A result of Pisier in the theory of operator spaces

Theorem (Pisier (2011))

Let a, b be non-negative real numbers. Let $z \in \mathbb{C}$. TFAE

(i)
$$\begin{pmatrix} a & z \\ \overline{z} & b \end{pmatrix}$$
 is positive semidefinite.
(ii) $|\langle zk, h \rangle| \le \sqrt{\langle ah, h \rangle} \cdot \sqrt{\langle kb, b \rangle}$ for all $h, k \in \mathbb{C}$.
(Here, $\langle u, v \rangle := u\overline{v}$ for all $u, v \in \mathbb{C}$.)

A result of Pisier in the theory of operator spaces

Theorem (Pisier (2011))

Let a, b be non-negative real numbers. Let $z \in \mathbb{C}$. TFAE

(i)
$$\begin{pmatrix} a & z \\ \overline{z} & b \end{pmatrix}$$
 is positive semidefinite.
(ii) $|\langle zk, h \rangle| \le \sqrt{\langle ah, h \rangle} \cdot \sqrt{\langle kb, b \rangle}$ for all $h, k \in \mathbb{C}$.
(Here, $\langle u, v \rangle := u\overline{v}$ for all $u, v \in \mathbb{C}$.)

Corollary Let $z \in \mathbb{C}$. TFAE (i) $\begin{pmatrix} 1 & z \\ \overline{z} & 1 \end{pmatrix}$ is positive semidefinite. (ii) $|z| \le 1$.

Proof of Pisier's Theorem. Firstly, we prove "(i) \Rightarrow (ii)".

Proof of Pisier's Theorem. Firstly, we prove "(i) \Rightarrow (ii)". Clearly condition (i) is equivalent to the following inequality:

 $\langle ah,h\rangle + 2\Re(\langle zk,h\rangle) + \langle kb,b\rangle \ge 0$

for all $h, k \in \mathbb{C}$.

うして 山田 マイボット ボット シックション

Proof of Pisier's Theorem. Firstly, we prove "(i) \Rightarrow (ii)". Clearly condition (i) is equivalent to the following inequality:

 $\langle ah, h \rangle + 2 \Re (\langle zk, h \rangle) + \langle kb, b \rangle \ge 0$

for all $h, k \in \mathbb{C}$. Since this inequality is true for all $k \in \mathbb{C}$, we equivalently obtain

$$|\lambda|^{2}\langle ah,h\rangle + 2\Re(\lambda\langle zk,h\rangle) + \langle kb,b\rangle \ge 0$$

for all $h, k, \lambda \in \mathbb{C}$.

Proof of Pisier's Theorem. Firstly, we prove "(i) \Rightarrow (ii)". Clearly condition (i) is equivalent to the following inequality:

$$\langle ah,h\rangle + 2\Re(\langle zk,h\rangle) + \langle kb,b\rangle \ge 0$$

for all $h, k \in \mathbb{C}$. Since this inequality is true for all $k \in \mathbb{C}$, we equivalently obtain

$$|\lambda|^{2}\langle ah,h\rangle + 2\Re(\lambda\langle zk,h\rangle) + \langle kb,b\rangle \ge 0$$

for all $h, k, \lambda \in \mathbb{C}$. If a = 0, then $\lambda := -n$, where $n \in \mathbb{N}$ clearly leads via $n \to \infty$ to $\Re(\langle zk, h \rangle) \le 0$ for all $k, h \in \mathbb{C}$, and similarly (putting $\lambda := in = (-n)(-i), n \in \mathbb{N}$), we obtain $\Im(\langle zk, h \rangle) \le 0$ for all $k, h \in \mathbb{C}$. Consequently, z = 0 if a = 0. In particular, (ii) is satisfied.

うつん 川 エー・エー・ エー・ ひゃう

Proof of Pisier's Theorem ctd.

