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Geometry of polar wedges in Riesz spaces
and super-replication prices in incomplete
financial markets
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Abstract. This paper is devoted to a further generalisation of the main results
in [5] including the representation of the weak super-replication price (cf. equa-
tion (1.6)). In addition to the already established weakening of the technical
assumptions in [5] (cf. [24] and [25]), the main results in [5] can be still gener-
alised by considering the geometric structure of the underlying problem (based
on the properties of Riesz spaces and polar wedges therein). In Section 5 we
show under which geometric conditions of the relevant sets the results still
hold (cf. Theorem 5.3 and Corollary 5.5). In particular, we can completely
remove the restrictive admissibility assumption and carry forward equation
(1.4) to a larger class of wedges K ⊆L0 (cf. Corollary 5.5).
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1. Introduction

Although this paper primarily is written for a mathematical audience who need not
have a detailed knowledge of mathematical finance (including the related terminol-
ogy of stochastic analysis), we occasionally have to use some specific terminology
which cannot be explained in detail here, due to the limitation of space. There-
fore, we would like to refer the reader to the introductory overview references
[4,13,29,31] and the further references therein.

Firstly, let us revisit the ideal, non-realistic case, namely the case of a com-
plete (financial) market. In a complete market, there is a unique arbitrage-free
price of a given derivative security or contingent claim. Its payoff (i. e., its terminal
value) is modelled as a random variable X ∈ L1(P), where P denotes the original
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(statistical) probability measure. Given a finite time horizon T > 0 and a con-
stant risk-free rate of interest r > 0, the unique arbitrage-free price is then given
by the expected discounted terminal value EQ [exp(−rT )X] = exp(−rT ) EQ [X]
which is computed with respect to the risk-neutral probability measure Q under
which the underlying asset’s expected return equals r (i. e., under which the dis-
counted asset price behaves like a martingale) and which is equivalent to P. Due to
the Q-martingale property (respectively the Q-sigma martingale property) of the
discounted marketed security price, Q is called an equivalent martingale measure
(EMM) (respectively an equivalent sigma martingale measure (ESMM)).

However, due to the incorporation of features like price jumps, transaction
costs and illiquidity, financial markets in general do not allow a complete replica-
tion of payoffs by trading in marketed securities. They are incomplete. The classic
no-arbitrage theory of valuation in complete markets, based on the unique price
of a self-financing replicating portfolio, is not adequate for non-replicable payoffs
in incomplete markets, where a perfect risk transfer is not possible. In incomplete
markets, there can be many ESMMs, and one may ask for additional boundary
criteria to select a specific candidate Q

∗ of all available ESMMs in this market.
The expectation EQ∗ [exp(−rT )X] is then the chosen extension of the risk-neutral
price function.

More generally, in an incomplete market with finite time horizon T , the dis-
counted price process of d risky assets altogether is modelled as a (non-continuous)
R

d-valued semimartingale S = (St)t∈[0,T ]. Not every contingent claim X can be
replicated by a self-financing trading strategy. For such contingent claims there
exists a whole interval of arbitrage-free prices, as opposed to the case of a com-
plete market, where there exists a unique replication price, as roughly sketched
above. An upper bound for this price interval is the super-replication price

π(X) := inf{x ∈ R : there is an admissible H such that X ≤ x + GT (H)}, (1.1)

where GT (H) :=
∫ T

0
HudSu denotes the discounted cumulative gain or loss at

the time horizon T . Recall that an R
d-valued predictable process H is called an

admissible trading strategy (cf. [9,12]) if H is S-integrable, and there exists a
constant c ≥ 0 such that for all t ∈ [0, T ],

∫ t

0

HudSu ≥ −c, P − a. s. (1.2)

Let

Madm
1 (P) := {Q � P : Kadm ⊆ L1(Q) and EQ [X] ≤ 0 for all X ∈ Kadm},

be the set of all separating measures, where Kadm := {GT (H) : H is admissible}
denotes the wedge of all terminal wealths originating from zero-financed admissible
trading strategies (cf. Section 2 for the definition of a wedge).

Although we will not not make use of it in this paper, we would like to
recall now some well-known representations of Madm

1 (P) which depend upon the
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regularity (boundedness) of the semimartingale S. The final statement was shown
in the well-known article [11]:

Remark 1.1. (i) If S is bounded then Madm
1 (P) is the set of all P-absolutely

continuous probability measures Q such that S is a Q-martingale.
(ii) If S is locally bounded then Madm

1 (P) = Ma(P), where Ma(P) denotes the
set of all P-absolutely continuous probability measures Q such that S is a
Q-local martingale.

(iii) In the general case (where S may not be locally bounded), if Madm
1 (P) �= ∅

then Madm
1 (P) is the closure, in the topology induced by the total variation

norm, of the set Ma
σ (P) of all P-absolutely continuous probability measures

Q such that S is a Q-sigma-martingale.

If S is locally bounded and the set Me(P) of all P-equivalent probability
measures Q such that S is a Q-local martingale is non-empty, it is well-known
(cf. [10]) that for X bounded from below

π(X) = sup
Q∈Me(P)

EQ [X] . (1.3)

In the case of a general semimartingale S, equation (1.3) holds if one substitutes
the set Me(P) with the set Me

σ(P), provided Me
σ(P) �= ∅1 (cf. [11, Theorem 5.12]).

It is already useful at this point to extend the definition of the super-replication
price to allow terminal wealths from an arbitrary fixed wedge K. Several candidates
for K may be appropriate including admissible strategies, acceptable strategies
(cf. [18]) or permissible strategies (cf. [26]).

Let X ∈ L0 and K ⊆ L0 be an arbitrarily given wedge. Assume that
A(X;K) �= ∅, where

A(X;K) := {x ∈ R : X ≤ x + G for some G ∈ K}
= {x ∈ R : X − x ∈ K − L0

+},

and consider
π(X;K) := inf(A(X;K)).

Note that π(X;Kadm) = π(X) if A(X;Kadm) �= ∅ and that π(X;K2) ≤ π(X;K1)
if K1 ⊆ K2 and A(X;K1) �= ∅.

Let us now assume that Madm
1 (P) �= ∅. If one is interested in pricing the claim

X by using separating measures from the set Madm
1 (P), it is natural to assume

that X ∈ L(Madm
1 (P)) :=

⋂

Q∈Madm
1 (P)

L1(Q). For such X we always have

−∞ < sup
Q∈Madm

1 (P)

EQ [X] ≤ π(X) < +∞ .

Note also that by construction

Kadm ⊆ L(Madm
1 (P)) .

1The condition Me
σ(P) �= ∅ is equivalent to the (NFLVR) property (cf. [12, Theorem 3.4]).
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Moreover, an easy calculation shows that the set L(Madm
1 (P)) contains all

contingent claims X in L0 which are bounded from below and satisfy
A(X;Kadm) �= ∅.

However, one can construct Y ∈ L(Madm
1 (P)) such that

sup
Q∈Madm

1 (P)

EQ [Y ] < π(Y ),

suggesting that the use of admissible trading strategies is unsuitable for
super-replication of unbounded claims (cf. [5]); the wedge Kadm is “too small”
for the purpose of super-replicating such contingent claims.

