
A result of Pisier in the theory of
operator spaces

Theorem (Pisier (2011))
Let a,b be non-negative real numbers. Let z ∈ C. TFAE

(i) (a z
z b

) is positive semidefinite.

(ii) ∣⟨zk,h⟩∣ ≤
√

⟨ah,h⟩ ⋅
√

⟨kb,b⟩ for all h, k ∈ C.
(Here, ⟨u, v⟩ ∶= uv for all u, v ∈ C.)

Corollary
Let z ∈ C. TFAE

(i) (1 z
z 1

) is positive semidefinite.

(ii) ∣z∣ ≤ 1.
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Pisier’s proof revisited (I)

Proof of Pisier’s Theorem.
Firstly, we prove “(i) ⇒ (ii)”.

Clearly condition (i) is equivalent to the following inequality:

⟨ah,h⟩ + 2R(⟨zk,h⟩) + ⟨kb,b⟩ ≥ 0

for all h, k ∈ C. Since this inequality is true for all k ∈ C, we
equivalently obtain

∣λ∣2⟨ah,h⟩ + 2R(λ⟨zk,h⟩) + ⟨kb,b⟩ ≥ 0

for all h, k, λ ∈ C. If a = 0, then λ ∶= −n, where n ∈ N clearly leads
via n→∞ to R (⟨zk,h⟩) ≤ 0 for all k,h ∈ C, and similarly (putting
λ ∶= i n = (−n) (−i),n ∈ N), we obtain I (⟨zk,h⟩) ≤ 0 for all k,h ∈ C.
Consequently, z = 0 if a = 0. In particular, (ii) is satisfied.
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Pisier’s proof revisited (II)

Proof of Pisier’s Theorem ctd.
Now assume that a > 0. Clearly, (ii) follows if h = 0. So, let us
assume that h /= 0. Since by assumption a > 0, we also have
⟨ah,h⟩ = ∣h∣2a > 0. Hence, λ ∶= − ⟨zk,h⟩

⟨ah,h⟩ is well-defined. A
remaining (yet elementary) calculation directly leads to
statement (ii).

We now are going to prove “(ii) ⇒ (i)” (yet without a direct
application of the arithmetic-geometric mean inequality).

To this end, we continue with a lemma - which is of its own
interest - and easy to prove. It namely generalises the
arithmetic-geometric mean inequality.



Pisier’s proof revisited (II)

Proof of Pisier’s Theorem ctd.
Now assume that a > 0. Clearly, (ii) follows if h = 0. So, let us
assume that h /= 0. Since by assumption a > 0, we also have
⟨ah,h⟩ = ∣h∣2a > 0. Hence, λ ∶= − ⟨zk,h⟩

⟨ah,h⟩ is well-defined. A
remaining (yet elementary) calculation directly leads to
statement (ii).

We now are going to prove “(ii) ⇒ (i)” (yet without a direct
application of the arithmetic-geometric mean inequality).

To this end, we continue with a lemma - which is of its own
interest - and easy to prove. It namely generalises the
arithmetic-geometric mean inequality.



Pisier’s proof revisited (II)

Proof of Pisier’s Theorem ctd.
Now assume that a > 0. Clearly, (ii) follows if h = 0. So, let us
assume that h /= 0. Since by assumption a > 0, we also have
⟨ah,h⟩ = ∣h∣2a > 0. Hence, λ ∶= − ⟨zk,h⟩

⟨ah,h⟩ is well-defined. A
remaining (yet elementary) calculation directly leads to
statement (ii).

We now are going to prove “(ii) ⇒ (i)” (yet without a direct
application of the arithmetic-geometric mean inequality).

To this end, we continue with a lemma - which is of its own
interest - and easy to prove. It namely generalises the
arithmetic-geometric mean inequality.



Pisier’s proof revisited (III)

Lemma
Let α and β be non-negative real numbers such that α > 0.
Consider the function fα,β ∶ (0,∞) Ð→ [0,∞), defined through

fα,β(s) ∶= s2α + 1
s2β (s > 0) .

Then fα,β is a smooth function which attains its global minimum

at s∗ ∶= 4
√

β
α , given by

fα,β(s∗) = 2
√
α
√
β .



Pisier’s proof revisited (IV)

Remark
Notice that fα,β((s∗)2) (!)= α + β = fα,β(1).

Proof of Pisier’s Theorem ctd.
Let h, k ∈ C arbitrary. Put α ∶= ⟨ah,h⟩ and β ∶= ⟨kb,b⟩. If α > 0, our
assumption (ii) and the previous lemma therefore imply that

∣⟨zk,h⟩∣ ≤
√

⟨ah,h⟩ ⋅
√

⟨kb,b⟩

= 1
2

fα,β(s∗)

≤ 1
2

fα,β(1) = 1
2
(⟨ah,h⟩ + ⟨kb,b⟩) .

