A result of Pisier in the theory of
operator spaces

Theorem (Pisier (2011))
Let a,b be non-negative real numbers. Letz e C. TFAE

b
(it) [(zk,h)| < /{ah,h)-~/{kb,b) for all h,k € C.
(Here, (u,v) :=uv for all u,v e C.)
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Corollary
LetzeC. TFAE

(i) (; i) is positive semidefinite.

(ii) |zl < 1.
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Proof of Pisier’s Theorem.
Firstly, we prove “(i) = (ii)".
Clearly condition (i) is equivalent to the following inequality:

(ah,h) +2R((zk, h)) + (kb,b) > 0

for all h,k € C. Since this inequality is true for all k € C, we
equivalently obtain

IN*(ah, h) + 2R(\(zk, b)) + (kb,b) > 0

forall h,k, A € C. If a =0, then X\ := —n, where n € N clearly leads
via n - oo to R ((zk, h)) <0 for all k,h € C, and similarly (putting
A:=in=(-n)(-i),n € N), we obtain J ((zk,h)) <0 for all k,h € C.
Consequently, z =0 if a = 0. In particular, (ii) is satisfied.
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Proof of Pisier's Theorem ctd.
Now assume that a > 0. Clearly, (ii) follows if 2 = 0. So, let us

assume that 4 # 0. Since by assumption a > 0, we also have
(ah, h) = |hPa > 0. Hence, A := —{44} is well-defined. A
remaining (yet elementary) calculation directly leads to

statement (ii).
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Proof of Pisier's Theorem ctd.
Now assume that a > 0. Clearly, (ii) follows if 2 = 0. So, let us
assume that 4 # 0. Since by assumption a > 0, we also have

(ah, h) = |hPa > 0. Hence, A := —{44} is well-defined. A

remaining (yet elementary) calculation directly leads to
statement (ii).

We now are going to prove “(ii) = (i)” (yet without a direct
application of the arithmetic-geometric mean inequality).

To this end, we continue with a lemma - which is of its own
interest - and easy to prove. It namely generalises the
arithmetic-geometric mean inequality.



Pisier’s proof revisited (lII)

Lemma
Let o and 3 be non-negative real numbers such that o > 0.
Consider the function f,, g : (0,00) — [0, o), defined through

fa,p(s) = s2a+s126 (s>0).

Thenf, s is a smooth function which attains its global minimum
ats* := </§: given by

fap(s™) =2/an/B.
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Pisier’s proof revisited (V)
Remark '
Notice that £, 5((s*)2) © a + B = fa 5(1).

Proof of Pisier’s Theorem ctd.
Let h,k e C arbitrary. Put « := (ah,h) and § := (kb,b). If o > 0, our
assumption (ii) and the previous lemma therefore imply that

((zk,h)| < ~/{ah,h)-\/(kb,b)
= %fa,ﬁ(s*)

%faﬂ(l) = %((ah,h) + (kb, b)) .

IA

Thus, X
(zk, h)| < E(<ah,h) + (kb, b))
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Proof of Pisier’s Theorem ctd.

Obviously, that inequality trivially is true if « = 0 (due to our
assumption (ii), and since b > 0). Consequently, for all 4,k € C
we have
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implying that in particular
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Pisier’s proof revisited (V)

Proof of Pisier’s Theorem ctd.

Obviously, that inequality trivially is true if a = 0 (due to our
assumption (ii), and since b > 0). Consequently, for all 4,k € C
we have

19R((zk, h))| < |(zk, h)| < %((ah,h} + (kb, b)),
implying that in particular
—((ah, h) + (kb, b)) < 2R((zk, h))

which clearly is equivalent to condition (i). O

By mimicking the structure of this proof, we similarly obtain a
further important result:



On psd block matrices |

Theorem
Letm,neN andF ¢ {R,C}. LetA e M(m x m;F) and
B e M(n x n;F) be positive semidefinite matrices. Let
Z e M(m xn;F). TFAE
N [A Z). - o
(i) ( 7+ B) is positive semidefinite.
(i) [(Zh, k)| < \/{Ah,h) - \/(Bk,k) = |AY?h| - | B'*k]| for all
(h,k) e F™ x F".

