A result of Pisier in the theory of operator spaces

Theorem (Pisier (2011))
Let a, b be non-negative real numbers. Let $z \in \mathbb{C}$. TFAE
(i) $\left(\begin{array}{ll}a & z \\ \bar{z} & b\end{array}\right)$ is positive semidefinite.
(ii) $|\langle z k, h\rangle| \leq \sqrt{\langle a h, h\rangle} \cdot \sqrt{\langle k b, b\rangle}$ for all $h, k \in \mathbb{C}$.
(Here, $\langle u, v\rangle:=u \bar{v}$ for all $u, v \in \mathbb{C}$.)

A result of Pisier in the theory of operator spaces

Theorem (Pisier (2011))
Let a, b be non-negative real numbers. Let $z \in \mathbb{C}$. TFAE
(i) $\left(\begin{array}{ll}a & z \\ \bar{z} & b\end{array}\right)$ is positive semidefinite.
(ii) $|\langle z k, h\rangle| \leq \sqrt{\langle a h, h\rangle} \cdot \sqrt{\langle k b, b\rangle}$ for all $h, k \in \mathbb{C}$.
(Here, $\langle u, v\rangle:=u \bar{v}$ for all $u, v \in \mathbb{C}$.)
Corollary
Let $z \in \mathbb{C}$. TFAE
(i) $\left(\begin{array}{ll}1 & z \\ \bar{z} & 1\end{array}\right)$ is positive semidefinite.
(ii) $|z| \leq 1$.

Pisier's proof revisited (I)

Proof of Pisier's Theorem.
Firstly, we prove "(i) \Rightarrow (ii)".

Pisier's proof revisited (I)

Proof of Pisier's Theorem.
Firstly, we prove "(i) \Rightarrow (ii)".
Clearly condition (i) is equivalent to the following inequality:

$$
\langle a h, h\rangle+2 \mathfrak{R}(\langle z k, h\rangle)+\langle k b, b\rangle \geq 0
$$

for all $h, k \in \mathbb{C}$.

Pisier's proof revisited (I)

Proof of Pisier's Theorem.
Firstly, we prove "(i) \Rightarrow (ii)".
Clearly condition (i) is equivalent to the following inequality:

$$
\langle a h, h\rangle+2 \mathfrak{R}(\langle z k, h\rangle)+\langle k b, b\rangle \geq 0
$$

for all $h, k \in \mathbb{C}$. Since this inequality is true for all $k \in \mathbb{C}$, we equivalently obtain

$$
|\lambda|^{2}\langle a h, h\rangle+2 \mathfrak{R}(\lambda\langle z k, h\rangle)+\langle k b, b\rangle \geq 0
$$

for all $h, k, \lambda \in \mathbb{C}$.

Pisier's proof revisited (I)

Proof of Pisier's Theorem.

Firstly, we prove "(i) \Rightarrow (ii)".
Clearly condition (i) is equivalent to the following inequality:

$$
\langle a h, h\rangle+2 \mathfrak{R}(\langle z k, h\rangle)+\langle k b, b\rangle \geq 0
$$

for all $h, k \in \mathbb{C}$. Since this inequality is true for all $k \in \mathbb{C}$, we equivalently obtain

$$
|\lambda|^{2}\langle a h, h\rangle+2 \mathfrak{R}(\lambda\langle z k, h\rangle)+\langle k b, b\rangle \geq 0
$$

for all $h, k, \lambda \in \mathbb{C}$. If $a=0$, then $\lambda:=-n$, where $n \in \mathbb{N}$ clearly leads via $n \rightarrow \infty$ to $\mathfrak{R}(\langle z k, h\rangle) \leq 0$ for all $k, h \in \mathbb{C}$, and similarly (putting $\lambda:=i n=(-n)(-i), n \in \mathbb{N})$, we obtain $\mathfrak{I}(\langle z k, h\rangle) \leq 0$ for all $k, h \in \mathbb{C}$. Consequently, $z=0$ if $a=0$. In particular, (ii) is satisfied.

Pisier's proof revisited (II)

Proof of Pisier's Theorem ctd.
Now assume that $a>0$. Clearly, (ii) follows if $h=0$. So, let us assume that $h \neq 0$. Since by assumption $a>0$, we also have $\langle a h, h\rangle=|h|^{2} a>0$. Hence, $\lambda:=-\frac{\overline{\langle z k, h\rangle}}{\langle a h, h\rangle}$ is well-defined. A remaining (yet elementary) calculation directly leads to statement (ii).

