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Throughout this course we will work in a fixed probability space
(Ω,A,P).

Definition
A Rd-valued continuous-time stochastic process is a family
X = (Xt)t≥0 of d-dimensional random vectors defined on
(Ω,A,P).

• The parameter t ∈ R+ stands for time.
• Let d = 1 and fix an arbitrary ω ∈ Ω. Then the mapping

t 7→ Xt(ω) is called the sample path or trajectory of the
process. Sample paths can have jumps.

• Examples in finance and insurance: Brownian motion (←
definition follows soon), Poisson process, compound
Poisson process, Lévy process.
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Definition
Given a probability space (Ω,A,P) a filtration (Ft)t≥0 is an
increasing family of σ-algebras included in A, i. e., Ft ⊆ A and
Fs ⊆ Ft for 0 ≤ s ≤ t <∞.

(Ω,A,P, (Ft)t≥0) is called a filtered
probability space.

• The σ-field Ft represents all the known (resp. knowable)
events at time t.

• A filtration therefore models an increasing stream of
information.
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Let us illustrate the relation between σ-algebras and (useful)
information. You can picture information as the ability to answer
questions (more information gives you a better understanding of
facts), and the lack of information as ignorance or uncertainty.

In our setting, all questions can be expressed in terms of
elements of the state-space Ω. Ω contains all possible
evolutions of our world (and some impossible ones). The
knowledge of the exact ω ∈ Ω (the “true state of the world”)
amounts to the knowledge of everything.
Hence, by allowing some ignorance (since we are not
clairvoyants or a Superior Being who know the exact ω ∈ Ω) we
consider questions like Is at time t the true ω an element of the
event A?, where A could be the event saying that the
temperature in Bonn lies between 16 Degrees of Celsius and 19
Degrees of Celsius.
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The collection of all events A such that we precisely know how
to answer the question Is at t the true ω an element of the event
A? (namely with “Yes” or “No” - given the law of the excluded
middle) is the mathematical description of our current state of
information; i. e., the σ-algebra Ft.

Why?
• Since it is always known that at t the true ω is an element of

Ω (without knowledge of the true ω itself) we have Ω ∈ Ft.
• If we know how to answer the question Is at t the true ω in

A? (i. e., A ∈ Ft) we also know how to answer the question
Is at t the true ω not in A? Thus, Ac ∈ Ft.

• Let (An)n∈N be a sequence of events such that we know
how to answer all questions Is at t the true ω in An? (i. e.,
An ∈ Ft for all n ∈ N). Thus, we know that the answer to the
question Is at t the true ω in

⋃
n∈N An? would be “No” if we

answered “No” to each of the previous questions. And it
would be “Yes” if we answered “Yes” to at least one of
them. Hence,

⋃
n∈N An ∈ Ft.
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Definition
A stochastic process X = (Xt)t≥0 is said to be adapted to the
filtration (Ft)t≥0 if Xt is Ft-measurable (i. e., if σ(Xt) ⊆ Ft for all
t ≥ 0).

• Any stochastic process X is adapted to the natural filtration
generated by X: FX

t := σ(Xs, s ≤ t).
• Adaptedness of X means that the Xts do not carry more

information than Ft.
• We may assume that the set N ∗P of all subsets of P-null

sets is a subset of Ft for all t ≥ 0. Else extend Ft to
σ
(
Ft ∪N ∗P

)
= {F ∪ N∗ | F ∈ Ft and N∗ ∈ N ∗P}.
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• In financial market models – which do not include (the
more realistic) assumption of “jumps”– share prices,
exchange rates, interest rates, etc., are often modelled by
solutions of stochastic differential equations (SDEs) which
are driven by Brownian motion. These solutions are
functions of Brownian motion.

• In those financial markets Brownian motion models the
fluctuations of the financial market. These fluctuations
actually represent the information about the market.
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Two-dimensional Brownian motion was observed in 1828 by
Robert Brown as diffusion of pollen in water. Later, the
one-dimensional Brownian motion was used by Louis Bachelier
around 1900 in modelling of financial markets and in 1905 by
Albert Einstein(!). A first rigorous proof of its (mathematical)
existence was given by Norbert Wiener in 1921. Later on,
various different proofs of its existence were given.
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Theorem (Wiener 1923)
There exists a filtered probability space, with filtration (Ft)t≥0
and a real-valued stochastic process X = (Xt)t≥0 with X0 = 0
such that

(i) X is (Ft)t≥0-adapted;
(ii) X has continuous paths;
(iii) for all 0 ≤ s ≤ t <∞ the random variable Xt − Xs is

independent from Fs (independent increments);
(iv) for all 0 ≤ s ≤ t <∞ one has Xt − Xs ∼ N1(0, t − s)

(stationary increments).
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Definition
A process satisfying the properties of Wiener’s Theorem is
called standard (Ft)t≥0-Brownian motion (SBM).

