning off the signal to a surprising degree.

The mathematical mechanism is subtle. In [2], Albanese attempts a rigorous explanation by
considering the toy model of one-dimensional diffusion processes of Markovian

(5.4) L = µ(x)∇h +
σ(x)2

2
∆h

where∇h and ∆h are the discrete differentiation operators of first and second order, respectiviley,
on the lattice hZ. Assuming that the coefficients µ(x) and σ(x) are Hölder continuous and under
minor technical assumptions, the conclusion is that transition probability kernels uh(x, y; T )
converge in the limit h → 0 so that

(5.5) sup
x

sup
y
|(uh − u0)(x, y; T )|+|(Luh − u0)(x, y; T )|≤ chmin(2,α).

The result also admits a version for joint transition probability kernels between a one-dimensional
stochastic process and a stochastic integral over it, see [3].

The proof is based on a technique from Mathematical Physics called ”renormalization group”.
In this toy model for floating point errors, the CFL condition guarantees that kernels converge
pointwise along with first and second order derivatives, notwithstanding the lack of smoothness
in the coefficients.

Without the CFL condition, convergence estimates are much weaker. Until a decade ago,
the CFL condition could not be enforced because of limitations in technology and the inability
to multiply matrices. Hence there has traditionally been a focus on so called ”unconditionally
stable” methods, such as the Crank-Nicolson method, see for instance [34]. In this case, one can
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only show that, assuming the coefficients µ(x) and σ(x) are smooth functions and if φ ∈ L2 is
a test function, then

(5.6)

(∑
x∈hZ

(∑
y∈hZ

uh(x, y)φ(y)h−
∫

dyu0(x, y)φ(y)

)2
)1/2

≤ chc.

If φ has two derivatives or more, then c = 2. If φ is smooth except for a jump discontinuity
c = 1

2
. Otherwise in general one can only claim that c > 0.

For comparison, in the case of 5.5 instead, coefficients are just Hölder continuous as opposed
to being smooth, the test function φ is allowed to contain singularities as hard as that of a delta
function along with its first and second derivatives as opposed to be in L2 and the estimate is
in the uniform norm, which is much stronger than the L2 norm in 5.6. The observed qualitative
jump in terms of accuracy is so great that the kind of smoothness and robustness we can achieve
nowadays in single precision surpasses greatly what could be achieved using Crank-Nicholson
methods in double precision.

The use of single precision also has major consequences on the technology side as GPU chipsets
have grown out of the graphics market and are thus based primarily on 32-bit floating point
arithmetic engines. Combining two 32-bit ALUs to make a 64-bit ALU does not require a
huge effort. However, data paths to feed the ALUs are expensive and dictate that the optimal
performance ratio between single and double precision is in excess of a factor of two. The
highest single precision performance nowadays is achieved on AMD microchips like the Firepro
V9800 which offer a performance in matrix multiplication of 1450 GF/sec with OpenCL code
and a performance ratio of 5:1 between single and double precision. As we make a transition to
hardware platforms where single precision floating point arithmetics is at such great advantage,
robust numerical methods such as fast exponentiation come to play a privileged role.

6. Interest rate models

To model interest rate processes, we use a stochastic monetary policy short rate model. In
this model, the short rate is confined to be positive and has a stochastic mean reversion level.
To use stochastic calculus notations, the process could be loosely described by means of a
”pseudo-equation” of the form

(6.1) dρt = µatdt + κ(t)(θ(t)− ρt)dt + σ(t)satρ
β(t)dW + jumps,

The short rate process itself is an affine transformation of the process ρt given by

(6.2) rt = λ(t)ρt + φ(t).

The function λ(t) depends on time deterministically, is assumed positive and is calculated in
such a way to fit the term structure of rates precisely at a discrete set of time points in the
future. The function φ(t) is then added in such a way to achieve a daily fit with any given input
discount curve. The regime variable at denotes monetary policy and has the effect of shifting
the mean reversion level for rates, thus affecting the steepness of the curve. Jumps are added
to ensure that whenever there is a change in monetary policy there is also a sizeable change in
the short rate.