Let X ∈ L(Madm
1 (P)). Then

π(X;Kadm) = π(X; sL(Madm
1 (P))(K

adm)),

where

sL(Madm
1 (P))(K

adm) =
{
G ∈ L(Madm

1 (P)) : G ≤ U for some U ∈ Kadm
}

=
⋂

Q∈Madm
1 (P)

(
Kadm − L1

+(Q)
)

denotes the smallest wedge C ⊆ L(Madm
1 (P)) such that −L(Madm

1 (P))+ ⊆ C and
Kadm ⊆ C (cf. Definition 2.2 and (5.3)). The geometry of such umbrella cones will
play an important role in this paper.

The following natural question was posed in [5]. Is it possible to find an
enlarged wedge C ∈ L(Madm

1 (P)), satisfying sL(Madm
1 (P))(Kadm) ⊆ C, and a suit-

able non-empty subset M of Madm
1 (P) (which may depend on Kadm), such that

π(X;C) = sup
Q∈M

EQ [X] ? (1.4)

In the admissible case, a partial answer to the question was provided in [5],
where preferences of the investor were incorporated in the construction of the
enlarged wedge by means of the convex conjugate Φ of their utility function U .
This wedge was defined as

Cadm
Φ :=

⋂

Q∈Madm
Φ

Kadm − L1
+(Q)

L1(Q)
, (1.5)

where

Madm
Φ := Madm

Φ (P) :=
{

Q ∈ Madm
1 (P) : Φ

(
dQ

dP

)

∈ L1(P)
}

denotes the set of pricing measures with finite entropy.
Under the assumptions that the utility function U has the condition of Rea-

sonable Asymptotic Elasticity at −∞ and at +∞ and is bounded from above,2

and if {Q ∈ Madm
Φ : Q ∼ P} �= ∅, Biagini and Frittelli showed that

π(X;Cadm
Φ ) = sup

Q∈Madm
Φ

EQ [X] . (1.6)

2i.e., if Φ(0) = lim
x→∞ U(x) < ∞
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The scope of this paper is a further generalisation of the main results in [5]
including equation (1.6).

In [24] some of the technical assumptions in [5] were weakened, in particular
the condition that the utility function must be bounded from above. In [25] it was
subsequently shown in detail that the condition of Reasonable Asymptotic Elas-
ticity can be relaxed, provided the set of separating measures with finite entropy is
replaced by the set of separating measures with finite loss-entropy. In the current
paper we show that the main results in [5] can be still generalised by considering
the pure geometric structure of the underlying problem (based on the properties
of Riesz spaces) without explicitly referring to an underlying utility function or its
conjugate. In particular, we investigate under which geometric conditions of the
relevant sets K, M , C the results still hold (for example, M has to be a face of
M1(P)). Our main results, Theorem 5.3, respectively its geometric version, The-
orem 5.4, together with Corollary 5.5 transmit Theorem 4, [6] (and Theorem 5,
[5]) from wedges of attainable terminal wealths resulting from admissible trading
strategies to arbitrary wedges K in L0 and arbitrary non-empty arbitrary faces M
of M1 ≡ M1(P;K).

Section 6 reflects how the main results in [5] can be derived as a special case
of our geometric approach.

2. Preliminaries and notations

In this section, we introduce some basic notation and terminology which we will
use throughout the paper. The scalar field for vector spaces is assumed to be the
real field R only, and most of our notations and definitions from probability theory,
convex analysis and functional analysis are standard. We refer the reader to the
monographs [17,19,33] for the necessary background in functional analysis, and
recommend the monographs [8,28] for the basics of convex analysis.

From [2], let us recall that a wedge in a real vector space E is a non-empty
convex set C ⊆ E satisfying λC ⊆ C for all λ ≥ 0.3 Obviously, a non-empty subset
C of E is a wedge if and only if it is closed under addition and non-negative scalar
multiplication. Let S be an arbitrary non-empty subset of the vector space E. Let
W(S) denote the smallest wedge in E which contains S, i.e., the wedge generated
by S (cf. [2]). It is easy to show that

W(S) = {λx : λ ≥ 0, x ∈ co(S)} = W(co(S)), (2.1)

where co(S) denotes the convex hull of S. We therefore arrive at the following
description of [S], the linear span of S, which we shall use in the proof of Propo-
sition 4.8:

[S] = W(S) − W(S). (2.2)

3In the literature, a wedge quite often is denoted as a convex cone.



206 F. Oertel and M. P. Owen Positivity

Lemma 2.1. Let E be a real vector space, S ⊆ E be convex and T ⊆ E be a wedge.
If S ∩ T is non-empty then

W(S ∩ T ) = W(S) ∩ T. (2.3)

Proof. Since W(S) ∩ T is a wedge which contains the non-empty set S ∩ T , it
follows immediately that

W(S ∩ T ) ⊆ W(S) ∩ T .

Therefore, without loss of generality, we may assume that W(S) ∩ T �= {0}. So,
let x ∈ (W(S) ∩ T )\{0}. Since 0 �= x ∈ W(S), (2.1) implies that x = λw, where
λ > 0 and w ∈ co(S) = S. Since x ∈ T and T is a wedge, it consequently follows
that w = λ−1x ∈ S ∩ T ⊆ W(S ∩ T ). Hence, (W(S) ∩ T )\{0} ⊆ W(S ∩ T ), and
the remaining inclusion follows. �

In order to embed utility-based super-replication prices in a mathematically
concise framework, it is very useful to work in vector lattices (or Riesz spaces).
Standard references are for instance [1,22,23,32].

Definition 2.2. Let (E,≤) be a vector lattice and C ⊆ E a wedge in E. C is an
umbrella (wedge) in E if −E+ = {x ∈ E : x ≤ 0} ⊆ C.

Given an arbitrary wedge K ⊆ E, we denote by sE(K) the umbrella hull,
i. e., the smallest umbrella in E which contains K. Note that

sE(K) = {x ∈ E : ∃ g ∈ K s. t. x ≤ g} = K − E+.

Consequently, a wedge C ⊆ E is an umbrella in E if and only if C = sE(C) =
C − E+.

Proposition 2.3. Let (Eα)α∈A be a family of vector sublattices of a vector lattice
L. Then E :=

⋂
α∈A Eα is a vector sublattice of L. Let K ⊆ E be an arbitrary

wedge in E. Then

sE(K) =
⋂

α∈A
sEα

(K) =
⋂

α∈A
(K − (Eα)+) .

Proof. Let C be an arbitrary umbrella wedge in E such that K ⊆ C. Then
⋂

α∈A
sEα

(K) ⊆
⋂

α∈A
(sEα

(K) ∩ E) ⊆
⋂

α∈A
(sEα

(C) ∩ E) ⊆
⋂

α∈A
sE(C) = C .