Definition
A real-valued stochastic process X = (Xt)t≥0 is called Gaussian
if for all n = 1, 2, . . . and all 0 ≤ t1 < t2 < · · · < tn <∞
(Xt1 ,Xt2 , . . . ,Xtn)

> is a Gaussian random vector.
Let 0 ≤ s <∞ and 0 ≤ t <∞. Put

µt := E[Xt] and Σ(s, t) := Cov(Xs,Xt) .
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Next, let us turn to the following two (highly) non-trivial
characterisations of SBM:

Theorem
Let X = (Xt)t≥0 be a real-valued stochastic process such that all
trajectories are continuous and X0 = 0.
TFAE:

(i) The process X is a SBM with respect to its own natural
filtration (FX

t )t≥0.
(ii) The process X is a Gaussian process with mean µt = 0

and covariance function Σ(s, t) = min{s, t} for all
0 ≤ s, t <∞.
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Theorem and Definition
Let X = (Xt)t≥0 be an adapted and real-valued stochastic
process with independent and stationary increments such that
all of its trajectories are continuous. Then there exist numbers
µ ∈ R and σ ≥ 0 such that

Xt = X0 + µt + σBt ,

where the process B = (Bt)t≥0 is a SBM.

Processes satisfying
such a representation are called Brownian motion with drift.

• The proof of the latter statement follows (with some work)
from the central limit theorem.

• Both characterisation statements allow one to describe
SBM differently including its scaling invariance property
(Bt

d
= 1

a Bta2 for all a > 0, t ≥ 0) and its time inversion

property (Bt
d
= tB 1

t
for all t > 0).
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Let us breath very deeply now...

Since:

Theorem (Paley, Wiener, Zygmund 1933)
The trajectories of (standard) Brownian motion are
nondifferentiable at any point with probability 1.
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Consider an arbitrary stochastic process X = (Xt)t≥0, adapted
to the filtration (Ft)t≥0. Suppose we have full access to the
information Fs at the present time s (where 0 ≤ s < t <∞).
How does this information influence our knowledge about the
behavior of the process X in the future?

If we know that certain events happened in the past we may
include this knowledge in our calculations. Thus Xt can be
better predicted with the information Fs than without it.
A mathematical tool to describe this gain of information is the
so called conditional expectation of Xt with respect to the
σ-algebra Fs:

E[Xt|Fs] (0 ≤ s < t <∞).

E[Xt|Fs] is the “best prediction of Xt given the information Fs”.
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Next, we will turn to a very important result (coming from
measure theory) which is crucial regarding

(i) a proper, yet then
quickly obtained definition of the conditional expectation with
respect to a σ-algebra and (ii) the Girsanov Theorem.

We will start with conditional expectation with respect to a
σ-algebra (being aware that within tight time windows there
seemingly does not exist an approach to introduce this very
important expression in its full generality without the use of
deep results coming from measure theory).
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Theorem (Radon-Nikodym - Special Case)
Let µ be a finite signed measure1 so that µ is absolutely
continuous with respect to P (denoted by µ� P), i. e., let us
assume that µ(A) = 0, whenever P(A) = 0 (A ∈ A).

Then there
exists an integrable2 (and hence A-measurable) random
variable X such that

µ(A) =

∫
A

X(ω)P(dω) = E[X11A] for all A ∈ A.

For any other integrable (and hence A-measurable) random
variable Y with the same property, we have X = Y P-a. s.

1A finite signed measure is a generalisation of the concept of (probability)
measure by extending its image to the whole real line R. Think e. g. at a
difference of two probability measures.

2 Let 1 ≤ p <∞. X ∈ Lp(Ω,A,P) iff E[|X|p] <∞.
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Definition
Any random variable X for which the above equation holds is
called the Radon-Nikodym derivative of µ with respect to P and
is denoted by X =: dµ

dP , P-a. s. Since such a X exists
almost-surely “only” we say that X is a version of dµ

dP . So, we are
always talking about a whole class of random variables instead
of just one.

Corollary
Let B be σ-algebra which is contained in the σ-algebra A. Let
µ� P. Then µ|B � P|B. Hence, there exists a P|B-integrable
(and hence B-measurable) random variable Z such that

µ(B) =

∫
B

Z(ω)P(dω) = E[Z11B] for all B ∈ B.

Z is a version of the B-measurable random variable d(µ|B)
d(P|B) .
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We are now fully prepared to introduce conditional expectation
very quickly!