The short rate process depends on parameters which are a function of the monetary regime
variable and of time. Parameters are assumed to be piecewise constant and are allowed to
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change only at preset time points ti, i = 0, ...N . We also restrict variability to be of exponential
type, i.e.

(6.3) s(ti) = s∞ + (s0 − s∞)e−γti .

This restricts the flexibility of the optimizer and avoids irregular time dependencies. Also the
other functions in 6.1, i.e. κ(ti), θ(ti) etc., have the same exponential form.

The pseudo-equation in 6.1 should not be interpreted literally as in fact it is discretized on
a lattice. To precisely reflect our model specification, we need to use operator notations and
express the dynamics in terms of a Markovian generator. The generator in the period [ti, ti+1)
is

Li(x, a; x′, a′) = Ld
i (x, x′; a)δa,a′

+ Lj+
i (x, x′)δ(min(a + 1, na − 1), a′)

+ Lj−
i (x, x′)δ(max(a− 1, 0), a′) + c(x, a)δx,x′δaa′(6.4)

where

(6.5) Ld
i (x, x′; a) = (µ(a) + κ(ti)(θ(ti)− ρ(x)))∇x(x, x′) +

1

2
σ(ti)

2s(a)2ρ(x)β∆x(x, x′).

Furthermore,

(6.6) Lj+
i (x, x′; a) = exp(−(ρ(x′)− ρ(x))/ρ0(ti))δ(x

′ > x)

and

(6.7) Lj−
i (x, x′; a) = exp(−(ρ(x)− ρ(x′))/ρ0(ti))δ(x

′ < x).

Finally, c(x, a)δx,x′δaa′ is a diagonal term added in such a way to ensure probability conservation.
To avoid unreasonable local minima, the optimization algorithm is first run assuming that all

time dependent functions are constant. Exponential time dependencies are then allowed in a
second phase of the optimization procedure.

This model calibrates well to swaptions, typically to within errors below 3 basis points in
normal volatility. Bermuda swaptions can be added directly to the calibration basket as they
are only marginally more complex to price than their European counterparts. Moreover, regime
switching confers volatility to rate spreads, introducing a rotation mode that leads to steepening
or flattening of the yield curve. This feature makes it possible to add also CMS spread options
to the calibration basket.

Globally calibrated stochastic monetary policy models are of high quality and can be used
for model validation. Figure 5 shows an example of vetting exercise whereby a real portfolio of
CMS spread options is valued with three methods: the Hull-White model with adjusters which
is computationally fast but relatively imprecise, a 50-factor BGM model which is slow but of
high quality and our stochastic monetary policy model. Regarding performance, the stochastic
drift model is much faster than the Hull-White model and (assuming that the globally calibrated
model has already been obtained) succeeds to valuing a real portfolio of 930 CMS spreads in 25
seconds as opposed to over an hour time. The BGM model has execution times ranging from 2
to 5 minutes per instruments and thus requires overnight execution times or grid deployment.
When valuations are compared, the stochastic drift model agrees with the BGM model quite
remarkably, with over 90% of the instruments within two standard deviations of the BGM
simulation noise. Also, on an aggregate portfolio basis, relative errors for Net Asset Value
(NAV) are below 2 basis points. The differences with the Hull-White model with adjusters
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Figure 5. Scatter plots of relative price differences for a portfolio of callable
CMS spread options as a function of the option strike. The date is October 30th
2008 and options are mostly JPY denominated. The left figure shows differences
between our stochastic drift model and the Hull-White model with adjusters and
the right figure shows differences with a high quality 50-factor BGM model on the
same scale.

instead are quite substantial and, in the particular case at hand, show a visible skew bias as a
function of option strikes.

7. Foreign exchange rate models

We make use of two types of FX models: local and global. Global models are used for simu-
lation and for exact valuation. Local models are used for approximate valuation and variance
reduction.

