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Abstract

Credit risk is the distribution of financial loss due to a broken financial agree-
ment, for example failure to pay interest or principal on a loan or bond. It pervades
virtually all financial transactions, and therefore plays a significant role in financial
markets. A credit derivative is a security that allows investors to transfer credit
risk to other investors who are willing to take it. By facilitating the allocation of
risk, these instruments have an important economic function. Yet they have hit the
headlines recently. This paper gives an overview of credit derivatives. It discusses
the mechanics of standard contracts, describes their application, and outlines the
mathematical challenges associated with their analysis.
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1 Introduction

The financial crisis in the United States has repercussions on a global scale. Credit deriva-

tives, especially collateralized debt obligations, have been pictured as one of the main

culprits. This article provides an overview of credit derivatives. It discusses the mechan-

ics of standard contracts, describes their application, and highlights the mathematical

challenges associated with their analysis.

A credit derivative is a financial instrument whose cash flows are linked to the finan-

cial losses due to default in a pool of reference credit securities such as loans, mortgages,

bonds issued by corporations or governments, or even other credit derivatives. The term

“default” refers to an event that adversely affects the position of an investor in the refer-

ence securities. Examples include bankruptcy, failure to pay interest or principal according

to schedule, debt moratorium, and restructuring of an issuer.

Credit derivatives facilitate the trading of credit risk, and therefore the allocation

of risk among market participants. They resemble bilateral insurance contracts, with one

party buying protection against default losses, and the other party selling that protection.

This structure enables investors to take different sides and implement various investment

and hedging strategies. For example, a fixed income investor may buy protection to hedge

the default risk associated with a corporate bond position. An insurance company or

hedge fund may act as the counterparty to this deal, and promise to pay potential default

losses. The seller of protection speculates on the survival of the bond issuer, and gains

investment exposure without having to commit the capital required to actually buy the

bonds in the cash markets.

The growth in the volume of credit derivative transactions has exceeded expecta-

tions year by year after they were introduced in the early nineties. The trading of credit

derivatives reached a peak in January 2008, when industry sources estimated the total

notional of credit derivatives outstanding at 62 trillion dollars. During 2008, the near fail-

ure of investment bank Bear Stearns, the collapse of investment bank Lehman Brothers,

insurance firm American International Group, and other market participants exposed the

latent threats that credit derivatives can pose for the global financial system. The contract

netting and unwinding motivated by these events and the development of a worldwide

financial and economic crisis has pushed the outstanding contract notional to under 20

trillion dollars at the end of November 2008.

Governments and regulatory authorities call for more transparency and basic regula-

tion of the credit derivatives market. While market liquidity has dried up, the economics

behind a credit derivative contract remain sound. For example, banks making loans will

continue to have a basic need for hedging loan exposures. Therefore, we expect the credit

derivatives market to survive in a leaner, more transparent form that is subject to ba-

sic regulation. In this market, the risk management of exposures will likely have a more

prominent role in the trading process than it currently has. The risk ratings of complex

structured deals issued by rating agencies such as Moody’s, Standard & Poor’s or Fitch
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will likely be re-structured and improved. This development generates important research

themes for economists, financial engineers, statisticians and mathematicians.

The primary objective of this article is to give a concise overview of the current

credit derivative landscape. Section 2 illustrates some of the main features, application

cases and potential problems of credit derivatives by providing an informal discussion of

credit swaps, which reference a single credit obligation. Section 3 discusses a probabilistic

model of default timing, on which our formal analysis in the subsequent sections is based.

Section 4 analyzes corporate bonds, and then treats credit swaps in more detail. Section

5 discusses multi-name credit derivatives, which are referenced on a pool of issuers whose

defaults are correlated.

2 Credit default swaps

To provide some perspective, this introductory section starts with an informal discussion

of credit default swaps. Many more complex credit derivative instruments share the basic

features of credit swaps.

A credit swap is a financial agreement that is individually negotiated between two

investors. As indicated in Figure 1, it resembles an insurance contract. The protection

seller compensates the protection buyer for the financial loss, if the issuer of a specified

reference security defaults on his obligation before the maturity of the swap. The refer-

ence security can be a loan, a bond issued by a corporation or a sovereign nation, or a

more complex instrument. The protection buyer obtains insurance against default of the

reference security, and must pay a premium for this insurance. The premium is called the

credit swap spread, is stated as a fraction of the swap notional per annum, and is typically

paid quarterly until default or maturity, whichever is earlier.

Here is a basic example. A protection buyer purchases 5 year protection on an issuer

with notional $10 million at an annual swap spread of 300 basis points (one basis point

corresponds to 0.01% of the notional). Suppose the reference issuer defaults 4 months

after inception, and that the reference obligation has a recovery rate of 45%. This means

that 55 cents on every dollar lent to the reference issuer are lost at default, an estimate

typically obtained through a poll of market participants. Thus, 3 months after inception,

the protection buyer makes the first spread payment, roughly equal to $10 million ×0.03×
0.25 = $75, 000.1 At default, the protection seller compensates the buyer for the loss by

paying $10 million×(100%−45%) = $5.5 million, assuming the contract is settled in cash.2

At the same time, the protection buyer pays to the seller the premium accrued since the

last payment date, roughly equal to $10 million ×0.03× 1/12 = $25, 000. The payments

1In practice, the payment depends on the ratio of the actual number of days in the given quarter to
the total number of days in the year, which is fixed at 360. We have approximated that ratio by 0.25.

2An alternative settlement convention is physical delivery. Here, the buyer delivers to the seller an
asset of his choice from a specified pool of reference securities, in exchange for the notional. The terms
of the swap may also stipulate a fixed cash payment at default.
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Figure 1: Mechanics of a credit default swap (CDS).

are netted. With these cash flows the swap expires; there are no further obligations in the

contract.

The swap investors have opposing positions. The protection buyer has sold the credit

risk associated with the reference obligation. If the buyer actually owns the reference

security, then he has hedged the position against default. For a bank hedging its loans, this

can lead to economic and regulatory capital relief, i.e. a decline in the capital required to

support the bank’s lending activities. If the buyer does not own the reference security, then

he has entered into a speculative short position that seeks to benefit from a deterioration

of the issuer’s creditworthiness. If the target scenario unfolds, the buyer simply sells the

contract to another party, for a profit because default protection commands a higher

premium after a deterioration of the issuer’s credit quality. The possibility of buying

default insurance on a bond without actually owning the bond distinguishes the credit

swap from a classical insurance contract.

The protection seller has bought the credit risk of the reference security. Relative

to buying the reference security directly, the swap position has the advantage of not

requiring a capital outlay at inception. To make this clear, think of an investor who

wishes to collect compensation for assuming the credit risk of a given corporation. The

investor could purchase a coupon bond issued by the corporation by paying the face value

(or current price) of the bond, and then collecting the coupons paid by the issuer. The

investor could alternatively assume exposure to the issuer’s credit risk by selling protection

in a credit swap referenced on the issuer’s bond. This would involve only a commitment

to compensate the swap protection buyer for the potential losses due to default of the

issuer before the swap maturity, but no initial cash flow. In return for this commitment,

the seller collects the swap spread from the swap protection buyer.

Since the credit swap is unfunded, it does not appear as a liability on the balance sheet

of the swap protection seller. This “off-balance sheet” nature of the contract is a main

feature of many credit derivatives. While attractive to many investors, this feature can also

be liability for the financial system. This is because an investor can act as a protection
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seller in a large number of contracts without disclosing these deals, and accumulate a

tremendous exposure to defaults that is practically “invisible” to regulators and other

market participants. Although a protection seller’s economic position is effectively that

of an insurance firm, the seller is not subject to the insurance industry’s regulation.