In particular, if A = 0 and (i) holds, then Z = 0.




On psd block matrices Il

Corollary
Letm,neN, a>0andZeM(mxn;R). TFAE

N (aE, Z . . g
(i) ( P aEn) is positive semidefinite.

(i) 1] < a.

Here, |Z| := sup{|Zul| : |u| = 1} denotes the standard operator
norm of Z.
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positive semidefinite matrix |
Letn e Nand F € {R,C}. Next, we are going to work with the
set of all those n x n-matrices which canonically arise from the
normed vector space B (1) of all bounded linear operators on

Iy = (B |- ]2)-
Let A € M(n x n; F). Consider the Schur multiplier
Sa: B(13) — B(13), defined as
Sa(B):=A*B (BeB(13)),
where (A = B);; := A;j B for all i, j € [n] (Schur multiplication).

Proposition
LetneN andF ¢ {R,C}. Let A e M(n x n;F) be positive
semidefinite. Then

[Sa] = max{A; : i € [n]}.
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Proof.
Put o := max{A;; : i € [n]}. Firstly, we recognise that
|A * E,| = |[diag(4)] = e,
implying that o = ||A = E,,| < [Sa|. Next, observe that both, the
matrix aE, — A * E, and the block matrix (A A) = (A A) are

A* A A A
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Proof.
Put o := max{A;; : i € [n]}. Firstly, we recognise that
|A + E, | = ||diag(A) | = o,

implying that o = ||A = E,,| < [Sa|. Next, observe that both, the

. . [A A A A
matrix oE,, — A » E,, and the block matrix (A* NE
positive semidefinite (why?). Let B € M(n x n;F) so that |B|| < 1.
Then

ok, Ax*B
(A*B)* «akE,

are
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Proof.
Put o := max{A;; : i € [n]}. Firstly, we recognise that
|A * E,| = |[diag(4)] = e,
implying that o = ||A = E,,| < [Sa|. Next, observe that both, the

matrix «E,, — A * E, and the block matrix (A* Ay_(A A

A+ A" \a a)?€

positive semidefinite (why?). Let B € M(n x n;IF) so that |B| < 1.

Then

0 aE, -AxE,

( ok, A*B) (l)(aEn—A*E,, 0 )+(A*En A*B

(A*B)* «akE,

AxB* AxE,

)
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Proof ctd.
Consequently,

aFE, Ax*B
(A*B)* «aE,
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Proof ctd.
Consequently,

aE, A*B\ (aE,-AxE, 0 (A A (B B
(A*B)* aE, | 0 oE,-A+E, A A] \B* E,
is a sum of two positive semidefinite matrices (why?) and
hence positive semidefinite, too.
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Proof ctd.
Consequently,

aE, A*B\ (aE,-AxE, 0 (A A (B B
(A*B)* aE, | 0 oE,-A+E, A A] \B* E,
is a sum of two positive semidefinite matrices (why?) and
hence positive semidefinite, too. Due to the last corollary (to

Pisier's Theorem applied to the block matrix case) it follows that
|A * B| < a. Hence, |S4]| < «, and the claim follows. O
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It is well-known that in general |Sg| < | B| for all B € M(n x n; F).
Thus, another interesting observation is the following one:
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It is well-known that in general |Sg| < | B| for all B € M(n x n; F).
Thus, another interesting observation is the following one:

Corollary
LetneN andF ¢ {R,C}. Let Be M(n xn;F). TFAE

. (ISs|E. B . . o
[ " is positive semidefinite.
0 ( B [ss|E,) P

(i) 11Ss] = [B]-