Local models are defined for each of the crosses that are referred to in our CCR portfolio.
They are used to create approximate valuation tables for FX options to use as control variates
for the purpose of variance reduction. Although these local models are mutually inconsistent
with each other, the approximation is useful and can be controlled, i.e. errors can be removed
by running a nested Monte Carlo simulations based purely on the global model. These are more
precise but also more time consuming.

Global models are designed to be consistent with both the stochastic interest rate processes
and with each other by obeying polygonal constraints.

One example of polygonal constraint is the
following triangular relation

(7.1)
USD

EUR

EUR

JPY
=

USD

JPY
.

More generally, if one considers a graph hav-
ing world currencies at each vertex and where
the links represent the stochastic processes for
crosses, there is a similar polygonal relation
for each cycle in the graph. If one models only the crosses in a subgraph corresponding to a
minimal spanning tree, by chaining these models and accounting for stochastic interest rates,
one obtains a global model for all other crosses as well.

The question then arises: what is the best minimum spanning tree? Our answer is to identify
the spanning tree which minimizes the volatility of each cross that is contemplated. This con-
sideration led us to the graph in 6. Here, we added an extra vertex designated with the symbol
SDR that denotes the IMF global currency but should be interpreted as a modeling device to
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Figure 6. Minimum volatility spanning tree in the global currency graph

generate arbitrage free processes for the crosses in the main FX triangle USD-EUR-JPY. The
other currencies are divided into the ones linked to the dollar and the ones linked to the EUR.
No currency appears to be linked to the JPY. Furthermore, our cross-volatility minimization
procedure shows that emerging market currencies such as the MXN, TRY and BRL and the
Commonwealth block CAD-AUD-ZAR-NZD are best grouped together.

Discounted martingale conditions with respect to stochastic rates are imposed in two phases.
In the first phase, which is reviewed in this section, we pretend interest rates are deterministic
and formulate our models. In the second phase, we correct for the error and restore the exact
martingale conditions as is explained in Section 8.

The FX process with deterministic interest rates we choose for the approximate local models
is the of the same type we also use for the links in the minimum spanning volatility tree in
the global FX graph. Namely, we use a ”local correlation” model. Since this is the first article
where such model is discussed, a few words of motivation are needed.

The most common choices in the FX domain, are to either (i) use the Black-Scholes model
with adjusters [37], or (ii) use local volatility models [19] of the type

(7.2) dXt = (rd(t)− rf (t))Xtdt + σ(Xt, t)dW

or (iii) have Heston style stochastic volatility model [25] like

dXt = (rd(t)− rf (t))Xtdt + σtXtdW

dσ2
t = κ(θ − σ2

t ) + νσtdW ′

dWdW ′ = ρdt.(7.3)

The Black-Scholes model is the most widely used and it involves empirical adjusters for the
implied Black-Scholes volatility treated as the unique, deal specific adjustable parameter. This
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essentially means that the Black-Scholes formula is used as a convenient way of formulating an
interpolation-extrapolation methodology out of unprocessed prices driven exclusively by offer
and demand. The local volatility and the Heston model attempt to explain the skew and, in
that sense, are less local than the Black-Scholes formula.

Over short time horizons, the local volatility and the Heston model behave in a similar way.
Actually, over short time horizons all diffusion models can be approximated by a local volatility
model. But for the purpose of CCR valuation, we are interested in long time horizons where
this property fails.

Over long time horizons, the local volatility model is not adequate as it links directly the
volatility to the level of cross rates. Conditional to a substantial change in level, within short
time horizons there can be a change in volatility. However, when the change is consolidated,
typically log-normal volatility reverts back to long run averages. Local volatility models are
unable to reproduce the volatility relaxation process.