Insurance regulation imposes capital requirements compatible with the insurance risks.

An insurer’s capital limits the policies a firm can write, and therefore the total risk that can

be taken. Without transparency and regulatory capital constraints, the total exposure of a

protection seller is not limited, and few defaults can exhaust the capital of an over-exposed

investor. When an investor is wiped out, the remaining swap contracts become null,

leaving the corresponding protection buyers exposed to further defaults. A chain reaction

might ensue, jeopardizing the stability of the financial system. Recently, such a meltdown

became a real possibility with the near-default of Bear Stearns, an investment bank that

had written protection in a large number of deals. A disaster could eventually be avoided

since JP Morgan, another bank, bought Bear Stearns and entered into its contracts,

backed by guarantees from the US government. The government chose not to provide

similar support to the investment bank Lehman Brothers. Lehman had sold protection on

a large number of firms and was itself a reference entity to countless other contracts, and its

default brought the system to a near breakdown. The collapse of American International

Group, an insurance firm that had written protection on a large scale as part of its

investment strategy, was only averted by massive government intervention. These events

call for meaningful regulation of the credit swap and general credit derivatives market, an

effort that governments, central banks and regulatory authorities actively discuss.

The basic swap pricing problem is to determine the fair swap spread at inception.

The swap spread must equate the present value at inception of the premium payments and

the present value of the payments at default. After inception, the swap must be marked

to the market, i.e. its current market value must be determined. For the protection seller,

the mark-to-market value is given by the difference of the present values of premium and

default payments evaluated at the prevailing market conditions.3 If, for example, the credit

risk of the reference issuer has deteriorated after inception, then the fixed swap spread

does not provide sufficient compensation for the default risk anymore. The protection

seller could obtain a higher spread at the current conditions. Therefore, the seller’s mark-

to-market value may be negative in this scenario. Of course, the loss of the seller is the

gain of the protection buyer, whose mark-to-market value is the negative of the seller’s

mark-to-market value. If the buyer has implemented a short credit position as described

above, then in this scenario the buyer could sell his position, with a profit equal to the

current mark-to-maket value, less the value of the premia already paid.

In a liquid swap market, the swap rates provide a sensitive measure of an issuer’s cred-

itworthiness, from which we can extract issuer default probabilities for multiple horizons.

These market-implied probabilities reflect investors’ forward-looking expectations about a

3Marking a position to the market may be difficult when the market is illiquid and there are few
buyers or sellers of default risk.

5



firm’s credit quality. They can be used to value more complex, less liquid credit derivative

instruments, and to design credit investment strategies. To facilitate these applications,

we require a probabilistic model of default timing, to which we turn next.

3 Default point process

The uncertainty in the economy is modeled by a complete probability space (Ω,F ,P),

where Ω is a set that represents the possible states of the world, F is a sigma-field on

Ω, and P is a probability measure on F . The flow of information accessible to investors

is modeled by a filtration F, i.e. an increasing family (Ft)t≥0 of sub-sigma-fields of F .

Intuitively, Ft represents the events observable at t. We assume that F is right-continuous

and contains all P-null sets in F ; see Dellacherie & Meyer (1982).

The default time of a firm is modeled by a stopping time S. This is a non-negative

random variable with the property that {S > t} ∈ Ft. We consider a sequence of stopping

times T k with T 0 = 0 that strictly increases to ∞, almost surely. The T k represent the

ordered default times in a pool of firms. They generate a counting process N given by

Nt =
∑
k≥1

1{Tk≤t}. (1)

Here and below, 1B is the indicator function of an event B ∈ F . That is, 1B(ω) is equal

to one if ω ∈ B and zero otherwise.

A credit derivative is a security with cash flows that depend on the value of the

process N at a set of times. For example, the contract may stipulate the payment of NT

at a maturity date T . In this case, the buyer of the derivative is protected against the

defaults in the pool, assuming the loss at a default is less than unity.

To determine the fair value of a credit derivative, we require the distribution of N .

Below, we develop a formula for the Laplace transform of N . The distribution of N is

obtained by transform inversion, and can be used to calculate the value of a derivative

with payoff g(NT ) at maturity T , where g is an integrable function on {0, 1, 2, . . .} specified

by the derivative terms. We illustrate this in Sections 4 and 5. Section 3.3 comments on

alternative computational methods for the valuation of credit derivatives whose cash flows

take a complicated form.

The development of the transform formula requires some prerequisits from the theory

of stochastic processes, which is treated in Dellacherie & Meyer (1982), Karatzas & Shreve

(1988), Protter (2004) and others. Readers that are not interested in the technical details

but rather in the structure of standard credit derivatives can skip this section and proceed

directly to Sections 4 and 5.
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3.1 Transform analysis

Since the default process N has increasing sample paths, the Doob-Meyer decomposition

theorem guarantees the existence of an increasing, predictable process A starting at 0 such

that M = N−A is a local martingale. The process A counteracts the increasing tendency

of the default process; it is called the compensator to N . The compensator depends on

the underlying filtration F and the reference measure P; it is transformed with a change of

F or P. The analytic properties of A correspond to probabilistic properties of the default

stopping times. The sample paths of A are continuous if and only if the T k are totally

inaccessible. Totally inaccessible stopping times formalize the intuitive concept of random

times that come unannounced and take investors by surprise. There is empirical evidence

in support of this property, see Sarig & Warga (1989), for example.

Assume the default times are totally inaccessible and that exp(AT ) is integrable for

a fixed horizon T > 0. We develop a formula for the conditional Laplace transform

ϕ(u, t, T ) = E(e−u(NT−Nt) | Ft), u ≥ 0. (2)

The corresponding conditional distribution can be recovered from the relation

P(NT −Nt = k | Ft) = lim
v↓0

1

k!
∂kvϕ(− log v, t, T ), k = 0, 1, 2, . . . (3)

Alternatively, we can extend (2) to the complex plane and invert the Fourier transform

so obtained: P(NT −Nt = k | Ft) = (2π)−1
∫ π
−π ϕ(−iv, t, T ) exp(−ikv)dv. This formulation

facilitates the application of the Fast Fourier Transform, which may have computational

advantages over formula (3), depending on the particular setting.

For u ≥ 0 define the process Z(u) by

Zt(u) = exp(ψ(u)At − uNt), ψ(u) = 1− exp(−u). (4)

Since A is continuous, an application of Stieltjes integration by parts on the product

Zt(u) = exp(ψ(u)At) exp(−uNt) leads to the alternative expression

Zt(u) = 1− ψ(u)

∫ t

0

Zs−(u)dMs,

showing that Z(u) is the stochastic exponential of the scaled local martingale −ψ(u)M .

Hence, Z(u) is a local martingale itself. The integrability condition on the compensator

guarantees that the stopped process ZT (u) is a uniformly integrable martingale.