Hence,
⋂

α∈A
sEα

(K) ⊆ sE(K). The other inclusion is trivial. �

Example 2.4. Assume that Madm
1 (P) �= ∅. Set E :=

⋂
Q∈Madm

1 (P) L1(Q). Then
Kadm ⊆ E, and

sE(Kadm) =
⋂

Q∈Madm
1 (P)

(
Kadm − L1

+(Q)
)

.
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Next, we apply basic duality theory, where we adopt the approach of [17].
To this end, let (E,F ) be an arbitrary bilinear system of real vector spaces. For a
non-empty set A ⊆ E we define its polar wedge A� ⊆ F by

A� := {w ∈ F : 〈z, w〉 ≤ 0 ∀z ∈ A}.

For a non-empty set B ⊆ F , its polar wedge B� ⊆ E can be defined similarly.
Clearly, A� is a wedge and A� ⊆ A◦, where A◦ := {w ∈ F : 〈z, w〉 ≤ 1 ∀z ∈ A}
denotes the polar of A (cf. [33, Section 0.7]).

Remark 2.5. Note that the definition of a polar is not handled univocally! Some
authors prefer to define the polar of A as the set {w ∈ F : |〈z, w〉| ≤ 1 ∀z ∈ A}
(cf. e. g. [17]). However, if the set A is circled, i. e., if {λx : λ ∈ [−1, 1], x ∈ A} ⊆ A,
both definitions coincide. Throughout the article, we will use the definition above
including the related version of the bipolar theorem (see [33, Theorem 0.8]).

If in addition A is a wedge, it easily follows that A� = A◦. The next result
shows why we call A� a “polar wedge”:

Proposition 2.6. Let (E,F ) be an arbitrary bilinear system of real vector spaces
and A be an arbitrary non-empty subset of E. Then:

A� = (W(A))◦.

In particular, A� is σ(F,E)-closed.

Consequently, a direct application of the bipolar theorem (see [33, Theorem
0.8]) leads to the following result which we shall use in the proof of Theorem 6.4:

Proposition 2.7. Let (E,F ) be an arbitrary bilinear system of real vector spaces
and A be an arbitrary non-empty subset of E. Then:

A�� = W(A)
σ(E,F )

.

In other words, A�� is the smallest σ(E,F )-closed wedge which contains A. If in
addition A is a wedge, then A�� = A

σ(E,F )
.

Lemma 2.8. Let (E,F ) be an arbitrary bilinear system and (Aγ)γ∈Γ be a family of
non-empty subsets of E. Then

(i)

(
⋃

γ∈Γ

Aγ

)�

=
⋂

γ∈Γ

A�
γ and

(ii)

(
⋂

γ∈Γ

W(Aγ)
σ(E,F )

)�

= W
(
⋃

γ∈Γ

A�
γ

)σ(E,F )

.

Proof. Statement (i) follows immediately from the definition of a polar wedge.
If we apply statement (i) to the family (Bγ)γ∈Γ, where Bγ := A�

γ , Proposition
2.7 implies that

⎛

⎝
⋂

γ∈Γ

W(Aγ)
σ(E,F )

⎞

⎠

�

=

⎛

⎝
⋂

γ∈Γ

B�
γ

⎞

⎠

�
(i)
=

⎛

⎝
⋃

γ∈Γ

Bγ

⎞

⎠

��

.
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Again, due to Proposition 2.7, we obtain
⎛

⎝
⋃

γ∈Γ

Bγ

⎞

⎠

��

= W
⎛

⎝
⋃

γ∈Γ

Bγ

⎞

⎠

σ(E,F )

= W
⎛

⎝
⋃

γ∈Γ

A�
γ

⎞

⎠

σ(E,F )

,

and statement (ii) follows. �

In the appendix the interested reader will find another very interesting appli-
cation of this result which shows that an infinite-dimensional version of Farkas’
Lemma is true if and only if suitable linear images of positive wedges are weakly
closed (cf. Theorem 8.2).

We conclude this preparatory section with a technical lemma which we shall
use several times.

Lemma 2.9. Let (Ω,F , P) be a probability space and let Y0, Y and Y1 be real random
variables on Ω such that 0 ≤ Y0 ≤ Y ≤ Y1 almost surely. Let f : [0,∞) −→ [0,∞]
be a convex function. Then for every a ∈ [0,∞]

EP

[
f(Y )1{Y <a}

] ≤ EP [f(Y0)] + min{EP [f(Y1)] , f(a)}.

Proof. Let a ∈ [0,∞] and put

γ∗ := inf{y ≥ 0 : f is increasing on (y,∞)}.

Obviously, we only have to consider the case γ∗ < ∞. In this case, the convex
function f is non-increasing on [0, γ∗) and increasing on [γ∗,∞). Moreover

f(Y )1{Y <a} = f(Y )1{Y <a∧γ∗} + f(Y )1{γ∗≤Y <a} ,

and the claim follows. �

3. The market model

We now describe in detail the market model. For the necessary background in
mathematical finance and stochastic analysis, we refer the reader to the introduc-
tory monographs [20,27] and the survey article [12].

Let (Ω,F , (Ft)t∈[0,T ], P) be a filtered probability space, in which the filtra-
tion satisfies the usual conditions of right continuity and completeness, and the
time horizon T is assumed to be finite.

We model the discounted price process of d risky assets as an R
d-valued

semimartingale S = (St)t∈[0,T ]. Let K be an arbitrary wedge in L0 consisting of
attainable terminal wealths. Note that we are not requiring K to be the wedge of
those attainable terminal wealths which arise from admissible trading strategies.

We shall be particularly interested in super-replication for an investor whose
preferences are expressed via a utility function. When considering the permissible
trading strategies, it is important to take into consideration the investor’s wealth
preferences. We assume that the investor has a utility function U : (a,∞) → R,
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where a ∈ [−∞,∞),4 which is strictly increasing, strictly concave, (continuously)
differentiable, and satisfies the Inada conditions

lim
x↓a

U ′(x) = ∞, lim
x↑∞

U ′(x) = 0. (3.1)

As usual, we assume that the utility function has Reasonable Asymptotic Elasticity
(see [30]). We shall formulate this assumption however in Section 4, in terms of a
growth condition on a suitably adapted version of the convex (conjugate) function
Φ (cf. (4.10)).

4. The separating measures

Throughout the paper, K always denotes a fixed but arbitrarily chosen wedge in
L0. Define

M1 := M1(P;K)
:= {Q � P : Q is a probability measure, K ⊆ L1(Q) and

EQ [X] ≤ 0 for all X ∈ K}.

By construction, it follows immediately that

K ⊆
⋂

Q∈M1

L1(Q) ⊆
⋂

Q∈M

L1(Q) (4.1)

for any non-empty subset M of M1. Note that M1 consists of probability mea-
sures (a fact needed in the proof of Proposition 4.8 and Lemma 5.2). Consider
the two convex sets R(P) :=

{
X : X ∈ L1

+(P), EP [X] = 1
}

and A(P) := {Q : Q

is a probability measure and Q � P}. Then the mapping R : A(P) → R(P), Q �→
dQ
dP

is bijective, and its inverse mapping is given by L : R(P) → A(P),X �→ QX ,
where QX(A) := EP [1A X] =

∫
A

XdP for any A ∈ F . Thus, M1 ⊆ A(P) and

R(M1) =
{
Y ∈ L1

+(P) : EP [Y ] = 1,XY ∈ L1(P) and EP [XY ] ≤ 0 for all X ∈ K
}

.
(4.2)

If it is not mentioned explicitly, then throughout the article, we let
Φ : [0,∞) → (−∞,∞] denote an arbitrary convex function, where Φ may take
the value ∞ only at 0.5 Note that we do not necessarily require Φ to be the convex
conjugate of any utility function.