Pisier's proof revisited (II)

Proof of Pisier's Theorem ctd.
Now assume that $a>0$. Clearly, (ii) follows if $h=0$. So, let us assume that $h \neq 0$. Since by assumption $a>0$, we also have $\left.\langle a h, h\rangle=|h|^{2} a\right\rangle 0$. Hence, $\lambda:=-\frac{\frac{|z k, h\rangle}{\langle a h, h\rangle}}{4}$ is well-defined. A remaining (yet elementary) calculation directly leads to statement (ii).

We now are going to prove "(ii) \Rightarrow (i)" (yet without a direct application of the arithmetic-geometric mean inequality).

Pisier's proof revisited (II)

Proof of Pisier's Theorem ctd.
Now assume that $a>0$. Clearly, (ii) follows if $h=0$. So, let us assume that $h \neq 0$. Since by assumption $a>0$, we also have $\left.\langle a h, h\rangle=|h|^{2} a\right\rangle 0$. Hence, $\lambda:=-\frac{\left\lvert\, \frac{|z k, h\rangle}{\langle a h, h\rangle}\right.}{\text { is well-defined. A }}$ remaining (yet elementary) calculation directly leads to statement (ii).

We now are going to prove "(ii) \Rightarrow (i)" (yet without a direct application of the arithmetic-geometric mean inequality).

To this end, we continue with a lemma - which is of its own interest - and easy to prove. It namely generalises the arithmetic-geometric mean inequality.

Pisier's proof revisited (III)

Lemma
Let α and β be non-negative real numbers such that $\alpha>0$. Consider the function $f_{\alpha, \beta}:(0, \infty) \longrightarrow[0, \infty)$, defined through

$$
f_{\alpha, \beta}(s):=s^{2} \alpha+\frac{1}{s^{2}} \beta \quad(s>0) .
$$

Then $f_{\alpha, \beta}$ is a smooth function which attains its global minimum at $s^{*}:=\sqrt[4]{\frac{\beta}{\alpha}}$, given by

$$
f_{\alpha, \beta}\left(s^{*}\right)=2 \sqrt{\alpha} \sqrt{\beta} .
$$

Pisier's proof revisited (IV)

Remark
Notice that $f_{\alpha, \beta}\left(\left(s^{*}\right)^{2}\right) \stackrel{(!)}{=} \alpha+\beta=f_{\alpha, \beta}(1)$.

Pisier's proof revisited (IV)

Remark
Notice that $f_{\alpha, \beta}\left(\left(s^{*}\right)^{2}\right) \stackrel{(!)}{=} \alpha+\beta=f_{\alpha, \beta}(1)$.
Proof of Pisier's Theorem ctd.
Let $h, k \in \mathbb{C}$ arbitrary. Put $\alpha:=\langle a h, h\rangle$ and $\beta:=\langle k b, b\rangle$.

Pisier's proof revisited (IV)

Remark

Notice that $f_{\alpha, \beta}\left(\left(s^{*}\right)^{2}\right) \stackrel{(!)}{=} \alpha+\beta=f_{\alpha, \beta}(1)$.
Proof of Pisier's Theorem ctd.
Let $h, k \in \mathbb{C}$ arbitrary. Put $\alpha:=\langle a h, h\rangle$ and $\beta:=\langle k b, b\rangle$. If $\alpha\rangle 0$, our assumption (ii) and the previous lemma therefore imply that

$$
\begin{aligned}
|\langle z k, h\rangle| & \leq \sqrt{\langle a h, h\rangle} \cdot \sqrt{\langle k b, b\rangle} \\
& =\frac{1}{2} f_{\alpha, \beta}\left(s^{*}\right) \\
& \leq \frac{1}{2} f_{\alpha, \beta}(1)=\frac{1}{2}(\langle a h, h\rangle+\langle k b, b\rangle) .
\end{aligned}
$$

Thus,

$$
|\langle z k, h\rangle| \leq \frac{1}{2}(\langle a h, h\rangle+\langle k b, b\rangle)
$$

Pisier's proof revisited (V)

Proof of Pisier's Theorem ctd.
Obviously, that inequality trivially is true if $\alpha=0$ (due to our assumption (ii), and since $b \geq 0$). Consequently, for all $h, k \in \mathbb{C}$ we have

$$
|\mathfrak{R}(\langle z k, h\rangle)| \leq|\langle z k, h\rangle| \leq \frac{1}{2}(\langle a h, h\rangle+\langle k b, b\rangle),
$$

implying that in particular

$$
-(\langle a h, h\rangle+\langle k b, b\rangle) \leq 2 \mathfrak{R}(\langle z k, h\rangle)
$$

which clearly is equivalent to condition (i).