The family of martingales Z(u) indexed by u induces a family of equivalent probability

measures Pu on FT by Pu(B) = E(ZT (u)1B) for B ∈ FT . Each measure Pu corresponds

to a conditional Laplace transform of the compensator,

Lu(v, t, T ) = Eu(e−v(AT−At) | Ft), u, v ≥ 0. (5)
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The P-Laplace transform (2) can be expressed in terms of the Pu-Laplace transform (5),

ϕ(u, t, T ) = E(e−ψ(u)(AT−At)ZT (u)/Zt(u) | Ft)

= Eu(e−ψ(u)(AT−At) | Ft)

= Lu(ψ(u), t, T ). (6)

Formula (6) states that the Laplace transform of a counting process with totally

inaccessible arrivals is given by the Laplace transform of the compensator evaluated at the

Laplace exponent ψ of the standard Poisson process. The Laplace transform of A is taken

under an equivalent measure Pu. To calculate that transform, consider the specification

of A in terms of a non-negative intensity process λ such that

At =

∫ t

0

λs ds (7)

almost surely. The process λ is the density of the random measure associated with A

relative to Lebesgue measure. It can be interpreted as the conditional event arrival rate,

in the sense that E(Nt+∆ −Nt | Ft) ≈ λt∆ for “small” ∆ > 0, see Brémaud (1980). With

the representation (7), the Laplace transform (5) takes the form

Lu(v, t, T ) = Eu(e−v
R T

t λsds | Ft). (8)

The expectation on the right hand side of equation (8) is a familiar expression in

finance; see Duffie (1996), for example. Consider a government bond that pays 1 at time

T . The price of this bond at t ≤ T is analogous to formula (8) once we regard the process

vλ as the short-term rate of interest. The explicit calculation of the bond price is well

understood for a large class of interest rate processes, see Duffie, Pan & Singleton (2000)

and Leippold & Wu (2002). This observation motivates us to adopt a parametric model

formulation from this bond pricing literature for the purpose of specifying the intensity

λ. However, before we can apply the results from the bond pricing literature, we need to

understand how the dynamics of the intensity λ are adjusted when the measure is changed

to Pu. This is necessary since the dynamics of λ are typically specified under P, while the

Laplace transform (8) is taken under Pu. To discuss the adjustment of the dynamics of

λ, let V be a local martingale relative to the reference measure P. Girsanov’s theorem as

stated in Dellacherie & Meyer (1982) implies that the process

V + ψ(u)〈V,N〉 (9)

is a Pu-local martingale. Here, 〈V,N〉 is the P-conditional covariation, i.e. the compensator

of the quadratic variation [V,N ] relative to P. Consider a local martingale V that does

not have jumps in common with N . Here [V,N ] = 0, and therefore 〈V,N〉 = 0. Thus,

V remains a local martingale under Pu. Now consider the local martingale V = N − A,
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whose jumps coincide with those of N . The quadratic variation [V,N ] = [N,N ] = N ,

whose compensator is 〈V,N〉 = A. Thus, from (9),

V + ψ(u)〈V,N〉 = V + ψ(u)A = N − e−uA

is a local martingale under Pu, meaning N has Pu-intensity e−uλ. The measure change

calls for a deterministic scaling of the intensity that depends on the variable u. In Section

3.2 below, we show how these observations can be applied to calculate the Pu-dynamics

of λ for a classical specification of λ under P adopted from the bond pricing literature.

The measure change underlying the transform formula (6) is not necessary when N is

a doubly-stochastic Poisson process. The process N is called a doubly-stochastic Poisson

process if the compensator A is adapted to a right-continuous and complete sub-filtration

G = (Gt)t≥0 of F, and the conditional distribution of NT −Nt given Ft∨GT is the Poisson

distribution with parameter AT − At, see Brémaud (1980). More precisely, for all t < T

and u ≥ 0 we have

E(e−u(NT−Nt) | Ft ∨ GT ) = e−ψ(u)(AT−At). (10)

Taking conditional expectations relative to (P,Ft) on both sides of equation (10), we get

a formula for the Laplace transform of a doubly-stochastic Poisson process:

ϕ(u, t, T ) = E(e−ψ(u)(AT−At) | Ft)

= L0(ψ(u), t, T ) (11)

where L0(v, t, T ) is the Laplace transform of the compensator under P = P0. Compare

formula (11) with the general transform formula (6). In the general, non doubly-stochastic

case, the measure change leads to a transform formula that has the same structure as the

doubly-stochastic formula (11). In this sense, the measure change preserves the doubly-

stochastic setting. The special feature of this doubly-stochastic setting is that the arrivals

of N are not allowed to influence the dynamics of A. This means that a doubly-stochastic

Poisson process cannot be self-exciting: an arrival of the process cannot increase the

likelihood of further arrivals. This is because the doubly-stochastic compensator is adapted

to G, and the event {Nt = k} can never be contained in Gt. Since the change of measure to

Pu “absorbs” any feedback from N to the dynamics of A, we call Pu the correlation-neutral

probability measure.

The measure change argument underlying the transform formula (6) is analogous to

a similar argument proposed by Carr & Wu (2004) to calculate the Fourier transform

of a time-changed Lévy process. Carr & Wu (2004) suggest that this transform is given

by the Laplace transform of the time change evaluated at the characteristic exponent of

the Lévy process. The Laplace transform is calculated under a complex measure defined

by the time-changed Wald martingale associated with the Lévy process. This argument

leads to a formula for the Fourier transform of a counting process N if N is realized as a

time-changed Poisson process. In this case the compensator A takes the role of the time

change and Z coincides with the time-changed Wald martingale.
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3.2 Affine point processes

The transform formula (6) is of practical use whenever the Pu-Laplace transform (5) of

the point process compensator A can be explicitly calculated. In this section we discuss

an example. We consider a default point process N whose intensity is driven by an affine

jump diffusion in the sense of Duffie et al. (2000). The resulting transform formula is a

special case of the transform formula for general affine jump diffusions developed in Duffie

et al. (2000) and Duffie, Filipovic & Schachermayer (2003). Our measure change argument

provides an alternative route to the formula for a finite-activity affine jump process.

Suppose the observation filtration F is generated by a Markov process X that is a

strong solution to the stochastic differential equation

dXt = µ(Xt) dt+ σ(Xt) dWt + δ dJt, X0 ∈ R. (12)

Here W is a standard Brownian motion, µ(X) is the drift process, σ(X) is the volatility

process, δ ≥ 0 is a sensitivity parameter and Jt =
∑Nt

k=0 J
k is a point process whose jump

times are those of the default counting process N . The random jump sizes Jk are drawn,

independently of one another, from a distribution ν on R+ that has no mass at zero.

We interpret X as a risk factor process that describes the state of the economy.

Defaults influence the economic state in that X jumps at each event. The size of the

impact is random, and the sensitivity is controlled by δ. Suppose the compensator A of N

has intensity λ = Λ(X) for some non-negative function Λ on R. Then, there is feedback

from N to its intensity via X. The default point process N is self-exciting, in the sense

that an event tends to increase the likelihood of further events.

By formula (6), the calculation of the Laplace transform of N reduces to the calcula-

tion of the Laplace transform (5) of A under the correlation-neutral measure. To obtain

an explicit expression for the transform (5), we impose an additional structure on X and

λ. We assume that X and the functions µ, σ2 and Λ satisfy

µ(x) = K0 +K1x, σ(x)2 = H0 +H1x, Λ(x) = Λ0 + Λ1x,

for constant coefficients such that Λ(X) is non-negative and exp(
∫ T

0
Λ(Xs)ds) is integrable

for the horizon T > 0. Under these assumptions, the state process X is an affine jump

diffusion in the sense of Duffie et al. (2000), and the counting process N is called an affine

point process. Special cases of N include the Poisson process (H0 = H1 = δ = 0), the

birth process (K0 = K1 = H0 = H1 = 0), and the Hawkes process (H0 = H1 = 0).