Let B be σ-algebra which is contained in the σ-algebra A. Let X
be an arbitrary integrable random variable (i. e,
X ∈ L1(Ω,A,P)). For B ∈ B define

µX(B) :=

∫
B

X(ω)P(dω) = E[X11B].

Then µX is a finite signed measure defined on B such that
µX � P|B. Consequently, due to the Theorem of
Radon-Nikodym above there exists a version of of the
B-measurable random variable dµX

d(P|B) ∈ L
1(Ω,B,P|B). This

version - which is a random variable - is called conditional
expectation of X given B and will be denoted by E[X|B]. In
particular, we have P|B-a.s.
dµX
d(P|B) = E[X|B] ∈ L1(Ω,B,P|B)

1
↪→ L1(Ω,A,P).
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Corollary
Let B be σ-algebra which is contained in the σ-algebra A. Let
X ∈ L1(Ω,A,P). Then a random variable Ψ equals (a version
of) E[X|B] iff the following conditions are satisfied:

(i) Ψ ∈ L1(Ω,A,P);
(ii) Ψ is B-measurable;
(iii) E[Ψ11B] = E[X11B] for all B ∈ B.

Exercise
Let A,D ∈ A and assume that 0 < P(D) < 1. Consider the
σ-algebra B := σ({D}) ⊆ A. Calculate E[11A|B]!
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Solution
Firstly, B X= {Ω,D,Dc, ∅} (why?). Thus, according to the last
corollary we “only” have to look for a B-measurable and
integrable random variable Ψ satisfying E[Ψ11D]

!
= E[11A11D] and

E[Ψ11Dc ]
!

= E[11A11Dc ].

Suppose Ψ would be such a candidate.
Recall that E is linear. Since 1 = 11D + 11Dc and 0 < P(D) < 1 (by
assumption) and hence also P(Dc) > 0 we consequently obtain

E[Ψ] = E[11A11D] + E[11A11Dc ]

(!)
= E[11A|D]P(D) + E[11A|Dc]P(Dc)

(!)
= E[α11D + β11Dc ],

where α := E[11A|D] ∈ R and β := E[11A|Dc] ∈ R. Observe that the
random variable α11D + β11Dc is B-measurable, giving us the right
idea how Ψ could be defined – namely as
Ψ := α11D + β11Dc = E[11A|D]11D + E[11A|Dc]11Dc . This Ψ satifies all

criteria of the corollary above.
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How can one explicitly calculate conditional expectations?

In
general, this is a quite difficult task or even analytically
impossible. But there exist non-trivial and very important
examples which appear often in finance and “quantitative” risk
management such as the following ones:

Example
Let X ∈ L1(Ω,A,P) and Y an arbitrary random variable.
Consider B := σ(Y) ⊆ A. Then

E[X|Y] := E[X|σ(Y)] = E[X|B]

is given by the following version:

R 3 E[X|Y](ω)
(!)
= E[X|Y = Y(ω)]

(!)
= (e ◦ Y)(ω),

for all ω ∈ Ω, where the function e : R −→ R is given as
e(y) := E[X|Y = y].
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e(y) := E[X|Y = y].
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Hence, the calculation of a conditional expectation with respect
to σ(Y) can be completely reduced to the calculation of a
“standard” conditional expectation of X with respect to the
A-measurable subset

{Y = y} := Y−1({y}) = {ω : ω ∈ Ω and Y(ω) = y}.

of Ω (y ∈ R). Hence, by implementing the conditional density
function of the 2-dimensional random vector (X,Y)> (if it exists)
e(y) in general unfolds as an integral which can be either
calculated analytically or at least numerically.

Here is a nice
example:

Exercise
Let −1 < ρ < 1, σ > 0 and (X,Y)> ∼ N2(µ,Σ) a 2-dimensional
Gaussian random vector where µ := (0, 0)>,
Σ1 1 := Σ2 2 := σ2

1−ρ2 ,Σ1 2 = Σ2 1 := ρσ2

1−ρ2 . Calculate E[X|Y] !
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Theorem (Computation of Conditional Expecation)
Let X,Y ∈ L1(Ω,A,P), α, β ∈ R and G,H σ-algebras contained
in A such that G ⊆ H. Then

• E[αX + βY|H] = αE[X|H] + β E[Y|H] (linearity);
• E

[
E[X|H]

]
= E[X] (preservation of expectation);

• If X is H-measurable, then E[X|H] = X P-a. s.;
• If σ(X) and H are independent, then E[X|H] = E[X] P-a. s.;
• If X ≥ 0, then E[X|H] ≥ 0 P-a. s.;

• E
[
E[X|H]|G

]
= E[X|G]

X
= E

[
E[X|G]|H

]
P-a. s. (tower

property);
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Theorem (Computation of Conditional Expecation – ctd.)