Pisier's proof revisited (V)

Proof of Pisier's Theorem ctd.
Obviously, that inequality trivially is true if $\alpha=0$ (due to our assumption (ii), and since $b \geq 0$). Consequently, for all $h, k \in \mathbb{C}$ we have

$$
|\mathfrak{R}(\langle z k, h\rangle)| \leq|\langle z k, h\rangle| \leq \frac{1}{2}(\langle a h, h\rangle+\langle k b, b\rangle),
$$

implying that in particular

$$
-(\langle a h, h\rangle+\langle k b, b\rangle) \leq 2 \mathfrak{R}(\langle z k, h\rangle)
$$

which clearly is equivalent to condition (i).
By mimicking the structure of this proof, we similarly obtain a further important result:

On psd block matrices I

Theorem

Let $m, n \in \mathbb{N}$ and $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. Let $A \in \mathbb{M}(m \times m ; \mathbb{F})$ and $B \in \mathbb{M}(n \times n ; \mathbb{F})$ be positive semidefinite matrices. Let
$Z \in \mathbb{M}(m \times n ; \mathbb{F})$. TFAE
(i) $\left(\begin{array}{cc}A & Z \\ Z^{*} & B\end{array}\right)$ is positive semidefinite.
(ii) $|\langle Z h, k\rangle| \leq \sqrt{\langle A h, h\rangle} \cdot \sqrt{\langle B k, k\rangle}=\left\|A^{1 / 2} h\right\| \cdot\left\|B^{1 / 2} k\right\|$ for all $(h, k) \in \mathbb{F}^{m} \times \mathbb{F}^{n}$.
In particular, if $A=0$ and (i) holds, then $Z=0$.

On psd block matrices II

Corollary
Let $m, n \in \mathbb{N}, \alpha \geq 0$ and $Z \in \mathbb{M}(m \times n ; \mathbb{R})$. TFAE
(i) $\left(\begin{array}{cc}\alpha E_{m} & Z \\ Z^{*} & \alpha E_{n}\end{array}\right)$ is positive semidefinite.
(ii) $\|Z\| \leq \alpha$.

Here, $\|Z\|:=\sup \{\|Z u\|:\|u\|=1\}$ denotes the standard operator norm of Z.

Norm of the Schur multiplier of a positive semidefinite matrix I

Let $n \in \mathbb{N}$ and $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. Next, we are going to work with the set of all those $n \times n$-matrices which canonically arise from the normed vector space $\mathcal{B}\left(l_{2}^{n}\right)$ of all bounded linear operators on $l_{2}^{n}:=\left(\mathbb{F}^{n},\|\cdot\|_{2}\right)$.

Norm of the Schur multiplier of a positive semidefinite matrix I

Let $n \in \mathbb{N}$ and $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. Next, we are going to work with the set of all those $n \times n$-matrices which canonically arise from the normed vector space $\mathcal{B}\left(l_{2}^{n}\right)$ of all bounded linear operators on $l_{2}^{n}:=\left(\mathbb{F}^{n},\|\cdot\|_{2}\right)$.
Let $A \in \mathbb{M}(n \times n ; \mathbb{F})$. Consider the Schur multiplier $S_{A}: \mathcal{B}\left(l_{2}^{n}\right) \longrightarrow \mathcal{B}\left(l_{2}^{n}\right)$, defined as

$$
S_{A}(B):=A * B \quad\left(B \in \mathcal{B}\left(l_{2}^{n}\right)\right),
$$

where $(A * B)_{i j}:=A_{i j} B_{i j}$ for all $i, j \in[n]$ (Schur multiplication).

Norm of the Schur multiplier of a positive semidefinite matrix I

Let $n \in \mathbb{N}$ and $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. Next, we are going to work with the set of all those $n \times n$-matrices which canonically arise from the normed vector space $\mathcal{B}\left(l_{2}^{n}\right)$ of all bounded linear operators on $l_{2}^{n}:=\left(\mathbb{F}^{n},\|\cdot\|_{2}\right)$.
Let $A \in \mathbb{M}(n \times n ; \mathbb{F})$. Consider the Schur multiplier $S_{A}: \mathcal{B}\left(l_{2}^{n}\right) \longrightarrow \mathcal{B}\left(l_{2}^{n}\right)$, defined as

$$
S_{A}(B):=A * B \quad\left(B \in \mathcal{B}\left(l_{2}^{n}\right)\right),
$$

where $(A * B)_{i j}:=A_{i j} B_{i j}$ for all $i, j \in[n]$ (Schur multiplication).