Proposition 1 in Duffie et al. (2000) states technical conditions such that

E(e−
R T

t R(Xs)ds+zXT | Ft) = ea(t)+b(t)Xt (13)

where R(x) = ρ0+ρ1x for constants ρ0 and ρ1, and the coefficient functions b(t) = b(z, t, T )
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and a(t) = a(z, t, T ) satisfy the ordinary differential equations

∂tb(t) = ρ1 −K1b(t)−
1

2
H1b(t)

2 − Λ1(θ(δb(t))− 1) (14)

∂ta(t) = ρ0 −K0b(t)−
1

2
H0b(t)

2 − Λ0(θ(δb(t))− 1) (15)

with boundary conditions b(T ) = z and a(T ) = 0 and jump transform

θ(c) =

∫
R+

eczdν(z), c ∈ R, (16)

whenever this integral is well-defined. For ρ0 = ρ1 = 0, formula (13) yields the transform

of the compound birth process X = δJ (set K0 = K1 = H0 = H1 = 0 in (14)–(15)). To

get the transform for more general point processes whose intensity is driven by X, we

need to construct an enlarged state vector (X,N) by appending the counting process N

to the original state X, see Errais, Giesecke & Goldberg (2006). Proposition 1 in Duffie

et al. (2000) is then applied to (X,N). Rather than following this route, we show how to

use our transform formula (6) in the affine setting.

Formula (6) requires the Laplace transform (5) relative to the correlation-neutral

measure Pu. We can apply Proposition 1 of Duffie et al. (2000) to obtain a formula

for this Laplace transform. To this end, note that the Pu-dynamics of the state X are

described by equation (12), where W is a Pu-Brownian motion, Jt =
∑Nt

k=0 J
k is a point

process whose jump times arrive with Pu-intensity

e−uΛ(X) = e−uΛ0 + e−uΛ1X,

and where the Jk are drawn, independently of one another, from the distribution ν relative

to Pu. Here, we use the fact that W has no jumps in common with N and therefore remains

a Brownian motion under Pu, that the distribution of the Jk is not affected by the measure

change, and that the compensator of N is scaled by e−u when the measure is changed.

Now we apply Proposition 1 in Duffie et al. (2000), taking Pu as reference measure, to get

Lu(v, t, T ) = Eu(e−v
R T

t Λ(Xs)ds | Ft) = eα(t)+β(t)Xt (17)

where the coefficient functions β(t) = β(u, v, t, T ) and α(t) = α(u, v, t, T ) satisfy the

ordinary differential equations

∂tβ(t) = vΛ1 −K1β(t)− 1

2
H1β(t)2 − e−uΛ1(θ(δβ(t))− 1) (18)

∂tα(t) = vΛ0 −K0β(t)− 1

2
H0β(t)2 − e−uΛ0(θ(δβ(t))− 1) (19)

with boundary conditions β(T ) = α(T ) = 0 and jump transform (16). Thus, the condi-

tional Laplace transform (2) of an affine point process N is given in terms of the solutions

to the equations (18)–(19) as

ϕ(u, t, T ) = Lu(ψ(u), t, T ) = exp(α(u, ψ(u), t, T ) + β(u, ψ(u), t, T )Xt). (20)
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Compare equations (17)–(19) with equations (13)–(15). The measure change influ-

ences only the jump terms in the ODEs (18)–(19). It has no effect when δ = 0 in the risk

factor dynamics (12). In this case, N is doubly-stochastic. There is no feedback from N

to its intensity, and the Pu-Laplace transform (8) agrees with its counterpart under P.

3.3 Credit derivatives valuation

There are two alternative formulations of the credit derivatives valuation problem:

(1) Model the default point process N under an equivalent martingale measure, relative

to which the discounted price process of any traded security is a martingale. Apply

the transform formula (6) with the martingale measure compensator of N .

(2) Model N under the actual probability measure that represents the empirical like-

lihood of default events. Specify a martingale measure equivalent to the physical

measure, and calculate the martingale measure compensator from the physical mea-

sure compensator by Girsanov’s theorem. Apply (6).

Below we follow the first approach, and specify the “risk-neutral” behavior of N

under P, which we take to be an equivalent martingale measure relative to a constant

risk-free interest rate r. To exemplify this approach, fix a parametric model for the P-

compensator A, for instance the affine specification analyzed in Section 3.2 above. Con-

sider a credit derivative with payoff g(NT ) at maturity T , where g is an integrable function

on {0, 1, 2, . . .} specified by the terms of the derivative contract. By the martingale prop-

erty of discounted prices under P, an arbitrage-free value of the derivative at time t ≤ T

is given by the conditional expectation

e−r(T−t)E(g(NT ) | Ft) = e−r(T−t)
∑
k≥0

g(Nt + k)P(NT −Nt = k | Ft) (21)

where the conditional probabilities P(NT − Nt = k | Ft) are obtained from the Laplace

transform (2) of N via the inversion formula (3). If default arrivals are totally inacces-

sible and exp(AT ) is integrable, then the Laplace transform (2) is given by the Laplace

transform of A with respect to the correlation-neutral measure, see formula (6).

In practice, the parameters of the model A are chosen in a calibration procedure.

Here (21) is applied to a set of marketed credit derivatives, i.e., different payoff functions

g available for trading. The parameters are chosen so as to minimize the discrepancy

between the prices of the marketed derivatives and the prices generated by the model

for these securities. In practice, the calibrated model is often used to assign prices to

non-traded “exotic” credit derivatives. This approach, however, obscures the fact that the

credit derivatives market is typically incomplete. That is, not every credit derivative can

be perfectly hedged by dynamic trading in the marketed securities. A derivative carries

intrinsic risk that cannot be hedged away. In this situation, the practice of pricing exotic
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derivatives via (21) does not systematically account for the costs of hedging or the residual

risks. The pricing rule (21) assigns to the exotic derivative a price that pretends that the

security can be perfectly hedged. The proper quantification and valuation of the residual

risk motivates the design of incomplete market models. We refer to Föllmer & Schied

(2004) for a comprehensive treatment of this topic and Staum (2008) for a survey paper.

The second approach outlined above is more complete than the first approach, and

would be used for empirical time-series applications that require the distribution of N

under the actual measure and the specification and estimation of the risk premia param-

eters that determine the change of measure from actual to risk-neutral probabilities, as

in Berndt, Douglas, Duffie, Ferguson & Schranz (2005), Eckner (2007b), and Azizpour &

Giesecke (2008a).

3.4 Simulation

The Laplace transform approach to the valuation of credit derivatives is applicable if

the derivative payoff takes a relatively simple form. It covers many standard contracts.

Monte Carlo simulation of the default times T k can alternatively be used to estimate the

price of a credit derivative. It is the method of choice when the derivative payoff takes a

complicated form. For example, the payoff at time t ≤ T may be path-dependent, and take

the form f(t, (Ns)0≤s≤t, . . .) for some function f . A powerful simulation approach is related

to the time change theorem of Meyer (1971), which implies that if the compensator A is

continuous and increases to ∞ almost surely, then N can be transformed into a standard

Poisson process by a change of time that is given by A. For the simulation of N , we appeal

to the converse of this result. The arrivals of N can be generated by re-scaling standard

Poisson arrivals with A. This approach is discussed in Daley & Vere-Jones (2003); see also

Duffie & Singleton (1998). It requires the simulation of the continuous-time process A.

If this process is approximated on a discrete time grid, then the simulation results may

suffer from discretization bias. Alternative exact simulation methods are developed by

Giesecke & Kim (2007) and Giesecke, Kakavand & Mousavi (2008). These exact methods

avoid the discretization of A and lead to unbiased simulation results.

4 Single-name credit derivatives

This section discusses the valuation of credit derivatives referenced on a given firm. The

issuer’s default time is taken to be the first jump time T 1 of the counting process N . The

corresponding default process is N1 = min(N, 1), the process N stopped at its first jump.