Now assume that a > 0. Clearly, (ii) follows if h = 0. So, let us assume that $h \neq 0$. Since by assumption a > 0, we also have $\langle ah, h \rangle = |h|^2 a > 0$. Hence, $\lambda := -\frac{\langle zk, h \rangle}{\langle ah, h \rangle}$ is well-defined. A remaining (yet elementary) calculation directly leads to statement (ii).

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof of Pisier's Theorem ctd.

Now assume that a > 0. Clearly, (ii) follows if h = 0. So, let us assume that $h \neq 0$. Since by assumption a > 0, we also have $\langle ah, h \rangle = |h|^2 a > 0$. Hence, $\lambda := -\frac{\langle zk, h \rangle}{\langle ah, h \rangle}$ is well-defined. A remaining (yet elementary) calculation directly leads to statement (ii).

We now are going to prove "(ii) \Rightarrow (i)" (yet without a direct application of the arithmetic-geometric mean inequality).

Proof of Pisier's Theorem ctd.

Now assume that a > 0. Clearly, (ii) follows if h = 0. So, let us assume that $h \neq 0$. Since by assumption a > 0, we also have $\langle ah, h \rangle = |h|^2 a > 0$. Hence, $\lambda := -\frac{\langle zk, h \rangle}{\langle ah, h \rangle}$ is well-defined. A remaining (yet elementary) calculation directly leads to statement (ii).

We now are going to prove "(ii) \Rightarrow (i)" (yet without a direct application of the arithmetic-geometric mean inequality).

To this end, we continue with a lemma - which is of its own interest - and easy to prove. It namely generalises the arithmetic-geometric mean inequality.

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Lemma

Let α and β be non-negative real numbers such that $\alpha > 0$. Consider the function $f_{\alpha,\beta} : (0,\infty) \longrightarrow [0,\infty)$, defined through

$$f_{\alpha,\beta}(s) \coloneqq s^2 \alpha + \frac{1}{s^2} \beta$$
 $(s > 0)$.

Then $f_{\alpha,\beta}$ is a smooth function which attains its global minimum at $s^* := \sqrt[4]{\frac{\beta}{\alpha}}$, given by

$$f_{\alpha,\beta}(s^*)=2\sqrt{\alpha}\sqrt{\beta}.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Remark Notice that $f_{\alpha,\beta}((s^*)^2) \stackrel{(!)}{=} \alpha + \beta = f_{\alpha,\beta}(1)$.

うつん 川 エー・エー・ エー・ ひゃう

Remark Notice that $f_{\alpha,\beta}((s^*)^2) \stackrel{(!)}{=} \alpha + \beta = f_{\alpha,\beta}(1)$.

Proof of Pisier's Theorem ctd. Let $h, k \in \mathbb{C}$ arbitrary. Put $\alpha := \langle ah, h \rangle$ and $\beta := \langle kb, b \rangle$.

Remark Notice that $f_{\alpha,\beta}((s^*)^2) \stackrel{(!)}{=} \alpha + \beta = f_{\alpha,\beta}(1)$.

Proof of Pisier's Theorem ctd.

Let $h, k \in \mathbb{C}$ arbitrary. Put $\alpha := \langle ah, h \rangle$ and $\beta := \langle kb, b \rangle$. If $\alpha > 0$, our assumption (ii) and the previous lemma therefore imply that

$$\begin{aligned} |\langle zk,h\rangle| &\leq \sqrt{\langle ah,h\rangle} \cdot \sqrt{\langle kb,b\rangle} \\ &= \frac{1}{2} f_{\alpha,\beta}(s^*) \\ &\leq \frac{1}{2} f_{\alpha,\beta}(1) = \frac{1}{2} (\langle ah,h\rangle + \langle kb,b\rangle) \,. \end{aligned}$$

Thus,

$$|\langle zk,h\rangle| \leq \frac{1}{2} \big(\langle ah,h\rangle + \langle kb,b\rangle\big)$$

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

Proof of Pisier's Theorem ctd.