• If Y is H-measurable and XY integrable, then

E[XY|H] = Y E[X|H] P-a. s. (“taking out what is known”);

• E[X|{∅,Ω}] = E[X] (Given all possible evolutions of our
world no better guess is possible than the standard mean).
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1 Continuous-time stochastic processes and Brownian motion

2 Conditional expectation with respect to a σ-algebra

3 Continuous-time martingales

4 Stochastic integration and Itô calculus
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We now introduce one of the the most important mathematical
expressions in applied and pure mathematics which one can
also apply to many other fields than modelling of financial
markets and quantitative risk management only (such as e. g.

mathematical biology, statistics, game-theory, number theory(!)
and physics, of course – and, and...): martingales.
• We will see that the notion of martingale is crucial for the

understanding of the stochastic integral of Itô and hence
for the very powerful Itô calculus.

• The idea underlying martingale is a fair game where the
net winnings are evaluated via conditional expectations.

• Martingales allow to solve problems in the field of
stochastic processes and SDEs by looking for solutions of
certain classes of PDEs and conversely (Feynman-Kac
formula).
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Fix a filtered probability space (Ω,A,P, (Ft)t≥0).

Definition
Let M = (Mt)t≥0 be a real-valued stochastic process adapted to
the filtration (Ft)t≥0 such that E[|Mt|] <∞ for all t ≥ 0. We say:
• M is a (Ft)-submartingale if for all s ≤ t, Ms ≤ E[Mt|Fs].
• M is a (Ft)-supermartingale if for all s ≤ t, Ms ≥ E[Mt|Fs].
• M is a (Ft)-martingale if for all s ≤ t, Ms = E[Mt|Fs].

Brainteaser
Let B be a SBM with respect to its own natural filtration (FB

t )t≥0.
Is (B2

t )t≥0 a (FB
t )-martingale?

Answer
No, since e. g. 3 = Var(B3) = E[B2

3] 6= E[B2
0] = Var(B0) = 0.
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Proposition
If B be a SBM with respect to its own natural filtration (FB

t )t≥0,
then

(M1) B is a (FB
t )-martingale.

(M2) (B2
t − t)t≥0 is a (FB

t )-martingale.
(M3) E(αB)t := exp

(
αBt − 1

2 tα2
)

t≥0 is a (FB
t )-martingale for all

α ∈ R.

Proof.
Firstly, due to a better understanding of the rationale behind
Brownian motion and (continuous) martingale calculus, we only
give a proof of (M1) here. So, let 0 ≤ s < t <∞. Then Bt − Bs is
independent from FB

s , implying that E[Bt − Bs|FB
s ] = E[Bt − Bs].

Thus,

E[Bt|FB
s ]− Bs = E[Bt − Bs|FB

s ] = E[Bt]− E[Bs] = 0− 0 = 0 .
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As the proof clearly shows, property (M1) is a special case of
the following

Observation
Let X = (Xt)t≥0 be a stochastic process such that E[|Xt|] <∞
for all t ≥ 0. If for all 0 ≤ s ≤ t <∞ its increments Xt − Xs are
independent from Fs the process

(
Xt − E[Xt]

)
t≥0 is a

(Ft)t≥0-martingale.

Proposition
Let M = (Mt)t≥0 be a square-integrable (Ft)t≥0-martingale (i. e.,
M is a (Ft)t≥0-martingale and Mt ∈ L2(Ω,A,P) for all t ≥ 0) and
Z ∈ L2(Ω,A,P). Let 0 ≤ s ≤ t <∞ and G ∈ Fs. If in addition Z
is Fs-measurable, then
• E[Z (Mt −Ms)] = 0 and
• E[11G (M2

t −M2
s )] = E[11G (Mt −Ms)

2].
In particular, Mt −Ms ∈ L2(Ω,Fs,P)⊥ for all 0 ≤ s ≤ t <∞.
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Proof.
Due to Hölder’s inequality (respectively Cauchy-Schwarz)
E[(Mt −Ms)Z] is well-defined. The martingale property of the
process M implies that:

E[(Mt −Ms)Z]
(!)
=

E
[
E[(Mt −Ms)Z|Fs]

]
= E

[
Z E[Mt −Ms|Fs]

]
= E[Z · 0] = 0.

The proof of the second property is left as an exercise.
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Now we are able to give a short proof of property (M2).

Proof of (M2).
Let 0 ≤ s ≤ t <∞ and put Es := E[·|FB

s ]. Then
Bt − Bs

d
= Bt−s ∼ N1(0, t − s) is independent from FB

s . So is
(Bt − Bs)

2. Thus (P-a. s.),

t − s = E[B2
t−s] = E[(Bt − Bs)

2] = Es[(Bt − Bs)
2] = Es[B2

t − B2
s ] .