The financial loss at default is modeled by an FT 1-measurable random variable `1, which

is independent of T 1 and has expectation ` = E(`1). At any time t < T 1∧T = min(T, T 1),

the firm’s risk-neutral conditional survival probability satisfies almost surely

P(T 1 > T | Ft) = P(NT = 0 | Ft) = lim
u↑∞

ϕ(u, t, T ) = lim
u↑∞
Lu(ψ(u), t, T ) (22)
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where the last equality is valid if default arrivals are totally inaccessible and exp(AT ) is

integrable, see Section 3.1 above. If, for example, N is an affine point process as in Section

3.2, then Lu(ψ(u), t, T ) is given by formula (20), and with the corresponding coefficient

equations (18) and (19), for t < T 1 ∧ T we then get the formula

P(T 1 > T | Ft) = exp(a(t, T ) + b(t, T )Xt) (23)

where the coefficient functions b(t) = b(t, T ) and a(t) = a(t, T ) satisfy the ODEs

∂tb(t) = Λ1 −K1b(t)−
1

2
H1b(t)

2 (24)

∂ta(t) = Λ0 −K0b(t)−
1

2
H0b(t)

2 (25)

with boundary conditions b(T ) = a(T ) = 0. Equations (24) and (25) indicate that the

feedback from N to its intensity, which comes from the jump term J in the state equation

(12), plays no role for the survival probability (23). Intuitively, the conditional distribution

of T 1 is governed by the dynamics of the intensity before T 1. The behavior of the intensity

at the event time is not relevant for this distribution.

4.1 Corporate zero-coupon bond

Corporate bonds are issued by firms to raise funds. While they are not credit derivatives

in a strict sense, we use them as basic building blocks for credit derivatives. A zero coupon

bond with unit face value and maturity T pays

• The face value 1 at T < T 1,

• The recovery (1− `1) of face value at T 1 ≤ T .

Since P is an equivalent martingale measure, the value of the survival cash flow at a time

t prior to default is given by the discounted P-expected payoff

E(F (t, T )(1−N1
T ) | Ft) = F (t, T )P(T 1 > T | Ft), (26)

where F (t, T ) = exp(−r(T − t)) is the price at time t of a unit face value, T -maturity zero

coupon government bond without default risk. The corporate bond is worth less than the

government bond to account for the issuer’s risk of default.

If N is doubly-stochastic with intensity λ, then the value of the survival cash flow (26)

takes the form E(e−
R T

t (r+λs)ds | Ft), which can be interpreted as the value of the certain

cash flow 1 when the discount rate is r + λ rather than the risk-free rate r. Thus, the

intensity can be interpreted as a short-term credit spread that compensates the bond

investor for assuming the issuer’s risk of default over an infinitesimal period.

The value of the recovery cash flow at a time t prior to default is

E(F (t, T 1)(1− `1)N1
T | Ft) = (1− `)Rt(T ) (27)
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where Rt(T ) is the pre-default value of a unit recovery payment at T 1 ≤ T . By Stieltjes

integration by parts and Fubini’s theorem,

Rt(T ) = E
(∫ T

t

F (t, s)dN1
s

∣∣∣Ft)
= F (t, T )P(T 1 ≤ T | Ft) + r

∫ T

t

F (t, s)P(T 1 ≤ s | Ft)ds. (28)

The pre-default value of the bond Bt(T ) is given by the value of the survival cash

flow (26) plus the value of the recovery cash flow (27). If the survival probability (22) is

analytically tractable then so is the corporate bond pricing problem.

The zero coupon credit spread CS is the difference between the (promised) yield on

a corporate zero bond and the yield on a government zero bond with matching face value

and maturity. With F (t, T ) the price of the government bond,

CSt(T ) = − 1

T − t
log

(
Bt(T )

F (t, T )

)
(29)

at any time t < T prior to default. Thus, the value CSt(T ) is the excess yield at time t

over the risk-free yield r demanded by the bond investor for bearing the default risk over

the remaining term T − t. Figure 2 plots the term structure of credit spreads T → CS0(T )

when N is an affine point process driven by a state variable that follows a mean-reverting

Feller diffusion process; see Feller (1951) and Section 3.2 above.

4.2 Corporate coupon bond

Most corporate bonds are issued with a coupon that stipulates a stream of interest pay-

ments. A corporate coupon bond with unit face value, annualized coupon rate c, coupon

dates (tm) and maturity T pays

• The coupon cCm at each tm < T 1 where Cm is the day count fraction for period m,

• The face value 1 at T < T 1,

• The recovery (1− `1) of face value at T 1 ≤ T ,

• The accrued coupon T 1−tm−1

∆m
cCm at T 1 if tm−1 < T 1 ≤ tm, where ∆m = tm − tm−1.

The coupon stream is a portfolio of zero-recovery zero bonds with maturities tm and face

values cCm. Therefore, at any time t before default, the coupon stream has value

c
∑
tm≥t

F (t, tm)CmP(T 1 > tm | Ft).

The principal payment is a zero-recovery zero bond with maturity T and face value 1 and

therefore its value is F (t, T )P(T 1 > T | Ft) at any time t before default. The pre-default
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Figure 2: Term structure of zero coupon credit spreads (29) at t = 0 when N is an affine

point process with intensity λ = X, where X follows a mean-reverting Feller diffusion

process: dXt = κ(c − Xt)dt + σ
√
XtdWt. That is, K0 = κc, K1 = −κ, H0 = 0, H1 = σ2

and δ = 0 in the risk factor dynamics (12). The parameter κ controls the speed of mean

reversion, c prescribes the mean reversion level, and σ governs the diffusive volatility of X.

The condition 2κc ≥ σ2 guarantees positivity of X. The conditional survival probability

P(T 1 > T | Ft) is given by formula (23). The associated ODEs (24) and (25) can be solved

analytically to give a closed formula for the bond price and credit spread. The risk-free

rate r = 5%, κ = c = 1 and σ = 0.3. Left panel: Zero recovery, i.e. ` = 1. Right panel :

Expected recovery 0.4, i.e. ` = 0.6.

value of the recovery is (1 − `)Rt(T ). Suppose the issuer defaults between two coupon

dates. The accrued coupon covers the interest that has accumulated since the last coupon

date. Typically, the accrued coupon is not paid separately, but may be subsumed into the

recovery payment at default. Although artificial, here we treat it separately since it will

play a role for credit swaps. The pre-default value of the accrued coupon is

c
∑
tm≥t

Cm
∆m

E
(∫ tm

t∨tm−1

F (t, s)(s− tm−1)dN1
s

∣∣∣Ft) .
The value of the corporate coupon bond is given by the sum of the values of the four

parts; at any time t before default we get

F (t, T )P(T 1 > T | Ft) + cVt(T ) + (1− `)Rt(T )
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where Vt(T ) is the risky DV01, the value at any time t before default of a unit stream at

coupon times (tm) until T 1 ∧ T plus any accruals, given by

Vt(T ) =
∑
tm≥t

Cm
∆m

{
F (t, tm)∆m − F (t, t ∨ tm−1)(t ∨ tm−1 − tm−1)P(T 1 ≤ t ∨ tm−1 | Ft)

−
∫ tm

t∨tm−1

F (t, s)(1− r(s− tm−1))P(T 1 ≤ s | Ft)ds
}
. (30)

Now we are ready to analyze a credit swap.

4.3 Credit swap

A credit swap with unit notional, annualized swap spread S, premium payment dates (tm)

and maturity T is a bilateral contract in which

• The protection seller pays the default loss `1 at T 1 ≤ T (default leg),

• The protection buyer pays the swap spread SCm at each tm < T 1 plus any accruals

(premium leg).