The set of pricing measures with finite entropy is defined as

MΦ :=
{

Q ∈ M1 : Φ
(

dQ

dP

)

∈ L1(P)
}

=
{

Q ∈ M1 : EP

[

Φ+

(
dQ

dP

)]

< ∞
}

. (4.3)

By construction, MΦ depends on the choice of the wedge K.

4We allow a to take any value in [−∞, ∞) = {−∞} ∪ R, but we shall be most interested in the
case where a = −∞.
5In other words, Φ ((0, ∞)) ⊆ R.
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We now state an important growth condition on the convex function Φ, which
is related to the condition of Reasonable Asymptotic Elasticity found in [30].

Assumption 4.1. Given any interval [λ0, λ1] ⊆ (0,∞) there exist α > 0 and β > 0
such that

Φ+(λy) ≤ αΦ+(y) + β(y + 1), (4.4)

for all y > 0 and all λ ∈ [λ0, λ1].

Let Φ satisfy the growth condition (4.4). Then obviously Φ+(λdQ
dP

) ∈ L1(P)
for any λ > 0 and any Q ∈ MΦ.

Primarily, we are interested in the case where Φ is the convex conjugate of
a utility function U , i. e., the Legendre conjugate of the convex function −U(−·) :
(−∞,−a) −→ R (cf. [28, §26]):

Φ(y) := sup
x>a

{U(x) − xy}, y ≥ 0. (4.5)

In this case, the growth condition (4.4) and the Reasonable Asymptotic Elasticity
of U , introduced by Schachermayer, are equivalent (cf. [16]).

It is well-known that under the Inada conditions (3.1) the convex conjugate
Φ is strictly convex and continuously differentiable on (0,∞), satisfying

lim
y→∞ Φ(y) = lim

x→a
U(x) and Φ′ = −I, (4.6)

where I : (0,∞) −→ (a,∞) denotes the inverse function of U ′. Moreover,

Φ(y) = U(I(y)) − yI(y)

for all y > 0 (cf. [28, §26]).
Throughout the article we shall assume the following

Assumption 4.2. MΦ �= ∅.
Remark 4.3. Assumption 4.2 rules out “utility-based arbitrage strategies” (see [5,
Section 1.2]), but not necessarily a free lunch with vanishing risk. As our analysis
shows, it is not necessary to assume the stronger condition

{Q ∈ MΦ : Q ∼ P} �= ∅ (4.7)

which was required throughout in [5].

Definition 4.4. We say that a measure Q � P has finite loss-entropy if

EP

[

Φ+

(
dQ

dP

)

1{ dQ
dP

≥1}

]

< ∞. (4.8)

The set of pricing measures with finite loss-entropy is therefore given by

M̂Φ :=
{

Q ∈ M1 : EP

[

Φ+

(
dQ

dP

)

1{ dQ
dP

≥1}

]

< ∞
}

. (4.9)
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Clearly, MΦ ⊆ M̂Φ. Since

0 ≤ Φ+(
dQ

dP
)1{a≤ dQ

dP
<b} ≤ max{Φ+(a),Φ+(b)} < ∞

for any Q � P and 0 < a < b, the choice of the constant 1 in equation (4.8) is
arbitrary; we could actually choose any positive number, and the set in (4.9) would
not change. We use the terminology “loss-entropy” because for events with large
dQ
dP

, an inspection of equation (4.6) shows that Φ
(

dQ
dP

)
is related to the value of the

utility function U(x) where x is close to the critical wealth a. Typically, pricing
measures Q ∈ M1 give large probabilities (relative to the real world measure P) to
large negative asset prices.

We now define a modification Φ̂ of Φ which is finite at 0, but remains convex
and satisfies Φ̂ ≤ Φ. Since the left-sided derivative l∗ := (D−Φ)(1) of the convex
function Φ at y = 1 always exists, it follows that

Φ̂(y) :=

{
Φ(y), if y ≥ 1
Φ(1) + l∗(y − 1) if 0 ≤ y < 1

(4.10)

defines a function Φ̂ on [0,∞) with values in R. If Φ satisfies the growth condition
(4.4), so does Φ̂. Moreover,

M̂Φ = MΦ̂.

Remark 4.5. (i) Since Φ and Φ̂ are convex, it follows easily that MΦ and M̂Φ

are convex.
(ii) If limy→∞(D−Φ)(y) < ∞ (i.e., Φ is asymptotically linear as y → ∞), then

M̂Φ = M1, because then Φ̂ can be bounded above by a linear function (see
also Remark 6.6).

(iii) If Φ(0) < ∞, then M̂Φ = MΦ, because in this case 0 ≤ Φ+(dQ
dP

)1{0≤ dQ
dP

<1} ≤
max{Φ+(0),Φ+(1)} < ∞ for any Q � P.

(iv) The introduction of the sets M̂Φ and MΦ̂ here is original. We note that the lat-
ter set is related to the conjugate function of the Young function Û associated
to the utility function U , via the transformation Û(x) := −U(−|x|) + U(0)
(cf. [7]). In this way, MΦ̂ shows up very naturally.

Let us recall that a convex subset F of a given convex set C is called a
face of C if αx + (1 − α)y ∈ F with x, y ∈ C and 0 < α < 1 imply x, y ∈ F
(cf. [2]). By using similar estimation techniques as inserted in the respective proofs
of Proposition 18 in [5] and Theorem 4 in [6], we reveal a significant geometric fact
which will become central to our further analysis (cf. Theorem 6.4):

Lemma 4.6. If Φ satisfies the growth condition (4.4) then the following statements
hold:
(i) M̂Φ is a face in M1.
(ii) Let Q0, Q1 ∈ M1, 0 < x < 1, and assume that Q := xQ0 + (1 − x)Q1 ∈ M̂Φ.

If Q0 ∈ MΦ or Q1 ∈ MΦ then Q ∈ MΦ.
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Proof. Let Q0, Q1 ∈ M1, 0 < x < 1 and define Q := xQ0 + (1 − x)Q1. To prove
statement (i), note that since M̂Φ is convex, we only have to show that Q ∈ M̂Φ

implies that Q0, Q1 ∈ M̂Φ. Suppose that Q ∈ M̂Φ = MΦ̂. Since 0 ≤ dQ0
dP

=
1
x

dQ
dP

− (1−x)
x

dQ1
dP

≤ 1
x

dQ
dP

P − a. s., Lemma 2.9 and the growth condition (4.4) of Φ̂
imply that

EP

[

Φ̂+

(
dQ0

dP

)]

≤ Φ̂+(0) + EP

[

Φ̂+

(
1
x

dQ

dP

)]

< ∞.