The last equality follows from the second equality of the last
proposition and the construction (definition) of conditional
expectation with respect to a σ-algebra (here with respect to
FB

s ).
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Remark
Very soon, we will see that in fact

B2
t − t

(!)
= 2

∫ t

0
Bt dBt .

Exercise
Prove property (M3)!
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1 Continuous-time stochastic processes and Brownian motion

2 Conditional expectation with respect to a σ-algebra

3 Continuous-time martingales

4 Stochastic integration and Itô calculus
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From now on we fix some horizon date T > 0 and some
filtration (Ft)0≤t≤T .

Definition
The set of all martingales M = (Mt)0≤t≤T with M0 = 0 and
E[M2

T ] <∞ is denoted M2
0 . M2,c

0 is the subset of M2
0 consisting

of all martingales with continuous trajectories.

Theorem
M2

0 is a Hilbert space with inner product

〈M,N〉M2
0

:= E[MT NT ] = 〈MT ,NT〉L2 .

M2,c
0 is a closed subspace of M2

0 and hence a Hilbert space as
well.
We now turn our attention to one of the most important objects
which comes into play when one deals with martingales in M2

0.
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Definition (p-Variation)
Let 1 ≤ p <∞ and (ξn)n∈N a sequence of “refining” partitions of
the interval [0,T]. Let t ∈ [0,T] and X an arbitrary stochastic
process. Define

V(p)
t (X; ξn)(ω) :=

∑
tk∈ξn; tk<t

|Xtk(ω)− Xtk−1(ω)|p

V(p)
t (X; ξn) is known as p-variation of X with respect to the

partition ξn of [0,T] at t. V(1)
t (X; ξn) (respectively V(2)

t (X; ξn)) is
also known as first (respectively quadratic) variation of X with
respect to the partition ξn of [0,T] at t.

38 / 62



Definition (p-Variation)
Let 1 ≤ p <∞ and (ξn)n∈N a sequence of “refining” partitions of
the interval [0,T]. Let t ∈ [0,T] and X an arbitrary stochastic
process. Define

V(p)
t (X; ξn)(ω) :=

∑
tk∈ξn; tk<t

|Xtk(ω)− Xtk−1(ω)|p

V(p)
t (X; ξn) is known as p-variation of X with respect to the

partition ξn of [0,T] at t. V(1)
t (X; ξn) (respectively V(2)

t (X; ξn)) is
also known as first (respectively quadratic) variation of X with
respect to the partition ξn of [0,T] at t.

38 / 62



Theorem and Definition
Let (ξn)n∈N be a sequence of “refining” partitions of [0,T] such
that its “fineness” converges to zero. Let M ∈M2,c

0 and
0 ≤ t ≤ T. Then the following conditions hold:

• V(2)
t (M; ξn) converges in probability to a random variable

[M]t .
• The canonically induced stochastic process

[M] :=
(
[M]t

)
0≤t≤T is increasing, satisfies [M]0 = 0 and has

continuous paths P-a. s.
• The process M2 − [M] is a martingale.
• Let A be a process with A0 = 0 such that it has continuous

paths P-a. s, is of finite variation and satisfies that M2 − A is
a martingale. Then the paths of A and [M] coincide P-a. s.

The pathwise P-a. s-uniquely defined process [M] is called the
quadratic variation of M.
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Corollary
Let M ∈M2,c

0 . Then

E[M2
t ] = E

[
[M]t

]
<∞ for all 0 ≤ t ≤ T .

Regarding SBM, we directly obtain a further (important)

Corollary
Let B be a SBM with respect to its own natural filtration
(FB

t )0≤t≤T . Then (pathwise P-a. s.)

[B,B]t = t for all t ≥ 0 .

Proof.
We just have to apply statement (M2) of the above proposition
to the pathwise P-a. s.-uniqueness of [B,B]!
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Now let’s finally move to the principal idea of stochastic
integration where the integrators are continuous
square-integrable martingales vanishing at 0. To this end
consider the following “simple” stochastic process:

Ht(ω) := α 11G(ω)11(u,v](t) ,

where t, u, v ∈ [0,T], u < v, G ∈ Fu and α ∈ R.

Definition (Stochastic integral of a “simple” process with
respect to a process in M2,c

0 )
Let M ∈M2,c

0 and H be the “simple” process as defined above.
Then we define a new stochastic process H •M :=

∫
H dM

according to

(H •M)t(ω) := (

∫
H dM)t := α 11G(ω)

(
Mt∧v(ω)−Mt∧u(ω)

)
,

where x ∧ y := min{x, y} for all x, y ∈ R.
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Theorem (Itô isometry in the “simple case”)
Let M ∈M2,c

0 and H be the “simple” process as defined above.
Then (H •M)v is square-integrable and

E
[
(H •M)2

v
]

= E
[
α2 11G

(
[M]v − [M]u

)]
= E

[ ∫ v

u
H2

t d[M]t

]
X
= E

[ ∫ T

0
H2

t d[M]t

]
.