The value of the premium leg at any time t before default is

Pt(S) = SVt(T ) (31)

where Vt(T ) is the risky DV01 given in formula (30). The value of the default leg at any

time t before default is

Dt = `Rt(T ) (32)

where Rt(T ) is the value of a unit recovery payment at T 1 ≤ T given in formula (28).

The fair spread S equates the values at inception of the default and premium legs. Since

there is no cash flow at inception, the fair swap spread at inception date t is the solution

S = St(T ) to the equation Dt = Pt(S). Thus, St(T ) = `Rt(T )/Vt(T ) at any time t prior

to default. Note that, to derive this formula, we have only assumed that the firm’s default

time and recovery rate are independent, that the risk-free rate of interest is constant, and

that the default risk of the protection seller is negligible.4

Consider an investor who buys protection at t = 0 for the period [0, T ] for a swap

spread of S0(T ). The mark-to-market value of the investor’s position at time t ≥ 0, when

the market spread is St(T ), is given by Vt(T )(St(T ) − S0(T )) = Dt − Pt(S0(T )) at any

time t prior to default. The mark-to-market value of the protection seller’s position is the

negative of the buyer’s value. Note that the mark-to-market value can be negative. This

4Counterparty risk, the risk that the protection seller fails with the reference entity, has become a
serious issue in the current market environment. Intuitively, it lowers the fair swap spread St(T ) calculated
under the assumption that counterparty risk is negligible.
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Figure 3: Extracting the survival probabilities of Lehman Brothers and Comcast from

market credit swap spreads. Left panel: Mid-market spread quotes on September 2, 2008,

for each of several maturities. Source: Barclays Capital. To fit these quotes perfectly,

we assume that the process N has piece-wise constant intensity λ(t), whose intervals of

constancy are given by the inter-maturity times of the given spread quotes. With a deter-

ministic intensity, N is a non-homogeneous Poisson process and the survival probability

P(T 1 > T | Ft) = exp(−
∫ T
t
λ(s)ds). We sequentially determine the values of the intensity

on its intervals of constancy from spread quotes of the corresponding maturities, starting

with the shortest maturity, by finding the intensity value that equates a quote to the

model spread for a fixed expected loss ` = 0.6, the standard industry value. This inverse

problem is usually well-posed. If it is not, then that indicates arbitrage opportunities.

Right panel: Survival probabilities P(T 1 > T ) implied by the calibrated model.

occurs when the credit quality of the reference name has improved since inception, and

default protection is cheaper at current conditions.

Suppose we observe a firm’s swap spreads in the credit swap market. We can extract

the firm’s (risk-neutral) survival probabilities from these spread quotes. That is, we fix

a parametric family of intensity models, and choose model parameters so as to match

the observed spreads as closely as possible. The calibrated model implies survival prob-

abilities for all maturities. This procedure is illustrated in Figure 3, where we extract

survival probabilities for the investment bank Lehman Brothers and the telecommuni-

cations firm Comcast, based on market spreads for several maturities on September 2,

2008. Lehman’s spread term structure is decreasing, indicating the market’s awareness of

Lehman’s difficulties at that time. Lehman defaulted on September 15, 2008.

The market implied survival probabilities have multiple applications. For example,

they can be used to design credit trading strategies. One strategy is to exploit different

valuations of a firm’s creditworthiness that may exist in different markets. For instance, the

swap market implied survival probabilities can be contrasted with survival probabilities

extracted from the firm’s equity prices, in order to identify those firms for which the gap is
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relatively large. The investor can bet on the gap to narrow over time. Another important

application of the implied survival probabilities is the valuation of other credit-sensitive

securities that are issued by or referenced on the firm in question. One such instrument

is considered in the next section.

4.4 Forward credit swap

In a regular (spot) credit swap the parties agree on a price for protection that starts

immediately. In a forward credit swap, the parties agree on a price for protection that

starts at a specified time in the future. More precisely, in a forward credit swap with unit

notional, annualized forward spread S, premium payment dates (tm), forward start date

U and maturity date T > U ,

• The protection seller pays the default loss `1 at T 1 ∈ [U, T ] (default leg),

• The protection buyer pays the forward swap spread SCm at each tm ∈ (U, T 1) plus

any accruals (premium leg).

Note that cash flows occur only between times U and T . Of course, if U is the time at

which the spread is negotiated, then the forward swap is a spot swap. Also note that the

contract is canceled (“knocked out”) in case the reference issuer defaults before U .

At any time t before default, the premium leg has value

Pt(S) = S(Vt(T )− Vt(U))

The default leg covers the loss over [U, T ] and is equal to the difference between the

default leg of a spot swap maturing at T and the default leg of a spot swap maturing

at U . Therefore, its pre-default value must be equal to the difference of the pre-default

values of the corresponding premium legs:

Dt = St(T )Vt(T )− St(U)Vt(U)

The fair forward spread at time t is the solution S = St(U, T ) to the equation Dt = Pt(S)

so at any time t prior to default

St(U, T ) =
St(T )Vt(T )− St(U)Vt(U)

Vt(T )− Vt(U)
.

Using this formula, we can estimate the forward spread St(U, T ) from the market spot

swap spreads St(U) and St(T ), and the corresponding risky DV01s Vt(U) and Vt(T ), which

are calculated via formula (30) based on the market implied survival probabilities.
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4.5 Credit swaption

A forward swap obligates the parties to enter into the swap at the forward start date.

An option on a credit swap, or swaption with maturity T imparts the right but not the

obligation to enter into a swap at a future expiration date U < T at a strike spread S. A

payer swaption gives the right to buy protection at U for a spread S. As a forward swap,

it can include a knock-out provision, which would stipulate that the contract is canceled

in case the reference issuer defaults between the trade date and option’s expiry date U .

While a payer swaption allows the investor to monetize widening spreads (deteriorating

credit quality), a receiver swaption imparts the right to sell protection at a spread S, and

thus allows the investor to bet on tightening spreads.

5 Multi-name credit derivatives

Corporate defaults are correlated because firms are exposed to common or correlated eco-

nomic risk factors, see Duffie, Saita & Wang (2006). The movements of the risk factors

generate correlated changes in firms’ conditional default rates. This relationship is illus-

trated in Figure 4, which shows the number of defaults of Moody’s rated firms in any given

year between January 1970 and September 2008. Some of the risk factors may not be ob-

servable, and the uncertainty associated with unobservable factors generates an additional

channel of default correlation, see Duffie, Eckner, Horel & Saita (2008). Furthermore, a

default may have a contagious impact on the surviving firms that is channeled through

the complex web of contractual relationships in the economy, see Azizpour & Giesecke

(2008b). The idea is that the failure of a firm tends to weaken the others. The ongoing

crisis in credit markets provides evidence of the existence of contagion phenomena.

Multi-name or portfolio credit derivatives are referenced on a pool of 5 to several

hundred firms. They are often structured as swaps, very much like a credit swap referenced

on a single obligation, or single-name swap. The instruments are designed to facilitate

the transfer of the correlated default risk in the reference portfolio. From a modeling

perspective, the challenge is to capture the sources of default clustering mentioned above

while maintaining the computational tractability of the valuation relations, which require

the distributions of the point processes describing portfolio defaults and losses.