Hence, Q0 ∈ M̂Φ. Similarly, Q1 ∈ M̂Φ.
To prove statement (ii), we may suppose without loss of generality that

Q0 ∈ MΦ. Since xdQ0
dP

≤ dQ
dP

P-a. s., Lemma 2.9 and the growth condition (4.4)
of Φ imply that

EP

[

Φ+

(
dQ

dP

)

1{ dQ
dP

<1}

]

≤ EP

[

Φ+

(

x
dQ0

dP

)]

+ Φ+(1) < ∞.

Since Q ∈ M̂Φ, it therefore follows that Q ∈ MΦ. �

We now include a general representation result which holds for arbitrary
nonempty faces of convex sets, consisting of probability measures (such as it is the
case for M1).

Proposition 4.7. Let M be a face of M1. If M �= ∅ then

[M ] ∩ M1 = M .

Proof. Clearly, ∅ �= M ⊆ [M ] ∩ M1. Let Q ∈ [M ] ∩ M1. First, due to (2.2), it
follows that

[M ] = W(M) − W(M).

Therefore, since Q in particular is a probability measure, Q can be written as
Q = (1+β)Q1−βQ0 where Q0, Q1 ∈ M ⊆ M1 and β≥0. Thus Q1 = 1

1+β Q+ β
1+β Q0,

and the assumption implies that Q ∈ M . �

Proposition 4.8. If Φ satisfies the growth condition (4.4) and MΦ �= ∅ then

M̂Φ = [MΦ] ∩ M1.

Proof. Firstly, due to Lemma 4.6 and Proposition 4.7, we have

[MΦ] ∩ M1 ⊆ [M̂Φ] ∩ M1 = M̂Φ.

Let Q1 ∈ M̂Φ. Choose any Q0 ∈ MΦ and define Q := 1
2Q0+ 1

2Q1. From Lemma 4.6
we see that Q ∈ MΦ. Hence, Q1 = 2Q − Q0 ∈ [MΦ]. �
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5. Main results: a general approach by duality

In the following, we extend the model approach of [5], which does not only allow us
to substitute the wedge Kadm of admissible strategies by more general candidates
including the wedge of acceptable strategies (cf. [18]), or the wedge of permissible
strategies (cf. [26]). This extension also enables to replace the set MΦ by other
suitable non-empty subsets of M1 (cf. Corollary 5.5) and reveals the geometry of a
suitable class of wedges which appears naturally in the analysis of super-replication
prices for unbounded contingent claims.

To this end, let K be a fixed wedge in L0 and M be a fixed non-empty subset
of M1 ≡ M1(P;K) ⊆ A(P). As in [5], we consider the pair of vector spaces

E :=
⋂

Q∈M

L1(Q) and F := [R(M)] =
[
dQ

dP
: Q ∈ M

]

⊆ L1(P), (5.1)

where R(Q) =
dQ

dP
for all Q ∈ A(P) (cf. Section 4). Obviously, if z ∈ E and

w ∈ F ⊆ L1(P) then zw ∈ L1(P). Thus the bilinear form 〈·, ·〉 : (E,F ) → R

defined by

〈z, w〉 := EP [zw]

is well defined, making (E,F ) a bilinear system. From now on, all polar wedges
are defined with respect to this bilinear system. Therefore, their structure depends
on the choice of the wedge K and the set M . Note that E is a vector sublattice of
L0 which contains the wedge K (cf. (4.1)).

A standard measure theoretic argument shows that the linear functionals
E � z �→ EP [zw] are non-degenerate for each w ∈ F\{0}. Hence, the bilinear
system (E,F ) is a left dual system. Consequently, F is the topological dual of E
under the weak topology σ(E,F ):

F = (E, σ(E,F ))′ (5.2)

Let X ∈ E be an arbitrary contingent claim and C ⊆ E be an arbitrary wedge
which contains the (fixed) wedge K. Recall that

sE(C) =
⋂

Q∈M

(C − L1
+(Q)) = C − E+ ⊆ E

describes the umbrella hull of C (cf. Proposition 2.3). Consider the set

AX(C) := {x ∈ R : X ≤ x + G for some G ∈ C}
and assume that AX(K) �= ∅. Then AX(K) is bounded from below, and we have

−∞ < sup
Q∈M

EQ [X] ≤ inf(AX(K)) < +∞.
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Obviously, AX(K) ⊆ AX(C). If AX(C) is bounded from below, we put

π(X;C) := inf(AX(C)).

Note that π(X;C) ≤ π(X;K).

Definition 5.1. Let M be a non-empty subset of M1 = M1(P;K) and C ⊆ E :=⋂
Q∈M L1(Q) be a wedge which contains the wedge K. Let X ∈ E. If AX(C) is

non-empty and bounded from below then the real number

π(X;C) := inf(AX(C)) = inf{x ∈ R : X ≤ x + G for some G ∈ C}
is called M -based super-replication price of X.

Due to Proposition 2.3, it follows immediately that

π(X;C) = inf {x ∈ R : X − x ∈ sE(C)} = inf

⎧
⎨

⎩
x ∈ R : X− x ∈

⋂

Q∈M

(
C − L1

+(Q)
)
⎫
⎬

⎭
.

(5.3)
Hence, π(X;C) = π(X; sE(C)). If M := MΦ, where Φ is the convex conjugate

of a utility function, we call π(X;CΦ) a utility-based super-replication price of X
(cf. (6.2)). Note that in the admissible case our utility-based super-replication
price of X coincides with the weak super-replication price of [5].

The following important result reveals that the dual wedge of the umbrella
wedge sE(K) is contained in the positive wedge of L1(P) and can be represented
with the help of suitable probability measures. It is not only crucial for our analysis
in this paper. By choosing the “right” dual pair namely, it opens up a door to a
canonical duality and a general representation of M -based super-replication prices
(cf. [25]).

Lemma 5.2. Let K be an arbitrary wedge in L0, and let ∅ �= M ⊆ M1 = M1(P;K).
Then

F ∩ W(R(M1)) = sE(K)� = (−L∞
+ (P))� ∩ K� = L1

+(P) ∩ K�.

In particular, the set F ∩ W(R(M1)) is σ(F,E)-closed, and it contains

W(R(M))
σ(F,E)

.

Proof. First, we show that

F ∩ W(R(M1)) ⊆ sE(K)� ⊆ (−L∞
+ (P))� ∩ K� = L1

+(P) ∩ K�.

To this end, let Q ∈ M1 such that R(Q) =
dQ

dP
∈ F and X ∈ sE(K). Then there

exists Y ∈ K ⊆ L1(Q) such that X ≤ Y and

〈X,
dQ

dP
〉 = EQ [X] ≤ EQ [Y ] ≤ 0.