Note that in general (i. e., not for “simple” processes such as
(t, ω) 7→ α2 11G(ω)11(u,v](t) only) for every fixed ω ∈ Ω∫ T

0 Ht(ω) d[M]t(ω) is a well-defined Lebesgue-Stieltjes integral
(since the increasing function t 7→ [M]t(ω) is of finite variation.)
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Proof.
Since the process M2 − [M] is a martingale, it follows that
Eu[M2

v −M2
u ] = Eu

[
[M]v − [M]u

]
. Now we “only” have to apply the

second equality of a former proposition (which one?) and to
implement the suitable calculation rules for Eu, without ignoring
the important observation that the random variable 11G was
assumed to be Fu-measurable.
By applying non-trivial results from measure theory (including
the extension of measures) one can extend all linear
combinations of such simple processes H as before to a larger
set of stochastic processes which in fact is a Hilbert space,
leading to the following deep and important result which we
won’t prove here.
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Theorem (An Extension of the Stochastic Integral)
Let M ∈M2,c

0 .

Then there exists a σ-algebra P (the so called
“predictable σ-algebra”) and a measure µM on P such that

µM((s, t]× F) = E
[
11F
(
Mt −Ms

)2] (!)
= E

[
11F
(
[M]t − [M]s

)]
for all 0 ≤ s < t <∞ and F ∈ Fs. The “simple” stochastic
integral from above can be isometrically extended to a
stochastic integral whose integrands belong to the linear space
L2([0,T]× Ω,P, µM) and whose integrator is given by M ∈M2,c

0 .
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Theorem (An Extension of the Stochastic Integral – ctd.)
More precisely, there exists a linear isometry

IM : L2([0,T]× Ω,P, µM) −→M2,c
0

such that every random variable∫ t

0
H dM

:= (H •M)t := (

∫
H dM)t := IM(H)t := IM(11[0,t] H)

satisfies

E
[
((H •M)t)

2] =

∫
[0,T]×Ω

11[0,t] H2 dµM = E
[ ∫ t

0
H2

s d[M]s

]
.
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Although the proof of the latter deep result already requires a
lot of mathematics, it just reflects a first extension of the
stochastic integral.

In fact, the stochastic integral can be further extended, namely
from the Hilbert space L2([0,T]× Ω,P, µM) to a larger and
practically more relevant class of integrands, the so called class
of “local martingales” (and then even to the class of
“semimartingales”) which we won’t present here.
Their introduction namely would require very deep results from
martingale theory originating from “localisation” techniques
involving increasing sequences of (random) stopping times
(another topic which is not a topic of this crash course) and
analytic properties of suitable martingale vector spaces...
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Proposition
Let M ∈M2,c

0 and H ∈ L2([0,T]× Ω,P, µM). Then pathwise
P-a. s. [

H •M,H •M
]

t =

∫ t

0
H2

s d[M]s .

Theorem
Let M ∈M2,c

0 , K ∈ L2([0,T]× Ω,P, µM) and
H ∈ L2([0,T]×Ω,P, µK•M). Then HK ∈ L2([0,T]×Ω,P, µM) and

H • (K •M) = HK •M.
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Latter theorem is a very important tool for deriving the Itô
calculus. We namely have seen that for all M ∈M2,c

0 and
H ∈ L2([0,T]×Ω,P, µM) the stochastic integral N := H •M itself
is an element of M2,c

0 (yet no longer a SBM if M were SBM).

Therefore, one can use N ∈M2,c
0 as an integrator itself! Later,

we will encounter the class of the so called “Itô processes” (or
“diffusion processes”) X which by construction roughly
speaking are represented as a sum of a stochastic integral of
type K • B and a Lebesgue integral of type

∫ ·
0 µs ds.

For “suitable” (sufficiently smooth) functions f a very natural
question is to ask whether also the transformed process(
f ◦ Xt

)
0≤t≤T is an “Itô process”. The answer is “Yes!” thanks to

the famous Itô formula. However, as we will shortly see then
one has to involve stochastic integrals of type

H • X := H • (K • B) +

∫ ·
0

(Hsµs) ds = H K • B +

∫ ·
0

(Hsµs) ds.
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Observation
Let M ∈M2,c

0 such that for any t ∈ [0,T] [M]t ∈ R+ is
non-random. Then M ∈ L2([0,T]× Ω,P, µM). In particular∫

M dM then exists.