Obviously, that inequality trivially is true if $\alpha = 0$ (due to our assumption (ii), and since $b \ge 0$). Consequently, for all $h, k \in \mathbb{C}$ we have

$$\left|\Re(\langle zk,h\rangle)\right| \leq \left|\langle zk,h\rangle\right| \leq \frac{1}{2}(\langle ah,h\rangle + \langle kb,b\rangle),$$

implying that in particular

$$-(\langle ah,h\rangle + \langle kb,b\rangle) \leq 2\Re(\langle zk,h\rangle)$$

which clearly is equivalent to condition (i).

Proof of Pisier's Theorem ctd.

Obviously, that inequality trivially is true if $\alpha = 0$ (due to our assumption (ii), and since $b \ge 0$). Consequently, for all $h, k \in \mathbb{C}$ we have

$$\left|\Re(\langle zk,h\rangle)\right| \leq \left|\langle zk,h\rangle\right| \leq \frac{1}{2}(\langle ah,h\rangle + \langle kb,b\rangle),$$

implying that in particular

$$-(\langle ah,h\rangle + \langle kb,b\rangle) \leq 2\Re(\langle zk,h\rangle)$$

which clearly is equivalent to condition (i).

By mimicking the structure of this proof, we similarly obtain a further important result:

On psd block matrices I

<ロト < 理ト < ヨト < ヨト = ヨ = つへつ

Theorem

Let $m, n \in \mathbb{N}$ and $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Let $A \in \mathbb{M}(m \times m; \mathbb{F})$ and $B \in \mathbb{M}(n \times n; \mathbb{F})$ be positive semidefinite matrices. Let $Z \in \mathbb{M}(m \times n; \mathbb{F})$. TFAE

(i)
$$\begin{pmatrix} A & Z \\ Z^* & B \end{pmatrix}$$
 is positive semidefinite.
(ii) $|\langle Zh, k \rangle| \le \sqrt{\langle Ah, h \rangle} \cdot \sqrt{\langle Bk, k \rangle} = ||A^{1/2}h|| \cdot ||B^{1/2}k||$ for all $(h, k) \in \mathbb{F}^m \times \mathbb{F}^n$.

In particular, if A = 0 and (i) holds, then Z = 0.

On psd block matrices II

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Corollary

Let $m, n \in \mathbb{N}$, $\alpha \ge 0$ and $Z \in \mathbb{M}(m \times n; \mathbb{R})$. TFAE

(i)
$$\begin{pmatrix} \alpha E_m & Z \\ Z^* & \alpha E_n \end{pmatrix}$$
 is positive semidefinite.
(ii) $||Z|| \le \alpha$.

Here, $||Z|| := \sup\{||Zu|| : ||u|| = 1\}$ denotes the standard operator norm of *Z*.

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Let $n \in \mathbb{N}$ and $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Next, we are going to work with the set of all those $n \times n$ -matrices which canonically arise from the normed vector space $\mathcal{B}(l_2^n)$ of all bounded linear operators on $l_2^n := (\mathbb{F}^n, \|\cdot\|_2)$.

Let $n \in \mathbb{N}$ and $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Next, we are going to work with the set of all those $n \times n$ -matrices which canonically arise from the normed vector space $\mathcal{B}(l_2^n)$ of all bounded linear operators on $l_2^n := (\mathbb{F}^n, \|\cdot\|_2)$.

Let $A \in \mathbb{M}(n \times n; \mathbb{F})$. Consider the Schur multiplier $S_A : \mathcal{B}(l_2^n) \longrightarrow \mathcal{B}(l_2^n)$, defined as

$$S_A(B) \coloneqq A \star B \quad (B \in \mathcal{B}(l_2^n)),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $(A * B)_{ij} := A_{ij} B_{ij}$ for all $i, j \in [n]$ (Schur multiplication).