There are two different modeling philosophies. In a bottom-up approach, the default

processes of the portfolio constituents are the modeling primitives, see Duffie & Garleanu

(2001), Eckner (2007a), Mortensen (2005) and others. That is, for each constituent i we

specify a counting process, N(i) say, most conveniently through an intensity λ(i). The

dependence between the constituent intensity processes reflects the default correlation in

the portfolio. The first jump of N(i) models the default time of firm i, as in Section 4

above. Single-firm default probabilities are given by a formula analogous to (22) in terms

of λ(i). Unfortunately, unless the dependence between the intensities λ(i) has a special

structure, the distribution of the portfolio default counting process N =
∑

i(N(i) ∧ 1) is
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Figure 4: Annual defaults of Moody’s rated firms between January 1970 and September

8, 2008. Source: Moody’s Default Risk Service. The peak in 1970 represents a cluster of

24 railway defaults triggered by the collapse of Penn Central Railway on June 21, 1970.

The fallout of the 1987 crash is indicated by the peak in the early nineties. The burst

of the internet bubble caused many defaults during 2001-2002. From a trough in 2007,

default rates started to increase significantly in 2008.

much harder to calculate. For example, it is often difficult to calculate this distribution

in the presence of contagion effects; see however Collin-Dufresne, Goldstein & Hugonnier

(2004) in this regard.

In an alternative top-down approach, we specify the portfolio default counting process

N directly in terms of an intensity λ, without reference to the portfolio constituents, see

Arnsdorf & Halperin (2007), Cont & Minca (2008), Errais et al. (2006), and others. The

default correlation among the portfolio constituents is reflected in the dynamics of λ.

For example, we could specify N as an affine point process; see Section 3.2 above. The

jumps in the intensity would reflect the contagious impact of an event, while the diffusive

movements of the inter-arrival intensity would reflect firms’ exposure to a risk factor. The

inversion formula (3) would give the distribution of the portfolio default process. A caveat

of this approach is that it requires additional steps to obtain the survival probabilities

of the portfolio constituents. Giesecke & Goldberg (2005) propose random thinning to

disintegrate λ into the constituent intensities λ(i), and develop a corresponding formula

for the constituent survival probabilities.

Below we take a top-down approach, with N representing the portfolio default pro-

cess, to analyze index and tranche swaps. These swaps are referenced on a portfolio of

single-name credit swaps rather than bonds or loans. The collection of tranche swaps

referenced on a given portfolio is called a collateralized debt obligation, or CDO.
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5.1 Index swaps

An index swap is the most liquid portfolio derivative. It is based on a portfolio of n single-

name credit swaps. The constituent swaps have common notional that we normalize to

1, common maturity date T and common premium payment dates (tm). A default in the

reference obligation of a constituent swap translates into a loss for the constituent swap

protection seller. This loss is recorded by the portfolio loss process L =
∑N

k=0 `
k, where

`k ∈ [0, 1] is the normalized random loss at the kth default. In an index swap with swap

spread S, the cash flows are as follows:

• The protection seller covers portfolio losses as they occur, i.e. the increments of the

portfolio loss process L (default leg),

• The protection buyer pays SCm(n−Ntm) at each date tm (premium leg).

The protection seller assumes exposure to the correlated default risk associated with

the reference portfolio. There are multiple families of standard reference portfolios, called

indices. The CDX family covers North American issuers. There are various CDX sub-

indices, including the Investment Grade (125 constituents) and High Yield (100 con-

stituents) indices. The iTraxx index family represents European and Asian portfolios.

The standardization of reference portfolios helps to increase liquidity in the index swap

market, which benefits all market participants.

The value Dt at time t ≤ T of the index swap default leg is given by the discounted

cumulative losses. Note that, unlike a single-name swap, an index swap is not terminated

at a default event. By integration by parts and Fubini, we get

Dt = E
(∫ T

t

F (t, s)dLs

∣∣∣Ft)
= F (t, T )E(LT | Ft)− Lt + r

∫ T

t

F (t, s)E(Ls | Ft) ds. (33)

The value at time t ≤ T of the premium leg is given by

Pt(S) = S
∑
tm≥t

F (t, tm)Cm(n− E(Ntm | Ft)). (34)

The fair index swap spread at time t is the solution S = St(T ) to the equation Dt = Pt(S).

Formulae (33) and (34) indicate that the index spread depends only on expected defaults

and losses for horizons between t and T . Figure 5 plots the term structure T → S0(T ) of

index swap spreads when the default process N is a self-exciting affine point process.

5.2 Tranche swaps

The index protection seller is exposed to the correlated default risk associated with the

entire portfolio. Investors seeking narrower risk profiles can trade a tranche swap refer-

enced on the portfolio. A tranche swap is specified by a lower attachment point K ∈ [0, 1]
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Figure 5: Term structure of index swap spreads at t = 0 when N is a self-exciting affine

point process with intensity λ = X, where X follows the process dXt = κ(c−Xt)dt+δdJt,

see Errais et al. (2006). That is, K0 = κc, K1 = −κ and H0 = H1 = 0 in the risk factor

dynamics (12), and N is a Hawkes process. The intensity jumps in response to a default,

with random jump sizes that are drawn independently of one another from a uniform

distribution on {0.4, 0.6, 0.8, 1}. The Laplace transform ϕ(u, t, T ) of N is given by formula

(20). The corresponding satisfy the ODEs (19) and (18) are solved numerically. The mean

E(NT | Ft) = Nt−∂uϕ(u, t, T )|u=0. The mean loss E(LT | Ft) = `E(NT | Ft), assuming that

the loss variables `k are drawn independently of one another and independently of N and

J from a common distribution with mean `. We take that distribution to be the uniform

distribution on {0.4, 0.6, 0.8, 1}. The number of names n = 125. The risk-free rate r = 5%.

Unless stated otherwise, we set X0 = 0.5, c = δ = κ = 1. Left panel: Index spread term

structure for each of several values of κ, which governs the exponential decay of the

intensity after an event. The higher κ, the faster the intensity reverts back to the base

intensity c after a default. That is, the quicker the negative impact of a default on the

economy fades away, and the lower the risk of a default cluster. Thus, index spreads are

decreasing in κ. Right panel : Index spread term structure for each of several values of

δ, which governs the sensitivity of the intensity to a default. The higher δ, the larger

the mean impact of a default on the economic state, and the higher the probability of a

default cluster, which generates large losses. Thus, index spreads are increasing in δ.

and an upper attachment point K ∈ (K, 1]. The product of the difference K = K − K
and the portfolio notional n is the tranche notional. In a tranche swap with upfront rate

G and swap spread S, the cash flows are as follows:

• The protection seller covers tranche losses as they occur, i.e. the increments of the

tranche loss Ut = (Lt −Kn)+ − (Lt −Kn)+ (default leg),

• The protection buyer pays GKn at inception and SCm(Kn− Utm) at each date tm
(premium leg, assuming K < 1).
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Figure 6: Paths of the portfolio loss process L and the ordered default times (T k), and

payments of the protection seller in a senior tranche swap. The protection seller is exposed

to the correlated default risk in the reference portfolio. The risk profile is determined by

the location of the attachment points K and K. The riskiest tranche is the equity tranche,

for which K = 0 and K is typically 3 or 10%. The least risky tranche is the super senior

tranche, for which K = 1 and K is typically 30 or 35%. This tranche bears losses only if

all the other tranches are wiped out. The collection of all tranches is called a collateralized

debt obligation, or CDO.

Figure 6 shows a sample path of the loss process and the corresponding payments

of the protection seller. Unlike an index protection seller, a tranche protection seller is

exposed only to a slice of the loss that is specified by the lower and upper attachment

points. The higher the lower attachment point, the lower is the risk of payouts for the

protection seller, and the lower is the fee that the protection seller can require. This is

because the losses must first eat through the subordinated tranches, which provide a safety

cushion. The equity tranche, whose lower attachment point is zero, has no safety cushion:

the equity protection seller must bear any losses until the equity notional is exhausted. It

is the riskiest tranche, and commands the highest premium. In a customized or bespoke

deal, the attachment points are set so that an investor’s target risk profile is met.