Thus, F ∩R(M1) ⊆ sE(K)�. Since ∅ �= R(M) ⊆ F ∩R(M1), we may apply Lemma
2.1 to the wedge F , and it consequently follows that

F ∩ W(R(M1)) = W(F ∩ R(M1)) ⊆ sE(K)�. (5.4)



Vol. 13 (2009) Geometry of polar wedges in Riesz spaces 215

Since L∞(P) ⊆ L1(Q) for any Q ∈ M1, we have L∞(P) ⊆ E and hence

− L∞
+ (P) ∪ K ⊆ K − E+ = sE(K) ⊆ E. (5.5)

Since

(−L∞
+ (P))� = F ∩ {W ∈ L1(P) : EP [WV ] ≥ 0 for all V ∈ L∞

+ (P)
}

⊆ F ∩ {W ∈ L1(P) : EP

[
W1{W<0}

] ≥ 0
}

= F ∩ {W ∈ L1(P) : EP

[
W−] = 0

}

= F ∩ L1
+(P)

⊆ (−L∞
+ (P))�,

Lemma 2.8 and inclusion (5.5) imply that

sE(K)� ⊆ (−L∞
+ (P))� ∩ K� = L1

+(P) ∩ K�. (5.6)

Hence,

F ∩ W(R(M1)) ⊆ sE(K)� ⊆ (−L∞
+ (P))� ∩ K� = L1

+(P) ∩ K�.

It remains to prove that L1
+(P) ∩ K� ⊆ F ∩ W(R(M1)). To this end, let

Y ∈ L1
+(P) ∩ K� = L1

+(P) ∩ K� ∩ F . Then 0 ≤ Y =
∑n

k=1 αk
dQk

dP
, for some

n ∈ N, α1, . . . , αn ∈ R and Q1, . . . , Qn ∈ M ⊆ M1, and EP [XY ] ≤ 0 for all
X ∈ K. Consider μ :=

∑n
k=1 αkQk. Since each Qk in particular is a probability

measure, it follows that

0 ≤ EP [Y ] =
n∑

k=1

αk = μ(Ω).

If μ(Ω) = EP [Y ] = 0 then Y = 0 ∈ F ∩ W(R(M1)). If μ(Ω) > 0, it follows that
Q :=

∑n
k=1

αk

μ(Ω)Qk is a probability measure, Q � P and

μ(Ω) EQ [X] = EP [XY ] ≤ 0

for all X ∈ K. Consequently, Q ∈ M1, and we obtain

Y =
n∑

k=1

αk
dQk

dP
= μ(Ω)

dQ

dP
= μ(Ω)R(Q) ∈ F ∩ W(R(M1)).

�

Theorem 5.3. Let K be an arbitrary wedge in L0 and let ∅ �= M ⊆ M1 = M1(P;K).

Put cE(K) := sE(K)
σ(E,F )

. Then the following statements are equivalent:

(i) W(R(M))
σ(F,E)

= F ∩ W(R(M1));
(ii) R(M)� = cE(K);

(iii) W(R(M))
σ(F,E)

= (cE(K))� = sE(K)�.
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Proof. Assume that (i) holds. Then Proposition 2.7 and Lemma 5.2 both together
imply that

R(M)� = (R(M)��)� =
(
W(R(M))

σ(F,E)
)�

(i)
= (F ∩ W(R(M1)))

� = (sE(K)�)� = cE(K),

and (ii) follows.
Now assume that (ii) holds. Again, we may apply Proposition 2.7 and Lemma 5.2

and obtain

W(R(M))
σ(F,E)

= R(M)�� (ii)
= cE(K)� = (sE(K)��)� = sE(K)�.

Hence, statement (iii) follows.
If (iii) is true, Lemma 5.2 immediately implies (i). �
A natural question is to ask for suitable candidates M which satisfy condition

(ii) and hence the equivalent relations (i) respectively (iii) of Theorem 5.3. In fact,
we shall recognise again that one candidate of this type is given by M̂Φ (cf. [25]).

Theorem 5.4. Let K be an arbitrary wedge in L0, and let ∅ �= M be a face of
M1 = M1(P;K). Then

R(M)� = cE(K).

Proof. Firstly, due to Proposition 4.7 we have

R(M) = R([M ] ∩ M1) = F ∩ R(M1),

so that

W(R(M)) = F ∩ W(R(M1))

(by Lemma 2.1). Consequently, Lemma 5.2 implies

W(R(M))� = (sE(K)�)� = sE(K)��.

Now, we may apply Proposition 2.6 and Proposition 2.7, and it consequently fol-
lows that

R(M)� = W(R(M))� = sE(K)�� = sE(K)
σ(E,F )

= cE(K).

�
Corollary 5.5. Let K be an arbitrary wedge in L0, and let ∅ �= M ⊆ M1 = M1(P,K)
such that

W(R(M))
σ(F,E)

= F ∩ W(R(M1)),

respectively

R(M)� = cE(K).

Let X ∈ E. Then the set AX(cE(K)) is bounded from below and

π(X; cE(K)) = sup
Q∈M

EQ [X] .
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Proof. Since obviously

cE(K) − E+ = sE(K)
σ(E,F ) − E+ ⊆ K − E+

σ(E,F )
= cE(K),

cE(K) is an umbrella wedge in E. Hence, Theorem 5.3 implies that

π(X; cE(K)) = inf{x ∈ R : X − x ∈ cE(K)}
= inf{x ∈ R : X − x ∈ R(M)�}
= inf{x ∈ R : EQ [X − x] ≤ 0∀ Q ∈ M}
= inf{x ∈ R : EQ [X] ≤ x ∀ Q ∈ M}
= sup

Q∈M
EQ [X] ,

and the claim follows. �

Corollary 5.6. Let K be an arbitrary wedge in L0. If Φ satisfies the growth condition
(4.4) and M̂Φ �= ∅ then

R(M̂Φ)� = c
ÊΦ

(K),

where the polarisation � is based on the bilinear system (ÊΦ, F̂Φ) which is given
by ÊΦ =

⋂
Q∈M̂Φ

L1(Q) and F̂Φ = [R(M̂Φ)].

Proof. The result immediately follows from Lemma 4.6 and Theorem 5.4, applied
to M := M̂Φ and the related bilinear system (E,F ) := (ÊΦ, F̂Φ) (cf. 5.1). �

Note that Lemma 5.2 and Theorem 5.3 hold for any non-empty subset M

of M1. In particular, we may apply them to M ∈ {MΦ, M̂Φ} - presupposed that
MΦ �= ∅ respectively M̂Φ �= ∅. The case M = M̂Φ is discussed in detail in [25]. We
now apply our general results to the case M = MΦ and provide a well-known rep-
resentation of the umbrella wedge cE(K) in Theorem 6.4, implying a generalisation
of Theorem 5 in [5].