Let $n \in \mathbb{N}$ and $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Next, we are going to work with the set of all those $n \times n$ -matrices which canonically arise from the normed vector space $\mathcal{B}(l_2^n)$ of all bounded linear operators on $l_2^n := (\mathbb{F}^n, \|\cdot\|_2)$.

Let $A \in \mathbb{M}(n \times n; \mathbb{F})$. Consider the Schur multiplier $S_A : \mathcal{B}(l_2^n) \longrightarrow \mathcal{B}(l_2^n)$, defined as

$$S_A(B) \coloneqq A \star B \quad (B \in \mathcal{B}(l_2^n)),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $(A * B)_{ij} := A_{ij} B_{ij}$ for all $i, j \in [n]$ (Schur multiplication). Proposition

Let $n \in \mathbb{N}$ and $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Let $A \in \mathbb{M}(n \times n; \mathbb{F})$ be positive semidefinite.

Let $n \in \mathbb{N}$ and $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Next, we are going to work with the set of all those $n \times n$ -matrices which canonically arise from the normed vector space $\mathcal{B}(l_2^n)$ of all bounded linear operators on $l_2^n := (\mathbb{F}^n, \|\cdot\|_2)$.

Let $A \in \mathbb{M}(n \times n; \mathbb{F})$. Consider the Schur multiplier $S_A : \mathcal{B}(l_2^n) \longrightarrow \mathcal{B}(l_2^n)$, defined as

$$S_A(B) \coloneqq A * B \quad (B \in \mathcal{B}(l_2^n)),$$

where $(A * B)_{ij} := A_{ij} B_{ij}$ for all $i, j \in [n]$ (Schur multiplication). Proposition

Let $n \in \mathbb{N}$ and $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Let $A \in \mathbb{M}(n \times n; \mathbb{F})$ be positive semidefinite. Then

$$||S_A|| = \max\{A_{ii} : i \in [n]\}.$$

Proof. Put $\alpha := \max\{A_{ii} : i \in [n]\}.$

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

Proof. Put $\alpha := \max\{A_{ii} : i \in [n]\}$. Firstly, we recognise that

$$\|A * E_n\| = \|\operatorname{diag}(A)\| = \alpha,$$

implying that $\alpha = ||A * E_n|| \le ||S_A||$.

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof. Put $\alpha := \max\{A_{ii} : i \in [n]\}$. Firstly, we recognise that

 $\|A * E_n\| = \|\operatorname{diag}(A)\| = \alpha,$

implying that $\alpha = ||A * E_n|| \le ||S_A||$. Next, observe that both, the matrix $\alpha E_n - A * E_n$ and the block matrix $\begin{pmatrix} A & A \\ A^* & A \end{pmatrix} = \begin{pmatrix} A & A \\ A & A \end{pmatrix}$ are positive semidefinite (why?).

Proof. Put $\alpha := \max\{A_{ii} : i \in [n]\}$. Firstly, we recognise that

 $\|A * E_n\| = \|\operatorname{diag}(A)\| = \alpha,$

implying that $\alpha = ||A * E_n|| \le ||S_A||$. Next, observe that both, the matrix $\alpha E_n - A * E_n$ and the block matrix $\begin{pmatrix} A & A \\ A^* & A \end{pmatrix} = \begin{pmatrix} A & A \\ A & A \end{pmatrix}$ are positive semidefinite (why?). Let $B \in \mathbb{M}(n \times n; \mathbb{F})$ so that $||B|| \le 1$.