Proposition

Let $n \in \mathbb{N}$ and $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. Let $A \in \mathbb{M}(n \times n ; \mathbb{F})$ be positive semidefinite.

Norm of the Schur multiplier of a positive semidefinite matrix I

Let $n \in \mathbb{N}$ and $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. Next, we are going to work with the set of all those $n \times n$-matrices which canonically arise from the normed vector space $\mathcal{B}\left(l_{2}^{n}\right)$ of all bounded linear operators on $l_{2}^{n}:=\left(\mathbb{F}^{n},\|\cdot\|_{2}\right)$.
Let $A \in \mathbb{M}(n \times n ; \mathbb{F})$. Consider the Schur multiplier $S_{A}: \mathcal{B}\left(l_{2}^{n}\right) \longrightarrow \mathcal{B}\left(l_{2}^{n}\right)$, defined as

$$
S_{A}(B):=A * B \quad\left(B \in \mathcal{B}\left(l_{2}^{n}\right)\right),
$$

where $(A * B)_{i j}:=A_{i j} B_{i j}$ for all $i, j \in[n]$ (Schur multiplication).

Proposition

Let $n \in \mathbb{N}$ and $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. Let $A \in \mathbb{M}(n \times n ; \mathbb{F})$ be positive semidefinite. Then

$$
\left\|S_{A}\right\|=\max \left\{A_{i i}: i \in[n]\right\} .
$$

Norm of the Schur multiplier of a positive semidefinite matrix II

Proof.
Put $\alpha:=\max \left\{A_{i i}: i \in[n]\right\}$.

Norm of the Schur multiplier of a positive semidefinite matrix II

Proof.
Put $\alpha:=\max \left\{A_{i i}: i \in[n]\right\}$. Firstly, we recognise that

$$
\left\|A * E_{n}\right\|=\|\operatorname{diag}(A)\|=\alpha
$$

implying that $\alpha=\left\|A * E_{n}\right\| \leq\left\|S_{A}\right\|$.

Norm of the Schur multiplier of a positive semidefinite matrix II

Proof.
Put $\alpha:=\max \left\{A_{i i}: i \in[n]\right\}$. Firstly, we recognise that

$$
\left\|A * E_{n}\right\|=\|\operatorname{diag}(A)\|=\alpha
$$

implying that $\alpha=\left\|A * E_{n}\right\| \leq\left\|S_{A}\right\|$. Next, observe that both, the matrix $\alpha E_{n}-A * E_{n}$ and the block matrix $\left(\begin{array}{cc}A & A \\ A^{*} & A\end{array}\right)=\left(\begin{array}{cc}A & A \\ A & A\end{array}\right)$ are positive semidefinite (why?).

Norm of the Schur multiplier of a positive semidefinite matrix II

Proof.
Put $\alpha:=\max \left\{A_{i i}: i \in[n]\right\}$. Firstly, we recognise that

$$
\left\|A * E_{n}\right\|=\|\operatorname{diag}(A)\|=\alpha
$$

implying that $\alpha=\left\|A * E_{n}\right\| \leq\left\|S_{A}\right\|$. Next, observe that both, the matrix $\alpha E_{n}-A * E_{n}$ and the block matrix $\left(\begin{array}{cc}A & A \\ A^{*} & A\end{array}\right)=\left(\begin{array}{cc}A & A \\ A & A\end{array}\right)$ are positive semidefinite (why?). Let $B \in \mathbb{M}(n \times n ; \mathbb{F})$ so that $\|B\| \leq 1$.