6. The special case M = MΦ

As before, we fix an arbitrary wedge K in L0. Assume that Φ satisfies the growth
condition (4.4) and MΦ �= ∅. Let EΦ :=

⋂
Q∈MΦ

L1(Q) be the vector space of all
MΦ-integrable contingent claims. Recall that K ⊆ ⋂Q∈M1

L1(Q) ⊆ EΦ. Define the
wedge

KΦ := sEΦ(K) = K − (EΦ)+ =
⋂

Q∈MΦ

(
K − L1

+(Q)
)

of all MΦ-integrable contingent claims that can be dominated by a terminal wealth
in K. We now consider the pair of vector spaces

EΦ :=
⋂

Q∈MΦ

L1(Q) and FΦ := [R(MΦ)]. (6.1)
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It is well-known that the wedge Kadm of terminal wealths arising from
zero-financed admissible trading strategies is not large enough for the purposes
of a duality theory when considering unbounded wealth. Similarly, in our general
setting the wedge KΦ may not be large enough in order to obtain a dual relation-
ship of type (1.4). Along the lines of equation (1.5) we therefore define the larger
wedge

CΦ :=
⋂

Q∈MΦ

K − L1
+(Q)

L1(Q)
, (6.2)

which in fact will turn out to be the closure of KΦ with respect to the weak
topology σ(EΦ, FΦ) (see Theorem 6.4). Both, KΦ and CΦ are umbrella wedges in
EΦ, and

K ⊆ KΦ ⊆ CΦ ⊆ EΦ.

We interpret CΦ as the wedge of contingent claims which can be approximated by
super-replicable claims, where the investor has only utility-induced restrictions on
wealth.

The following result shows that the wedges CΦ̂ and CΦ are identical
(c.f. (4.10)).

Lemma 6.1. If Φ satisfies the growth condition (4.4) and MΦ �= ∅ then CΦ̂ = CΦ.

Proof. Since MΦ ⊆ M̂Φ = MΦ̂ it follows that CΦ̂ ⊆ CΦ. Therefore it suffices to

show that for any Q1 ∈ M̂Φ there exists Q ∈ MΦ such that K − L1
+(Q)

L1(Q) ⊆
K − L1

+(Q1)
L1(Q1)

. Indeed, let Q1 ∈ M̂Φ, take any Q0 ∈ MΦ and define

Q = 1
2Q0 + 1

2Q1. Then Q ∈ MΦ (due to Lemma 4.6). If X ∈ K − L1
+(Q)

L1(Q)
then

there exists X̃n ∈ K and Rn ∈ L1
+(Q) such that Xn := X̃n − Rn

L1(Q)−→ X. Since
‖Rn‖L1(Q1) ≤ 2‖Rn‖L1(Q) we have Xn ∈ K−L1

+(Q1). Moreover, ‖X−Xn‖L1(Q1) ≤2
‖X − Xn‖L1(Q) → 0 as n → ∞. �

Remark 6.2. Lemma 6.1 reveals an interesting economic insight into the wedge CΦ.
On inspection of definition (6.2), one is lead to believe that CΦ is highly dependent
on Φ, and therefore on U . However, as a result of Lemma 6.1, we can replace in
this definition the set MΦ by the set MΦ̂ = M̂Φ of pricing measures with finite
loss-entropy.

The definition of the loss-entropy of a pricing measure only depends upon the
conjugate function Φ(y) for arbitrarily large values of y (see the discussion after
equation (4.9)). In turn, the behaviour of Φ(y) for large values of y corresponds to
the behaviour of the utility function U(x) for large negative values of x. Therefore,
although the trader is restricted in their choice of terminal wealths by their utility
function, this restriction actually depends only upon the investor’s preferences
towards asymptotically large losses.
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The following statement is a slight extension of a fundamental result of
Biagini and Frittelli (cf. [6], Theorem 4). However, it shows again that we are
allowed to replace the smaller set MΦ by the larger set M̂Φ.

Proposition 6.3. If Φ satisfies the growth condition (4.4) and MΦ �= ∅ then

R(MΦ)� = CΦ = R
(
M̂Φ

)�

where the polarisation � is based on the bilinear system (EΦ, FΦ). In particular,
CΦ is σ(EΦ, FΦ)-closed.

Proof. Due to Theorem 4 in [6], we only have to show the inclusion CΦ ⊆ R
(
M̂Φ

)�
.

To this end, let Q ∈ M̂Φ = MΦ̂ and X ∈ CΦ. Then X ∈ CΦ̂ ⊆ K − L1
+(Q)

L1(Q)
.

Thus there exists a sequence (Xn)∞
n=1 ⊆ K−L1

+(Q) such that ‖X − Xn‖L1(Q) → 0.
Since Q ∈ M1, it follows that EQ [Xn] ≤ 0 for all n and hence EQ [X] ≤ 0, implying

that CΦ ⊆ R
(
M̂Φ

)�
. �

Theorem 6.4. If Φ satisfies the growth condition (4.4) and MΦ �= ∅ then

FΦ ∩ W(R(M1)) = W(R(M̂Φ)) = W(R(MΦ))
σ(FΦ,EΦ)

. (6.3)

Moreover,
CΦ = cEΦ(K) = KΦ

σ(EΦ,FΦ)
(6.4)

and
R(M̂Φ) = R(MΦ)

σ(FΦ,EΦ)
. (6.5)

Proof. Firstly, due to Proposition 4.8 we have

R(M̂Φ) = R([MΦ] ∩ M1) = FΦ ∩ R(M1),

so that

W(R(M̂Φ)) = FΦ ∩ W(R(M1))

(by Lemma 2.1). Consequently, Lemma 5.2 implies

W(R(M̂Φ))� = (K�
Φ )� = K��

Φ ,

where the polarisation � now is based on the bilinear system (EΦ, FΦ)! Now, we
may apply Proposition 6.3, Proposition 2.6 and Proposition 2.7, and it follows

CΦ = R
(
M̂Φ

)�
= W(R(M̂Φ))� = K��

Φ = KΦ
σ(EΦ,FΦ)

.

Consequently, Proposition 6.3 leads to

W(R(M̂Φ)) = FΦ ∩ W(R(M1)) = K�
Φ = C�

Φ = R(MΦ)�� = W(R(MΦ))
σ(FΦ,EΦ)

.

Since 1Ω ∈ EΦ, the functional FΦ � w �→ EP [w] is σ(FΦ, EΦ)-continuous, implying
that {w ∈ FΦ : EP [w] = 1} is σ(FΦ, EΦ)-closed. Since

R(MΦ) = W(R(MΦ)) ∩ {w ∈ FΦ : EP [w] = 1},



220 F. Oertel and M. P. Owen Positivity

we therefore obtain

R(MΦ)
σ(FΦ,EΦ) ⊆ W(R(MΦ))

σ(FΦ,EΦ) ∩ {w ∈ FΦ : EP [w] = 1}
= FΦ ∩ W(R(M1)) ∩ {w ∈ FΦ : EP [w] = 1}
= FΦ ∩ R(M1) = R(M̂Φ).