Thus,

∣⟨zk,h⟩∣ ≤ 1
2
(⟨ah,h⟩ + ⟨kb,b⟩)
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Pisier’s proof revisited (V)

Proof of Pisier’s Theorem ctd.
Obviously, that inequality trivially is true if α = 0 (due to our
assumption (ii), and since b ≥ 0). Consequently, for all h, k ∈ C
we have

∣R(⟨zk,h⟩)∣ ≤ ∣⟨zk,h⟩∣ ≤ 1
2
(⟨ah,h⟩ + ⟨kb,b⟩) ,

implying that in particular

−(⟨ah,h⟩ + ⟨kb,b⟩) ≤ 2R(⟨zk,h⟩)

which clearly is equivalent to condition (i).

By mimicking the structure of this proof, we similarly obtain a
further important result:
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On psd block matrices I

Theorem
Let m,n ∈ N and F ∈ {R,C}. Let A ∈M(m ×m;F) and
B ∈M(n × n;F) be positive semidefinite matrices. Let
Z ∈M(m × n;F). TFAE

(i) ( A Z
Z∗ B

) is positive semidefinite.

(ii) ∣⟨Zh, k⟩∣ ≤
√

⟨Ah,h⟩ ⋅
√

⟨Bk, k⟩ = ∥A1/2h∥ ⋅ ∥B1/2k∥ for all
(h, k) ∈ Fm × Fn.

In particular, if A = 0 and (i) holds, then Z = 0.



On psd block matrices II

Corollary
Let m,n ∈ N, α ≥ 0 and Z ∈M(m × n;R). TFAE

(i) (αEm Z
Z∗ αEn

) is positive semidefinite.

(ii) ∥Z∥ ≤ α.
Here, ∥Z∥ ∶= sup{∥Zu∥ ∶ ∥u∥ = 1} denotes the standard operator
norm of Z.



Norm of the Schur multiplier of a
positive semidefinite matrix I

Let n ∈ N and F ∈ {R,C}. Next, we are going to work with the
set of all those n × n-matrices which canonically arise from the
normed vector space B (ln2) of all bounded linear operators on
ln2 ∶= (Fn, ∥ ⋅ ∥2).

Let A ∈M(n × n;F). Consider the Schur multiplier
SA ∶ B(ln2) Ð→ B(ln2), defined as

SA(B) ∶= A ∗ B (B ∈ B(ln2)),

where (A ∗ B)ij ∶= Aij Bij for all i, j ∈ [n] (Schur multiplication).

Proposition
Let n ∈ N and F ∈ {R,C}. Let A ∈M(n × n;F) be positive
semidefinite. Then

∥SA∥ = max{Aii ∶ i ∈ [n]}.
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Norm of the Schur multiplier of a
positive semidefinite matrix II

Proof.
Put α ∶= max{Aii ∶ i ∈ [n]}.

Firstly, we recognise that

∥A ∗ En∥ = ∥diag(A)∥ = α,

implying that α = ∥A ∗ En∥ ≤ ∥SA∥. Next, observe that both, the

matrix αEn − A ∗ En and the block matrix ( A A
A∗ A

) = (A A
A A

) are

positive semidefinite (why?). Let B ∈M(n × n;F) so that ∥B∥ ≤ 1.
Then

( αEn A ∗ B
(A ∗ B)∗ αEn

) (!)= (αEn − A ∗ En 0
0 αEn − A ∗ En

)+(A ∗ En A ∗ B
A ∗ B∗ A ∗ En

)
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Norm of the Schur multiplier of a
positive semidefinite matrix III

Proof ctd.
Consequently,

( αEn A ∗ B
(A ∗ B)∗ αEn

)

= (αEn − A ∗ En 0
0 αEn − A ∗ En

)+(A A
A A

)∗(En B
B∗ En

)

is a sum of two positive semidefinite matrices (why?) and
hence positive semidefinite, too. Due to the last corollary (to
Pisier’s Theorem applied to the block matrix case) it follows that
∥A ∗ B∥ ≤ α. Hence, ∥SA∥ ≤ α, and the claim follows.
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Norm of the Schur multiplier of a
positive semidefinite matrix IV

It is well-known that in general ∥SB∥ ≤ ∥B∥ for all B ∈M(n × n;F).
Thus, another interesting observation is the following one:

Corollary
Let n ∈ N and F ∈ {R,C}. Let B ∈M(n × n;F). TFAE

(i) (∥SB∥En B
B∗ ∥SB∥En

) is positive semidefinite.

(ii) ∥SB∥ = ∥B∥.
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