The Heston model instead allows for the volatility to mean revert. However, it has other
shortcomings. Firstly, the square root process driving the instantaneous variance is unrealistic
as it allows for scenarios whereby the volatility falls to nearly zero and stays very low for very
long times. Depending on the strenght of the mean reversion parameter κ, the volatility process
may admit even absorption at zero.

Secondly and perhaps more importantly, the Heston model has difficulties handling the mis-
match between time scales: the process for the cross rate evolves on time scales of about one day,
much shorter than the typical time scales for the volatility process which are of the order of a
month. It is notoriously difficult to correlate effectively two processes characterized by different
time scales. This often leads modelers to calibrate the Heston model with unrealistically high
values of the volatility-of-volatility parameter ν and for the correlation parameter ρ.

The reason why local volatility models and the Heston model have been selected by the
community are linked to the ability to solve them numerically with traditional means: sparse
linear algebra is used for local volatility models and exact solutions are used for the Heston model.
From our viewpoint, since we can use fast exponentiation to obtain transition probability kernels
efficiently and robustly, these solutions are not the most natural.

We favor a process that we named ”local correlation” and involves modeling correlations be-
tween the cross rate and volatility to produce a process which is only Markovian on discrete
time intervals, not in continuous time. The process is built in two phases by means of kernel
manipulations. In a first phase, we consider a time horizon ∆T of 5 business days and an ele-
mentary time step δt of the form 2−n∆T where n = 4, 5, 6. In the second phase, the 5-day kernel
is manipulated to insert correlations. Having done that, the kernel is further exponentiated to
reach longer time horizons.

State variables are again given by pairs (x, a) where the variable x would typically take 128
values and the variable a would take na ≈ 10. In the first phase, we fast exponentiate a simple
block-diagonal Markovian of the form

(7.4) Li(x, a; x′, a′) = Ld
i (x, x′; a)δaa′

from the elementary time step δt to the weekly time horizon ∆T . Here, the block Markovian
has the form

(7.5) Li(x, x′; a) =
1

2
σ(ti)

2s(a)2X(x)∆x(x, x′)
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where X(x) is the value of the FX cross corresponding to the state variable x and we assume for
simplicity that both the domestic and the foreign interest rates are deterministic and equal to
zero. The assumption of zero rates can easily be relaxed by means of a coordinate transformation,
as explained below. Jumps can be added without any impact on performance and robustness.

The ∆T kernel is block-diagonal, with blocks denoted by ui(x, x′; a). The ∆T kernels Ui(x, a; x′, a′)
for the local correlation model we are interested in, are obtained by manipulating such block
diagonal kernels to model rate-volatility correlations. We set

(7.6) Ui(x, a; x′, a′) = ρ(x)U1
i (x, a; x′, a′) + (1− ρ(x))U0

i (x, a; x′, a′).

Here, ρ(x) is a state dependent correlation function and acts as an interpolation parameter. In
the fully correlated limit, the kernel is

(7.7) U1
i (x, a; x′, a′) =


ui(x, x′; a)δ(a′ −min(na, a + 1)) if x′ > x

ui(x, x′; a)δ(a′ − a) if x′ = x

ui(x, x′; a)δ(a′ −max(a− 1, 0)) if x′ < x

In the uncorrelated limit, the kernel is instead

(7.8) U0
i (x, a; x′, a′) = ui(x, x′; a) · ũi(a, a′)

where ui(a, a′) is the ∆T -kernel for a mean reverting volatility process,

(7.9) dat = k(t)(ā− at)dt + s(t)dW.

Finally, we device a time dependent shift transformation similar in spirit to the shift trans-
formation we use for the short rate model

(7.10) X̄(xt) → eφ(t)X̄(xt),

so that

(7.11) X̄(x0) =
Zf

0 (0)

Zf
0 (T )

Ek

[
Zd

0 (T )

Zd
0 (0)

X̄(xT )

]
for all times T > 0 which are an integer multiple of ∆T . This yields the correct martingale
condition for the local model of an FX-cross, which assumes deterministic rates. Stochastic
interest rates are discussed in the next section.

