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History and Introduction

The Malliavin calculus, also known as the stochastic calculus of variations, is an
infinite dimensional differential calculus on the Wiener space. Much of the theory
builds on from It0’s stochastic calculus, and aims to investigate the structure and
also regularity laws of spaces of Wiener functionals. First initiated in 1974, Malli-
avin used it in [31] to give a probabilistic proof of the Hérmander’s theorem and its
importance was immediately recognized.

It has been believed up until near the end of the 19th century that a continuous
function ought to be smooth at “most points”. The only sort of non-differentiable
incidents that were the isolated sharp corners between two pieces of smooth curves,
whose behaviour is similar to the graph of f(z) = |z| around z = 0. It was not
until 1861, when the German mathematician K. Weierstrass first gave an example

of a function that was continuous but nowhere differentiable on R:

flx) = i <§>k cos(3Fmz)
k=0 4
This was a striking phenomenon at the time, as it signals that there could be a
new class of continuous functions that are essentially not governed by almost all of
the calculus developed at the time. For example, the integration by substitution
formula for [ gdf breaks down completely if f is nowhere differentiable.

This type of wild sharp oscillation is not entirely abstract nonsense. In fact, a
path which can be modelled by a continuous nowhere differentiable function was
observed in real life 50 years before Weierstrass’ example, by the English botanist
Robert Brown while observing movements of pollen particles under the microscope.
This was known as the Brownian motion.

In the early 20th century, many physicists including A. Einstein expressed great
interest in modelling quantum particle movements with Brownian motion. FEin-
stein’s paper in 1905 was considered by many as the first breakthrough in giving a
mathematical model to the Brownian motion. In 1923, an American mathematician
Norbert Wiener gave a mathematically rigorous definition (in a measure theoretic
sense) to Brownian motion based on the idea of independent increments. An in-
teresting fact to note here, is that Wiener’s work had appeared before Kolmogorov

formalized the theory of probability which occurred in 1931.

1



However, a problem that remained to be unsolved for another thirty years was

[ saw.

where W is the Wiener process. Almost all of the results known at the time sug-

how one could make sense of

gested it was impossible. Essentially, there is no hope of constructing a Lebesgue-
Stieljes type integral of the form [ f dg if g is of infinite variation - the Brownian
paths have this property.

Between 1942 and 1951, a Japanese mathematician K. Ito was able to give a
reasonable definition of such an integral in probabilistic terms (as opposed to path-
wise). Further, he showed how change of variables were made via a lemma, now
known as [t0’s lemma. It essentially states that if f is a twice differentiable function
in x and t and X; = oW, where W, is a standard Wiener process, then,

of of 1 ,0f

df = =dX, + ==dt + =0

dt.
0X, ot 27 ax?

We see that this formula serves a similar purpose to the chain rule in classical
calculus, but with an extra “correction term” that can be roughly understood as
something to account for the non-zero quadratic variation of Wiener paths. It6
discovered the above only as a lemma, while his ultimate goal at the time was to
prove a martingale representation theorem: If M, is a martingale with bounded
quadratic variation, then there exists a square integrable adapted process f,, such
that

t
Mt:/ fdes-
0

[to’s work really opened the gate to a new world of stochastic analysis. In
particular, people began to realize that there were tools available in stochastic
calculus that can be used to solve problems in deterministic calculus. The Feynman-
Kac formula, first appeared in 1947, and rigorously proven in 1965, was perhaps
the highlight such example, where an initial problem involving partial differential
equations was solved by solving a corresponding stochastic differential equation.
The Ito6 calculus found its immediate applications in diffusion theory and quantum
mechanics, and later in mathematical finance.

One question of particular interest at this stage is to ask for an explicit expression
for f, in the martingale representation. An immediate reaction at this point, taking
into account of the fundamental theorem of calculus, is that the f, term should
correspond to a differentiation type of operation in the probabilistic setting. It
turns out that we have f; = E(D,M;|F;), where D, is the Malliavin derivative.
This is called Clark’s representation.

Malliavin’s initial intentions in developing his calculus really had very little to do

with Clark’s representation. He was working to give sufficient conditions to which a
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random variable possesses a smooth probability density. He showed that this could
be done if a certain matrix involving Malliavin derivatives was invertible and its
inverse is integrable in L? for all p > 1, almost surely. Based on this, and exploiting
the connections between SDEs and PDEs, he was able to give a probabilistic proof
of Hormander’s theorem. There has been an extensive amount of work done to
generalize Malliavin’s ideas for giving regularity conditions of stochastic partial
differential eqautions (SPDE). In 1982, 1984 and 1987, Stroock, Bismut and Bells
respectively have demonstrated three different ways that the Malliavin calculus
could be approached from.