The value at time t of the default leg is

Dt(K,K) = F (t, T )E(UT | Ft)− Ut + r

∫ T

t

F (t, s)E(Us | Ft) ds. (35)

This formula is analogous to formula (33) for the value of an index swap default leg. The

latter can be viewed as the default leg of a tranche swap for which K = 0 and K = 1.

24



The value of the premium leg is given by

Pt(K,K,G, S) = GKn+ S
∑
tm≥t

F (t, tm)Cm(Kn− E(Utm | Ft)). (36)

For a fixed upfront payment rate G, the fair tranche spread S is the solution S =

St(K,K,G, T ) to the equation Dt(K,K) = Pt(K,K,G, S). Similarly, for a fixed tranche

spread S, the fair tranche upfront rate G is the solution G = Gt(K,K, S, T ) to the equa-

tion Dt(K,K) = Pt(K,K,G, S). The fair spread and upfront rate depend only on the

value of call spreads

F (t, s)E(Us | Ft) = F (t, s)(E((Ls −Kn)+ | Ft)− E((Ls −Kn)+ | Ft))

on the portfolio loss Ls with strikes Kn and Kn and maturities s between t and T . Figure

7 shows the term structure T → S0(3%, 7%, 0, T ) of mezzanine tranche spreads when the

default process N is a self-exciting affine point process, as in Figure 5.

In analogy to the single-name swap case, we can calibrate a parametric model of the

risk-neutral intensity λ of the portfolio default process N from market spreads of index

and tranche swaps with different maturities and attachment points, all referenced on the

same portfolio. The calibration procedure is illustrated in Figure 8 for the self-exciting

affine point process considered in Figures 5 and 7, for which λ is an affine function of

an affine jump diffusion. The calibrated intensity model induces the market-implied risk-

neutral distributions of the portfolio default and loss processes. It is used to estimate the

arbitrage-free value of a non-traded portfolio derivative, for example a tranche referenced

on the given portfolio but with non-standard attachment points. There is often model risk

associated with this procedure, in that there may be many distinct parametric intensity

models that fit the given market data but imply different prices for a given non-traded

portfolio derivative.

5.3 Other instruments

There is a range of other portfolio credit derivatives that parallel the instruments in the

single-name space. In particular, index and tranche swaps are also traded on a forward

basis. The forward spread curve can be constructed from the spot spread curve using the

arbitrage argument given in Section 4.4 for the single-name case. There are also options

on index and tranche swaps, which are analyzed in Ding, Giesecke & Tomecek (2006).

A collateralized debt obligation can be structured in several ways. Above we have

analyzed a synthetic CDO, which is backed by credit swaps. In a cash CDO, the pool of

reference securities contains straight bonds, loans or other credit obligations. While the

rationale of the cash CDO is similar to that of the synthetic CDO, the cash structure often

has additional features that complicate the analysis. For example, cash instruments such

as bonds or loans generate interest payments that increase collateral. Mortgages can be

retired before their maturity, generating additional pre-payment risk. In order to account
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Figure 7: Term structure of mezzanine tranche spreads S0(3%, 7%, 0, T ) at t = 0 when N

is a self-exciting affine point process with intensity λ = X, where X follows the process

dXt = κ(c − Xt)dt + δdJt, see Errais et al. (2006). That is, K0 = κc, K1 = −κ and

H0 = H1 = 0 in the risk factor dynamics (12), and N is a Hawkes process, as in Figure 5.

The distribution of NT −Nt is obtained via formula (3), and used to calculate the Laplace

transform E(e−u(LT−Lt) | Ft) =
∑

k≥0(f(u))kP(NT −Nt = k | Ft) of the loss, assuming that

the loss variables `k are drawn independently of one another and independently of N and J

from a common distribution with Laplace transform f(u). We take that distribution to be

the uniform distribution on {0.4, 0.6, 0.8, 1}. The Laplace transform of the loss is inverted

to obtain the loss distribution, which is used to calculate the (undiscounted) call value

E((Ls−c)+ | Ft) =
∫ n
c

(x−c)dP(Ls ≤ x | Ft) for 0 ≤ c ≤ n. The number of names n = 125.

The risk-free rate r = 5%. Unless stated otherwise, we set X0 = 0.5, c = δ = κ = 1. Left

panel: Mezzanine spread term structure for each of several values of κ, which governs the

exponential decay of the intensity after an event. The higher κ, the faster the intensity

reverts back to the base intensity c after a default. Right panel : Mezzanine spread term

structure for each of several values of δ, which governs the propensity of defaults to

cluster. The more senior the tranche (i.e., the higher the lower attachment point K), the

more sensitive is the tranche spread to δ. This is because the mass in the tail of the loss

distribution is increasing in δ, and the more senior the tranche the more sensitive it is to

scenarios with large losses.

for such features, the transform analytic methods described above must be abandoned for

simulation methods as in Duffie & Garleanu (2001). Here, simulation is used to generate

cash flow scenarios according to an underlying stochastic model. Simulation schemes for

the affine point processes of Section 3.2 are described in Giesecke & Kim (2007) and

Giesecke et al. (2008).
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Contract MaBid MaAsk Model

0-10 70.50% 70.75% 71.48%

10-15 34.25% 34.50% 32.74%

15-25 316.00 319.00 311.43

25-35 79.00 81.00 77.34

Index 262.85 263.10 262.97

AAPE 2.24%
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Figure 8: Index and tranche market calibration at t = 0 when N is a self-exciting affine

point process with intensity λ = X, where X follows the process dXt = κ(c−Xt)dt+δdJt,

as analyzed in Figures 5 and 7. The loss variables `k are drawn independently of one

another and independently of N and J from a common uniform distribution over {a, b}
with 0 < a < b < 1. Consistent with market practice, we set the expected loss at default

` = E(`k) = 0.6. The parameter vector to be calibrated is θ = (X0, c, κ, δ, a). We solve

the optimization problem minθ∈Θ

∑
i(MaMid(i)−Model(i, θ))2/(MaAsk(i)−MaBid(i))2,

where Θ = [0, 5]4 × [0.2, 0.6] and the sum ranges over the data points. The market mid

quote MaMid is the arithmetic average of the observed MaAsk and MaBid quotes. The

risk-free rate r = 5%. More details are given in Giesecke & Kim (2007). Left panel: Market

bid and ask quotes for the 5 year maturity index and tranches on the CDX High Yield

portfolio of n = 100 names, observed on 5/11/2007, together with model calibrated values

at the optimal parameter vector θ∗ = (0.75, 1.60, 2.58, 2.94, 0.24). The quotes are in basis

points except for the [0, 10] and [10, 15] percent tranches, which are quoted in terms of

a percentage upfront fee. We report the average absolute percentage fitting error AAPE.

Right panel : Smoothed portfolio loss distribution P(LT ∈ dx) for T between 2 and 10

years implied by the calibrated model.

References

Arnsdorf, Matthias & Igor Halperin (2007), BSLP: markovian bivariate spread-loss model

for portfolio credit derivatives. Journal of Computational Finance, forthcoming.

Azizpour, Shahriar & Kay Giesecke (2008a), Premia for correlated default risk. Working

Paper, Stanford University.

Azizpour, Shahriar & Kay Giesecke (2008b), Self-exciting corporate defaults: Contagion

vs. frailty. Working Paper, Stanford University.

27



Berndt, Antje, Rohan Douglas, Darrell Duffie, Mark Ferguson & David Schranz (2005),

Measuring default risk premia from default swap rates and EDF’s. Working Paper,

Stanford University.
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