8. Stochastic Rates and Quanto Corrections

Consistent valuation requires the choice of a base currency and the consistent generation of
scenarios under the corresponding risk neutral measure.

Consider a portfolio of netting agreements, select a number of risk metrics to run, let (tk) be
an increasing sequence of epoch dates for the Monte Carlo simulation and let (yk) be a scenario
represented by a sequence of global state variables. We work under the discrete risk neutral
measure whose numeraire is given by

(8.1) Bk =
k−1∏
j=0

< yj|e
−

∫ tj+1
tj

rd(s)ds|yj+1 >−1

where

(8.2) < yj|e
−

∫ tj+1
tj

rd(s)ds|yj+1 >= E

[
e
−

∫ tj+1
tj

rd(s)ds
δ(ytj+1

− yj+1)|ytj = yj

]
.
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The discrete measure of numeraire Bk is consistent with the risk neutral measure defined on
the shortest time scale. In fact

(8.3) E

[
Bj

Bk

Φ(yj)|ytk = yk

]
= E

[
e−

∫ tj
tk

rd(s)dsΦ(yj)|ytk = yk

]
.

Next consider generating foreign exchange scenarios in two separate stages: firstly, one gen-
erates scenarios for an approximate process which assumes deterministic interest rates and,
secondly, one corrects these paths to establish consistency.

By construction, the approximate process X̄k with deterministic rates satisfies the following
condition:

(8.4)
Zf

0 (k + 1)

Zf
0 (k)

X̄k = Ek

[
Zd

0 (k + 1)

Zd
0 (k)

X̄k+1

]
Instead, the foreign exchange rate process Xk is such that

(8.5) Zf
k (k + 1)Xk = Ek

[
< yk|e−

∫ tk+1
tk

rd(s)ds|yk+1 > Xk+1

]
Otherwise stated, the approximate process obeys the equation

(8.6) Ek

[
X̄k+1

X̄k

]
=

Zf
0 (k + 1)

Zf
0 (k)

Zd
0 (k)

Zd
0 (k + 1)

while the exact process should satisfy

(8.7) Ek

[
Xk+1

Xk

< yk|e−
∫ tk+1

tk
rd(s)ds|yk+1 >

]
= Zf

k (k + 1).

To adjust and achieve consistency, we set

(8.8)
Xk+1

Xk

= eqX
k

X̄k+1

X̄k

.

where

(8.9) eqX
k =

Zf
0 (k)

Zf
0 (k + 1)

Zd
0 (k + 1)

Zd
0 (k)

Zf
k (k + 1)

< yk|e−
∫ tk+1

tk
rd(s)ds|yk+1 >

.

Foreign assets require a quanto correction. By construction, the approximate process S̄k for
a foreign asset assuming deterministic interest rates and foreign exchange rates, satisfies the
following condition:

(8.10) Ek

[
S̄k+1

S̄k

]
=

Zf
0 (k)

Zf
0 (k + 1)

while a consistently specified process should satisfy

(8.11) Ek

[
< yk|e−

∫ tk+1
tk

rd(s)ds|yk+1 >
Sk+1Xk+1

SkXk

]
= 1

Let qS
k be defined so that

(8.12)
Sk+1

Sk

= eqS
k
S̄k+1

S̄k

.
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Let us introduce the random variables

(8.13) ξk(yk+1) =
< yk|e−

∫ tk+1
tk

rd(s)ds|yk+1 >

Zf
k (k + 1)

X̄k+1

X̄k

eqX
k (yk+1)

and

(8.14) ηk(yk+1) =
Zf

0 (k + 1)

Zf
0 (k)

S̄k+1

S̄k

.

We have that

(8.15) Ek

[
ξk

]
= 1, and Ek

[
ηk

]
= 1

The condition to be satisfied by the exact process is

(8.16) 1 = Ek

[
ξkZ

f
k (k + 1)

Zf
0 (k)

Zf
0 (k + 1)

eqS
k ηk

]
.