Proof.
Let M ∈M2,c

0 . Then E[M2
t ] = E[[M]t] ≤ E[[M]T ] = E[M2

T ] (since
the process [M] is positive and increasing). Due to the
assumption µM coincides with the product measure λ[M] ⊗ P
and [M]T = E[[M]T ] ∈ R+. Hence, we may apply Fubini’s
theorem and obtain:∫

[0,T]×Ω
M2 dµM = E

[ ∫ T

0
M2

s d[M]s

]
=

∫ T

0
E
[
M2

s
]

d[M]s ≤ E
[
M2

T
]
[M]T <∞.
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Corollary
If B is SBM with respect to its own natural filtration,

∫
B dB

exists.

Let’s move to Itô calculus straigth ahead now. We start with the
following very important

Theorem
Let M ∈M2,c

0 ∩ L2([0,T]× Ω,P, µM). Then
∫

M dM exists, and∫
M dM =

1
2
(
M2 − [M]

)
.
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Sketch of Proof.
To see this we calculate the quadratic variation [M] explicitly.

First note that for all x, y ∈ R we have (x− y)2 (!)
= x2 − y2−

2y(x− y). Consequently, we have

V(2)
t (M; ξn)(ω) =

∑
tk∈ξn; tk<t

(
Mtk −Mtk−1

)2

= M2
t − 2

∑
tk∈ξn; tk<t

Mtk−1

(
Mtk −Mtk−1

)
Now it can be shown that in fact

∑
tk∈ξn; tk<t Mtk−1

(
Mtk −Mtk−1

)
converges to

∫ t
0 Ms dMs in probability if n→∞.
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Let’s write the latter result in a bit more cumbersome way.
Consider the function f defined as f (x) := x2. Then we may
write the latter formula for M2 equivalently as:

M2
t = M2

0 +

∫ t

0
f ′(Ms) dMs +

1
2

∫ t

0
f ′′(Ms) d[M]s

which is nothing but the Itô formula for f (M)! Moreover, if one
compares the latter proof with the proof of the soon following
general Itô formula one can see that the key idea is already
given in the latter proof; namely (sloppily speaking...) to
observe that certain sums (of random variables at t) converge in
probability to random stochastic integrals over the interval [0, t].
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Theorem and Definition (Quadratic Covariation)
Let M,N ∈M2,c

0 . Define

[M,N] :=
1
4
(
[M + N]− [M − N]

)
.

The stochastic process [M,N] :=
(
[M,N]t

)
0≤t≤T is called

quadratic covariation of M and N. It satisfies the following
properties:
• [M,N] is of finite variation, satisfies [M,N]0 = 0 and has

continuous paths P-a. s. Moreover, the mapping
(M,N) 7→ [M,N] is bilinear and symmetric.

• The process MN − [M,N] is a martingale.
• Let A be a process with A0 = 0 such that it has continuous

paths P-a. s, is of finite variation and satisfies that MN − A
is a martingale. Then the paths of A and [M,N] coincide
P-a. s.

• [M,M] = [M] (pathwise P-a. s).
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Theorem
Let M ∈M2,c

0 ∩ L2([0,T]× Ω,P, µN) and
N ∈M2,c

0 ∩ L2([0,T]× Ω,P, µM). Then
∫

M dN and
∫

N dM exist,
and

MN =

∫
N dM +

∫
M dN + [M,N].

Sketch of Proof.
This follows from the definition of [M,N] (which in fact is a
polarisation identity) and the (already seen) property
X2 − [X] = 2

∫
X dX for X ∈ {M + N,M − N}.

A very suggestive notation - which is nothing but a suggestive
abbreviation of the above well-defined stochastic integral
equation is given in the symbolic language of “stochastic
differentials” - namely as:

d(MN)t = Nt dMt + Mt dNt + d[M,N]t .
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Latter equation is also known as “stochastic product
integration”. (Compare it with the standard product integration
rule in real analysis!)

It is the key element of the (one- and
multidimensional) Itô formula for continuous semimartingales,
i. e., for processes X which can be written as X = X0 + M + A,
where X0 is F0-measurable random variable, M a continuous
local martingale starting at 0 and A an adapted process of finite
variation with continuous paths starting at 0 as well (the
Doob-Meyer decomposition).
If we also accept the following important result without proof (a
nice exercise, though!), we then will recognise at once that the
above Doob-Meyer decomposition is unique (proof!).

Proposition
If M is a continuous local martingale of finite variation such that
M0 = 0 then M = 0.
Let’s therefore define the quadratic variation of a continuous
semimartingale X = X0 + M + A as [X] := [M].
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Similarly, [X,Y] := [M,N] defines the quadratic covariation of
the two continuous semimartingales X and Y = Y0 + N + B.