(日) (日) (日) (日) (日) (日) (日)

Proof. Put $\alpha := \max\{A_{ii} : i \in [n]\}$. Firstly, we recognise that

 $\|A * E_n\| = \|\operatorname{diag}(A)\| = \alpha,$

implying that $\alpha = ||A * E_n|| \le ||S_A||$. Next, observe that both, the matrix $\alpha E_n - A * E_n$ and the block matrix $\begin{pmatrix} A & A \\ A^* & A \end{pmatrix} = \begin{pmatrix} A & A \\ A & A \end{pmatrix}$ are positive semidefinite (why?). Let $B \in \mathbb{M}(n \times n; \mathbb{F})$ so that $||B|| \le 1$. Then

< ロ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\begin{pmatrix} \alpha E_n & A * B \\ (A * B)^* & \alpha E_n \end{pmatrix}$$

Proof. Put $\alpha := \max\{A_{ii} : i \in [n]\}$. Firstly, we recognise that

 $\|A * E_n\| = \|\operatorname{diag}(A)\| = \alpha,$

implying that $\alpha = ||A * E_n|| \le ||S_A||$. Next, observe that both, the matrix $\alpha E_n - A * E_n$ and the block matrix $\begin{pmatrix} A & A \\ A^* & A \end{pmatrix} = \begin{pmatrix} A & A \\ A & A \end{pmatrix}$ are positive semidefinite (why?). Let $B \in \mathbb{M}(n \times n; \mathbb{F})$ so that $||B|| \le 1$. Then

$$\begin{pmatrix} \alpha E_n & A * B \\ (A * B)^* & \alpha E_n \end{pmatrix} \stackrel{(!)}{=} \begin{pmatrix} \alpha E_n - A * E_n & 0 \\ 0 & \alpha E_n - A * E_n \end{pmatrix} + \begin{pmatrix} A * E_n & A * B \\ A * B^* & A * E_n \end{pmatrix}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Proof ctd. Consequently,

$$\begin{pmatrix} \alpha E_n & A * B \\ (A * B)^* & \alpha E_n \end{pmatrix}$$

Proof ctd. Consequently,

$$\begin{pmatrix} \alpha E_n & A * B \\ (A * B)^* & \alpha E_n \end{pmatrix} = \begin{pmatrix} \alpha E_n - A * E_n & 0 \\ 0 & \alpha E_n - A * E_n \end{pmatrix} + \begin{pmatrix} A & A \\ A & A \end{pmatrix} * \begin{pmatrix} E_n & B \\ B^* & E_n \end{pmatrix}$$

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

is a sum of two positive semidefinite matrices (why?) and hence positive semidefinite, too.

Proof ctd. Consequently,

$$\begin{pmatrix} \alpha E_n & A * B \\ (A * B)^* & \alpha E_n \end{pmatrix} = \begin{pmatrix} \alpha E_n - A * E_n & 0 \\ 0 & \alpha E_n - A * E_n \end{pmatrix} + \begin{pmatrix} A & A \\ A & A \end{pmatrix} * \begin{pmatrix} E_n & B \\ B^* & E_n \end{pmatrix}$$

is a sum of two positive semidefinite matrices (why?) and hence positive semidefinite, too. Due to the last corollary (to Pisier's Theorem applied to the block matrix case) it follows that $||A * B|| \le \alpha$. Hence, $||S_A|| \le \alpha$, and the claim follows.

▲ロト ▲ 理 ト ▲ 三 ト ▲ 三 ト つ Q (~

It is well-known that in general $||S_B|| \le ||B||$ for all $B \in \mathbb{M}(n \times n; \mathbb{F})$. Thus, another interesting observation is the following one:

うつん 川 エー・エー・ エー・ ひゃう

It is well-known that in general $||S_B|| \le ||B||$ for all $B \in \mathbb{M}(n \times n; \mathbb{F})$. Thus, another interesting observation is the following one:

Corollary Let $n \in \mathbb{N}$ and $\mathbb{F} \in \{\mathbb{R}, \mathbb{C}\}$. Let $B \in \mathbb{M}(n \times n; \mathbb{F})$. TFAE (i) $\begin{pmatrix} \|S_B\|E_n & B\\ B^* & \|S_B\|E_n \end{pmatrix}$ is positive semidefinite. (ii) $\|S_B\| = \|B\|$.