Hence the condition for the quanto correction qS
k is

(8.17) e−qS
k

Zf
0 (k + 1)

Zf
0 (k)Zf

k (k + 1)
= E

[
ξkηk

]
.

Notice that

(8.18) E
[
ξkηk

]
= 1 +

(
E
[
ξkηk

]
− E

[
ξk

]
E
[
ηk

])
= 1 + σ(ξk)σ(ηk)ρ(ξk, ηk),

where σ(ξk) =
√

E
[
ξ2
k

]
, σ(ηk) =

√
E
[
η2

k

]
and

(8.19) ρ(ξk, ηk) =
E
[
ξkηk

]
− E

[
ξk

]
E
[
ηk

]
σ(ξk)σ(ηk)

.

The quanto correction is thus given as follows:

(8.20) qS
k = − log

(
1 + σ(ξk)σ(ηk)ρ(ξk, ηk)

)
+ log

(
Zf

0 (k + 1)

Zf
0 (k)Zf

k (k + 1)

)
.

9. Credit Process

Credit processes can be modeled either with a distance-to-default model or by a defaultable
equity model. Either way, we are confronted with a discrete state space parameterized by a
variable y = 0, ..., d − 1 such that y = 0 corresponds to the state of default. Let L(y1, y2; t) be
the corresponding time dependent Markovian.

To find CDS spreads for the purpose of calibration one needs to evaluate conditional expec-
tations of integrals over stochastic processes of the following form:

(9.1) ET0

[ ∫ T2

T1

1(yt > 0)dt

∣∣∣∣yT1 = y1, yT2 = 0

]
,

where T0 < T1 < T2.
Let

(9.2) uT1(y0, y1) = P exp

(∫ T1

T0

L(t)dt

)
(y0, y1).
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Figure 7. Portfolio loss distribution a EUR denominated fix-for-float portfo-
lio (left) compared to the distribution for a cross-currency EUR-USD swap with
nominal exchange at maturity (right).

This path-ordered exponential can be evaluated by repeated fast exponentiation in case the
Markovian is a piecewise constant operator, as described above. Consider the kernel conditional
to survival:

(9.3) ũT1(y0, y1) =


uT1

(y0,y1)

1−uT1
(y0,0)

if y0, y1 > 0

0 if y0 > 0, y1 = 0

1 if y0 = y1 = 0.

Consider the one-parameter family of perturbed kernels:

(9.4) uε
T2

(y0, y2) =
∑
y1

ũT1(y0, y1)P exp

(∫ T2

T1

Lε(t)dt

)
(y1, y2)

where

(9.5) Lε(y1, y2) = L(y1, y2) + ε1(y1 > 0)δy1y2 .

We have that

(9.6) ET0

[ ∫ T2

T1

1(yt > 0)dtδ(yT2)

∣∣∣∣yT0 = y0

]
=

d

dε

∣∣∣∣
ε=0

uε
T2

(y0, 0)

This formula for T0 equal to the current date allows one to price a CDS in any given generic
distance-to-default or credit-equity model. In the simulation stage, the same formula is useful
when computed for T0 = T1 whereby T1 is a generic epoch date for the global Monte Carlo
simulation and it gives the expected survival time conditioned to being in a state of default by
time T2.

10. Counterparty Credit Risk

Counterparty credit risk management is a multilayered procedure whereby exposures are
analyzed at various degrees of resolution, ranging from an individual instruments to global
portfolios of netting sets.
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Phases Execution times

(i) Portfolio parsing and serialization ≈ 2 minutes
(ii) Algorithmic planning and optimization ≈ 6 minutes

(iii) Model library calibration ≈ 30− 60 minutes per factor
(iv) Calculation of kernels ≈ 2 minutes
(v) Filling valuation tables ≈ 10 seconds

(vi) Simulation ≈ 1 minute
(vii) User driven 3d-visualization ≈ 3− 10 seconds

Table 1. Processing phases and performance timings.