Norm of the Schur multiplier of a positive semidefinite matrix II

Proof.
Put $\alpha:=\max \left\{A_{i i}: i \in[n]\right\}$. Firstly, we recognise that

$$
\left\|A * E_{n}\right\|=\|\operatorname{diag}(A)\|=\alpha
$$

implying that $\alpha=\left\|A * E_{n}\right\| \leq\left\|S_{A}\right\|$. Next, observe that both, the matrix $\alpha E_{n}-A * E_{n}$ and the block matrix $\left(\begin{array}{cc}A & A \\ A^{*} & A\end{array}\right)=\left(\begin{array}{cc}A & A \\ A & A\end{array}\right)$ are positive semidefinite (why?). Let $B \in \mathbb{M}(n \times n ; \mathbb{F})$ so that $\|B\| \leq 1$. Then
$\left(\begin{array}{cc}\alpha E_{n} & A * B \\ (A * B)^{*} & \alpha E_{n}\end{array}\right)$

Norm of the Schur multiplier of a positive semidefinite matrix II

Proof.
Put $\alpha:=\max \left\{A_{i i}: i \in[n]\right\}$. Firstly, we recognise that

$$
\left\|A * E_{n}\right\|=\|\operatorname{diag}(A)\|=\alpha
$$

implying that $\alpha=\left\|A * E_{n}\right\| \leq\left\|S_{A}\right\|$. Next, observe that both, the matrix $\alpha E_{n}-A * E_{n}$ and the block matrix $\left(\begin{array}{cc}A & A \\ A^{*} & A\end{array}\right)=\left(\begin{array}{cc}A & A \\ A & A\end{array}\right)$ are positive semidefinite (why?). Let $B \in \mathbb{M}(n \times n ; \mathbb{F})$ so that $\|B\| \leq 1$. Then
$\left(\begin{array}{cc}\alpha E_{n} & A * B \\ (A * B)^{*} & \alpha E_{n}\end{array}\right) \stackrel{(!)}{=}\left(\begin{array}{cc}\alpha E_{n}-A * E_{n} & 0 \\ 0 & \alpha E_{n}-A * E_{n}\end{array}\right)+\left(\begin{array}{cc}A * E_{n} & A * B \\ A * B^{*} & A * E_{n}\end{array}\right)$

Norm of the Schur multiplier of a positive semidefinite matrix III

Proof ctd.
Consequently,
$\left(\begin{array}{cc}\alpha E_{n} & A * B \\ (A * B)^{*} & \alpha E_{n}\end{array}\right)$

Norm of the Schur multiplier of a positive semidefinite matrix III

Proof ctd.
Consequently,
$\left(\begin{array}{cc}\alpha E_{n} & A * B \\ (A * B)^{*} & \alpha E_{n}\end{array}\right)=\left(\begin{array}{cc}\alpha E_{n}-A * E_{n} & 0 \\ 0 & \alpha E_{n}-A * E_{n}\end{array}\right)+\left(\begin{array}{cc}A & A \\ A & A\end{array}\right) *\left(\begin{array}{cc}E_{n} & B \\ B^{*} & E_{n}\end{array}\right)$
is a sum of two positive semidefinite matrices (why?) and hence positive semidefinite, too.

Norm of the Schur multiplier of a positive semidefinite matrix III

Proof ctd.
Consequently,
$\left(\begin{array}{cc}\alpha E_{n} & A * B \\ (A * B)^{*} & \alpha E_{n}\end{array}\right)=\left(\begin{array}{cc}\alpha E_{n}-A * E_{n} & 0 \\ 0 & \alpha E_{n}-A * E_{n}\end{array}\right)+\left(\begin{array}{cc}A & A \\ A & A\end{array}\right) *\left(\begin{array}{cc}E_{n} & B \\ B^{*} & E_{n}\end{array}\right)$
is a sum of two positive semidefinite matrices (why?) and hence positive semidefinite, too. Due to the last corollary (to
Pisier's Theorem applied to the block matrix case) it follows that $\|A * B\| \leq \alpha$. Hence, $\left\|S_{A}\right\| \leq \alpha$, and the claim follows.

Norm of the Schur multiplier of a positive semidefinite matrix IV

It is well-known that in general $\left\|S_{B}\right\| \leq\|B\|$ for all $B \in \mathbb{M}(n \times n ; \mathbb{F})$. Thus, another interesting observation is the following one:

Norm of the Schur multiplier of a positive semidefinite matrix IV

It is well-known that in general $\left\|S_{B}\right\| \leq\|B\|$ for all $B \in \mathbb{M}(n \times n ; \mathbb{F})$. Thus, another interesting observation is the following one:

Corollary
Let $n \in \mathbb{N}$ and $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$. Let $B \in \mathbb{M}(n \times n ; \mathbb{F})$. TFAE
(i) $\left(\begin{array}{cc}\left\|S_{B}\right\| E_{n} & B \\ B^{*} & \left\|S_{B}\right\| E_{n}\end{array}\right)$ is positive semidefinite.
(ii) $\left\|S_{B}\right\|=\|B\|$.