Proposition
Let M,N be arbitrary continuous local martingales such that
M0 = N0 = 0 and A,B be arbitrary adapted processes of finite
variation with continuous paths such that A0 = B0 = 0. Put
X = X0 + M + A and Y = Y0 + N + B. Then

(i) [X,Y] is an adapted process of finite variation with
continuous paths, satisfying [X,X] = [X] and [X,Y]0 = 0. In
particular, it is a continuous semimartingale.

(ii) (X,Y) 7→ [X,Y] is a symmetric and bilinear mapping. In
particular, we have [X + Y] = [X] + 2[X,Y] + [Y].

(iii) [X,C] = 0 for all adapted processes of finite variation C
with continuous paths such that C0 = 0.

Continuous semimartingales X = X0 + M + A can be
implemented as integrands in a stochastic integral canonically
via H • X := H •M + H • A (with “nicely behaving” integrands H,
of course).
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Moreover, it can be shown that the space of those “nicely
behaving” integrands can be chosen so large such that it
contains all adapted processes with continuous paths and
hence all continuous semimartingales implying that in fact
X • Y :=

∫
X dY := M • Y + A • Y defines a stochastic integral

which is well-defined for all continuous semimartingales X,Y.

By adding the following important result to our nice “machinery”
(also without proof) which we have developed so far, we will
recognise very soon the power of quadratic covariation. It
namely allows one to move from the language of probability
and semimartingales to the language of algebra (similarly to
the transformation of differential topology to algebraic geometry
(think e. g. at Henri Poincaré’s fundamental group))! So, we
might enter a different arena which even might become
indispensable when one considers semimartingales with
jumps...
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Theorem
Let M,N be arbitrary continuous local martingales such that
M0 = N0 = 0 and A,B be arbitrary adapted processes of finite
variation with continuous paths such that A0 = B0 = 0. Put
X = X0 + M + A and Y = Y0 + N + B. Then

(i) [X •N] = [M •N] is a continuous local martingale starting at
0. [X • B] = [M • B] is an adapted process of finite variation
with continuous paths starting at 0.

(ii) [X,Y] itself is a continuous semimartingale, satisfying

XY = X0 Y0 + X • Y + Y • X + [X,Y] .

Hence, the product X Y itself is a continuous
semimartingale.

(iii) X • (Y • Z) = X Y • Z and [X • Y,Z] = X • [Y,Z] for all
continuous semimartingales Z. In particular,
[H • X,K • Y] = H K • [X,Y].
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Proposition
Let X be a continuous semimartingale such that X0 = 0. Then

X3 = 3X2 • X + 3X • [X,X].

Proof.
We already know that X2 = 2Y + [X], where Y := X • X.
Moreover, X Y = X • Y + Y • X + [Y,X] = X • Y + Y • X + X • [X].
Consequently, we have

X3 = X · X2 = 2X Y + X [X]

= 2X • Y + 2Y • X + 2X • [X] + ([X] • X + X • [X] + 0)

= 2X2 • X + (2Y + [X]) • X + 3X • [X]

= 2X2 • X + X2 • X + 3X • [X]

= 3X2 • X + 3X • [X] .
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As you might guess: we already dove deeply into an idea how
to prove the Itô Formula for continuous semimartingales.

What have we seen so far namely? Step by step, by
implementing the properties listed in the previous theorem, we
“just” have transformed a function of a continuous
semimartingale X by moving from classical multiplication of
real-valued functions U,V : [0,T]× Ω −→ R with suitable
stochastic properties (namely to be a continuous
semimartingale respectively) to a sum of two “bullet
multiplication factors” of type g(X) • X + h(X) • [X]” with suitable
functions g and h! Now it’s an easy exercise to see how to
extend such calculations to the class of all polynomials
pn(X) =

∑n
k=1 ck Xk (proof by induction, of course). Then,

thinking at the theorem of Stone-Weierstrass, one could move
in a “suitable” limit from polynomials to smooth functions to
obtain the famous:
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Theorem (One-dimensional Itô Formula for continuous
semimartingales)
Let f ∈ C2(R) (i. e., twice continuously differentiable) and X an
arbitrary continuous semimartingale. Then the composition
f (X)t := f ◦ Xt defines itself a continuous semimartingale f (X),
and we have:

f (X) = f (X)0 + f ′(X) • X +
1
2

f ′′(X) • [X] .

In other words, on [0,T]:

f (X)t = f (X)0 +

∫ t

0
f ′(X)s dXs +

1
2

∫ t

0
f ′′(X)s d[X]s .
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