Figure 7 shows the loss distribution of a EUR denominated fixed-for-float swap in the left
graph. Notice that tails are the fattest for intermediate maturities, while the spikes are concen-
trated near zero, both at the valuation date (when the swap is nearly at equilibrium) and at
maturity. The graph on the right hand side instead refers to a cross-currency swap with nominal
exchange at maturity. Since the foreign exchange risk associated to the final nominal exchange
is substantial, risk profiles have increasingly fatter tails as one approaches the swap maturity.

Calculation times for risk profiles of these individual swaps vary from 28 seconds for the single
currency swap to 65 seconds for the dual currency one. These times are acceptable for interactive
use. One should also add that, in case portfolios are considered, very substantial economies of
scale are possible as one can recycle kernel calculations across instruments.

We consider here a case study with a global portfolio of 302 netting sets, 6 currencies and
3572 swaps. We run a simulation up to a ten-year time horizon with quarterly epoch dates. The
stragegy for simulating a large multi-currency portfolio of netting sets of interest rate derivatives
of European or Bermudan type involves the phases in Table 10. The reported time concerns a
dual socket system with 6-core Westmere processors X5690, 4 Tesla 1060 GPU cards and 36 GB
of RAM memory. This amounts to a specification for a quite affordable high end workstation
costing a small fraction of typical grid computing equipment used for portfolio risk management.

Phases (i) and (ii) can be conducted offline by means of procedures invoked to maintain
portfolio databases. The global calibration phase (iii) is by far the most expensive one from
the computational standpoint. Maintenance of model libraries needs to be carried out offline
by running optimization procedures overnight at a total daily cost of several exaflops just to
maintain a basic set of risk factors. These tasks largely consume GPU resources. On 4 GPU
equipment, we observe a sustain performance of 1050 GF/sec when using Tesla 1060 cards.

Phase (iv) is user driven and GPU based while the subsequent phase (v) is CPU based as
it requires complex deal specific information. The are collectively referred to as ”KVT phase”,
where KVT stands for ”kernels and valuation tables” and are subdivided into the following
steps:

(A) Query payoff descriptor objects to obtain a list of all discount factors needed for all
instruments and each one of the currencies involved.

(B) Run a primary backward induction pass to form tables for all needed discount factors
for each currency.

(C) Evaluate stochastic integrals on bridges to account for path dependencies as is done in
section 9.
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(D) Run a secondary backward induction step to value callable swaps and other derivatives
of European and Bermudan type.

(E) Populate valuation tables for all sub-portfolios corresponding to each individual coun-
terparty and specific to a single currency.

(F) Generate transition probability kernels for all interest rate, credit and foreign exchange
rate processes required.

(G) Obtain discounted transition probability kernels needed to model the money market
account in all currencies of interest and to calculate quanto adjustments as explained in
section 8.

The next step consists of a global simulation across all factors to persist in memory the values
of all single counterparty positions for all scenarios and all epoch dates in the simulation and
create an in-memory database to be used in the subsequent real-time data exploration phase.
Using hyper-threading, we launch 22 threads in such a way to leave a full core available for
the operating system. Each threads generates 4096 scenarios. The total time for generating
90112 scenarios and persisting all relevant information in memory is 68 seconds. The scenario
generation is carried out mostly using CPU resources. A further optimization can be achieved
by obtaining all the needed correlated normal deviates CPU side in parallel with the KVT
phase. The KVT and simulation phases thus require less than 3 minutes in total and can thus
be invoked interactively by the end user for any portfolio she wishes to analyze.

Having formed an in-memory database with simulation data, the end user can begin ex-
ploratory risk analysis. This phase involves cycling through the following tasks:

(G) Visualize in 3d the loss distributions for the entire portfolio or any given sub-portfolio.
Figures 2 and 3 show examples of loss distributions. Another example of analysis is in
10 where the EUR denominated sub-portfolio is compared with the USD denominated
sub-portfolio.