Remember that the last equality follows from Proposition 4.8. To prove the other
inclusion, let Q1 ∈ M̂Φ arbitrary and fix Q0 ∈ MΦ. Then, due to Lemma 4.6,
Q

(n) := (1 − 1/n)Q1 + 1/n Q0 ∈ MΦ for any n ∈ N, and obviously R(Q(n)) −→
R(Q1) in the topology σ(FΦ, EΦ). �

Corollary 6.5. Let X ∈ EΦ and assume that Φ satisfies the growth condition (4.4)
and MΦ �= ∅. Then

π(X;CΦ) = sup
Q∈MΦ

EQ [X] . (6.6)

Proof. Due to Theorem 6.4 we may apply Corollary 5.5 to M = MΦ. �

Remark 6.6. If Φ corresponds to a utility function which is supported on a half-
line (i. e., U : (a,∞) → R, where a > −∞) then the convex conjugate Φ of U
is asymptotically linear as y → ∞. As mentioned in Remark 4.5 (ii), this means
that M̂Φ = M1. For such utility functions therefore, the set of super-replicable
contingent claims does not depend specifically on the shape of U . In fact, CΦ = Cid

where id(y) := y, and we recover the polar relations

R(M1)� = Cid and (Cid)� = W(R(M1)). (6.7)

This polarity is of a similar nature to [21, Theorem 3.1], in the sense that it is
utility independent.

Remark 6.7. Note that in equation (6.4), we may in fact take the closure in any
admissible topology (i. e., in any topology which is stronger than the weak topology
σ(EΦ, FΦ) and weaker than the Mackey topology τ(EΦ, FΦ)). See [17, §98 and §103]
for an explanation of the details.

7. The special case of admissible trading strategies

In this section we consider the particular case where K = Kadm is the wedge of
attainable terminal wealths resulting from zero-financed admissible trading strate-
gies. As an application of our general framework, we show that in this case every
contingent claim in CΦ =: Cadm

Φ even can be approximated by bounded contingent
claims which are dominated by terminal wealths in Kadm. This approximation is
given with respect to the (Kadm-related) weak topology σ(EΦ, FΦ).

By

Cadm := (Kadm − L0
+) ∩ L∞(P)

= {X ∈ L∞(P) : X ≤ X̃ for some X̃ ∈ Kadm}
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we denote the wedge of all a. s bounded contingent claims that can be dominated
by a terminal wealth in Kadm. Since Kadm ⊆ Kadm

Φ , it follows that

Cadm ⊆ (Kadm − L0
+) ∩ L1(Q) ⊆ Kadm − L1

+(Q)

for any Q ∈ MΦ and thus

Cadm ⊆ Kadm
Φ ⊆ Cadm

Φ ⊆ EΦ.

A benefit of using admissible strategies is the following approximation result (which
follows from Lebesgue’s Monotone Convergence Theorem):

Lemma 7.1. Let X ∈ Kadm. Then there exists a constant c ≥ 0 and a sequence
(Xn)n∈N ⊆ Cadm such that for any probability measure Q � P the following
properties hold:
(i) −c ≤ X1 ≤ X2 ≤ . . . ≤ Xn ↑ X Q-a. s;
(ii) −c ≤ lim

n→∞ EQ [Xn] = EQ [X] ∈ R ∪ {∞}.

As a consequence of Lemma 7.1 we may substitute the wedge Kadm by the
wedge Cadm ⊆ L∞(P) in equation (4.2) to get

R(Madm
1 ) = {Y ∈ L1

+(P) : EP [Y ] = 1 and EP [XY ] ≤ 0 for all X ∈ Cadm}. (7.1)

Theorem 7.2. If Φ satisfies the growth condition (4.4) and Madm
Φ �= ∅ then

Cadm
Φ = Cadm

σ(EΦ,FΦ)
. (7.2)

Proof. Due to equation (7.1) and Proposition 4.8, (Cadm)� ⊆ FΦ∩W(R(Madm
1 )) =

W(R(̂Madm
Φ )). Hence, as a result of Proposition 6.3 and Proposition 2.7,

Cadm
σ(EΦ,FΦ) ⊆ Cadm

Φ = (W(R(̂Madm
Φ )))� ⊆ (Cadm)

��
= Cadm

σ(EΦ,FΦ)
.

�

8. Appendix

Let us recall an important version of the Hyperplane Separation Theorem in
finite-dimensional vector spaces which is not only known as one of the main build-
ing blocks for duality theorems in linear programming. It also has other numerous
applications, e. g., to the Karush-Kuhn-Tucker theorem in nonlinear programming
and zero-sum games in economic theory (cf. [8]).

Theorem 8.1 (Farkas’ Lemma). Let m,n ∈ N, A ∈ M(m × n; Rn) and b ∈ R
m.

Then either
(i) there exists x ∈ R

n such that x ≥ 0 and Ax = b

or
(ii) there exists y ∈ R

m such that 〈y, b〉 > 0 and A�y ≤ 0.
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Theorem 8.1 implies the non-trivial fact that the finitely generated wedge
A(Rn

+) is closed in R
m. More generally, the following statement, which transfers

Theorem 8.1 to infinite-dimensional Banach lattices, shows that Farkas’ Lemma
even is equivalent to the closedness of the wedge A(Rn

+)! Concerning the basics of
Banach lattices and positive operators, we refer the reader to [32].

Theorem 8.2. Let E,F be arbitrary Banach lattices and A : E −→ F be a contin-
uous linear operator. Then the following statements are equivalent:

(i) A(E+) is σ(F, F ′)-closed;
(ii) Let b ∈ F . Then either

(1) there exists x ∈ E+ such that Ax = b
or
(2) there exists y′ ∈ F ′ such that 〈b, y′〉 > 0 and A′y′ ≤ 0.

Proof. First assume that (i) holds. We want to show (ii). To this end, we consider
the wedge

G := ((A′)−1(−E′
+))� =

{
b ∈ F : 〈b, y′〉 ≤ 0 for all y′ ∈ (A′)−1(−E′

+)
} ⊆ F.

Since F\G exactly consists of all b ∈ F , satisfying condition (2) in (ii) above, we
only have to show that

A(E+) = G. (8.1)
Obviously, by definition of G, A(E+) ⊆ G. Let y′ ∈ (A(E+))�. Then
〈x,A′y′〉 = 〈Ax, y′〉 ≤ 0 for any x ∈ E+. Hence, y′ ∈ (A′)−1(−E′

+). Thus,
(A(E+))� ⊆ (A′)−1(−E′

+) and consequently,

A(E+) ⊆ G ⊆ (A(E+))��. (8.2)

Due to Proposition 2.7 and the assumed weak closedness of the wedge A(E+), it
follows that

(A(E+))�� = W(A(E+))
σ(F,F ′)

= A(E+)
σ(F,F ′)

= A(E+) ,

Hence, we obtain equality (8.1).
Assume now that statement (ii) is true. We want to show (i). To this end,

let b ∈ A(E+)
σ(F,F ′)

. Then there exists a net (xα) ⊆ E+ such that b is the
σ(F, F ′)-limit of the net (Axα). Assume by contradiction that b /∈ A(E+). Then,
due to assumption (ii), condition (2) must be true (since (1) is false). Thus, there
exists a continuous linear functional y′ ∈ F ′ such that for any x ∈ E+ we have

〈Ax, y′〉 = 〈x,A′y′〉 ≤ 0 < 〈b, y′〉.
In particular, 〈b, y′〉 = limα〈Axα, y′〉 ≤ 0 - a contradiction. Consequently,
b ∈ A(E+) . �
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