(H) Zoom-in on loss distributions to resolve risk concentrations
(I) Find the impact on loss distributions due to first order sensitivities whenever a state

variable is changed to bump an interest rate curve, a CDS curve or a foreign exchange
rate. Figure 9 shows the sensitivities of the loss distribution to a parallel shift in the
USD curve for the entire portfolio and the USD denominated sub-portfolio.

(J) Find secondary 2-dimensional and 1-dimensional analytics such as tranche specific ex-
pected losses, expected positive exposures (EPE), credit valuation adjustments (CVA)
and the corresponding tranched versions

(K) Add additional instruments and assess the marginal impact on loss distributions and on
lower dimensional analytics for hedging purposes

In our case study example, each of these tasks takes a maximum of approximately 10 seconds to
execute. We thus think that this application qualifies as a real time tool, especially if compared to
standard grid computing schemes which require overnight processing to obtain only 2d analytics.

To explain the portfolio simulation in more mathematical detail, let tk, k >= 0 be an increasing
sequence of epoch dates for the simulation where t0 is the valuation date. For each epoch
[tk, tk+1), for each scenario s and for each counterparty c, we persist in memory the default
probability PD(k, c, s). We also persist in memory the valuation V (k, c, s) of the position held
by counterparty c.
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Assuming that transitions to default are uncorrelated, the loss distribution in the k−th epoch
period is given by the convolution product

(10.1) Λ(k, l, s) =
(
Λ1s ∗ Λ2s ∗ .... ∗ Λncs

)
(k, l)

where nc is the total number of counterparties and

(10.2) Λcs(k, l) = (1− PD(k, c, s))δ(l) + PD(k, c, s)δ(l − V (k, c, s)).

The calculation of the convolution product is best carried out on GPU equipment as the
operation can be implemented efficiently.

The assumption of lack of correlation for transitions to default can be relaxed by modeling
also events of perfectly correlated defaults among groups of borrowers. Accounting for these
events is easier than evaluating correlation products, so the impact on overall performance is
just marginal. This hybrid correlation model is similar to the one in [8] and [9].

Sensitivities are evaluated using the likelihood ratio method in [7]. Since transition probability
from the valuation date to any epoch date in the future are are available, the signal-to-noise
ratio decreases rapidly with the time horizon to the point that one can obtain clear resolutions
even of 3d loss distributions with as few as 90112 scenarios. Figure 9 contains a graph for
sensitivities of the loss distribution with respect to bumps in the USD curve as applied to the
global portfolio and to the sub-portfolio of USD based counterparties.

11. Conclusion

Valuation theory is increasingly shifting its focus from the task of pricing instruments in
isolation to a combined valuation-risk analysis within a global market and portfolio context.
We find that the challenge can be met by means of coherent global market simulations. It is
indeed quite possible to provide end users with real time calculators and 3d risk visualization
tools ranging from individual deals to global portfolios of netting sets.

Figure 8. Comparison of loss distributions for the USD and EUR denominated subportfolios.
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Figure 9. Comparison of sensitivities to a parallel shift in the USD curve for
the loss distributions corresponding to the entire portfolio (left) and the USD
denominated sub-portfolio (right).

We find that, to meet the challenge, it is essential to correctly interpret hardware architectures
and orchestrate solutions on heterogeneous boards combining the strengths of MIMD and SIMD
microprocessors. It is also essential to understand the impact of the narrow memory bottleneck
due to the current limitations of data-path designs and resolve this difficulty at the algorithmic
level.

We find that matrix multiplication and its tensorial variations are by far the most important
compute bound algorithm for financial applications. One reason of interest is that they allow
the modeler broad degrees of flexibility in designing stochastic processes which faithfully cap-
ture econometric evidence. Moreover, by adapting the mathematical formalism around matrix
multiplication and the other precious few algorithms which are compute bound on current hard-
ware, one can achieve highly polymorphic software designs and take performance to otherwise
unattainable levels.
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