In 1999, the Malliavin calculus found itself yet another playground in the field
of mathematical finance. It is often of interest to investors to know the sensitivity
of the underlying stock price with respect to various parameters. Obviously, this
involves taking derivatives. These sensitivity measures are called Greeks, as they are
traditionally denoted by Greek letters. They are extremely difficult to calculate even
numerically. The main problem is that the derivative term needs to be approximated
using the finite difference method and such approximations can become very rough.
The integration by parts formula obtained from Malliavin calculus can transform a
derivative into an weighted integral of random variables. This gives a much accurate
and fast converging numerical solution than obtained from the classical method.

My thesis will be written in six chapters. Chapter 1 briefly refreshes the theory of
functions of bounded variations, and also some basic definitions of random variables
and stochastic processes.

Chapter 2 will establish the It6 integral, [t0’s lemma and It6’s martingale repre-
sentation theorem. This chapter aims to set a firm foundation for the development
of Malliavin calculus.

Chapter 3 begins with an illustration of the chaos decomposition theorem. Then,
it develops the Malliavin calculus and links it back to the chaos decomposition
to establish some fascinating results. A common aim of chapters 2 and 3 is to
demonstrate precisely how the classical deterministic calculus fails to extend to the
infinite dimensional setting, and how the probabilistic calculus fixes these problems.

Chapter 4 provides an introduction to the first application of Malliavin calculus,
we give the sufficient conditions to which the probability density of a given random
variable is smooth.

Chapter 5 begins by briefly sketching through the basic theory of stochastic dif-
ferential equations and stochastic flows, and their relations with partial differential
equations. In particular, it demonstrates how Malliavin calculus can be mixed with
these ideas to give a probabilistic proof of Hormander’s theorem.

Chapter 6 concludes the thesis by illustrating a very recent development in the
area of mathematical finance, whereby Malliavin calculus is used to give stable

Monte Carlo simulation algorithms.
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CHAPTER 1

Tools From Analysis

The sole purpose of the first chapter is to introduce and revise the main ideas
from analysis that are required to understand and appreciate rest of the thesis.
Section 1.1 on functions of bounded variations is essentially a summary of the key
concepts from [17]. Where we begin by exploring some quite general conditions
for the existence of a derivative and analogues of fundamental theorem of calculus
under Lebesgue’s definition of integration. Section 1.2 will introduce the basics of

probability and random variables from a measure theoretic point of view.

1.1 Functions of Bounded Variation

The set of functions with bounded variation are particularly nice, in the sense that
most of the classical calculus operations such as differentiation are problem free. A
large part of this thesis attempts to resurrect the situation in cases when we are
dealing with functions or paths of unbounded variation, such as the trajectories of
a Brownian motion. Perhaps it would be appropriate to first explore the case when
function has bounded variation, so that we can really appreciate the efforts spent

in studying the unbounded variation case.

Definition 1.1.1. Let P,[a,b] = (zo,1,...,2,) such that a = 2y < 27 < ... <
x, = b. Define 9,, to be the mesh of P,, by

5n = sup |xk — Tg—1]-
k

Definition 1.1.2. Given a function f : [a,b] — C, we define the total variation

over the interval [a, b] as

n—00,0n,—0

(HT'= lm N a(ty) = a(te)].

Moreover, if <f>‘fb < oo, we say f € BV,, where BV, ; denotes the set of functions

that has bounded variation over the interval [a, b].



Heuristically, one could think of (f >‘fb as the total amount of vertical oscillation

of f throughout the interval [a, b]. Therefore, it should be intuitive that for mono-
tone functions f, then (f)¢* = |f(a) — f(b)|, which also implies that f € BV,,.
Moreover, if one could find a finite partition of [a, b], such that f is monotone on
cach of the partitions, then f € BV, ;. However, perhaps against our intuition but

the converse is false: consider the following example,

Example 1.1.3. Let ¢1, g2, g3, ... be an ordering of the rational numbers in (0, 1),
and let 0 < a < 1. Define f:[0,1] — R by

ﬂ@:{aﬂﬁxz%

0, otherwise.

Consider any sequence of partitions P, = (0 = xg, z1,...,x, = 1) of (0,1)... and the

contribution to total variation of each rational point is at most 2a*,

Therefore, we see that f € BV} 1, while it’s clearly impossible to partition [0, 1] into
subintervals /; such that for each j, f is monotone on I;. O

Theorem 1.1.4. (Jordan Decomposition) Let f € BV, ,, then there exist non-
decreasing functions g and h such that f = g — h.

Proof. Define

g(x) = ({17 + f(z))
h(z) = S (N = f(2),

— DN

then, f(x) = g(z) — h(z). Thus we need to check that g and h are increasing. Let
a, € [a,b] with a < 3, then

Q
@

9(8) = g(a) = S (N7 = (N1 + F(B) = f(a))

()T = 1£(B) = f(@)])

[V
S NI~

v

A similar argument shows that A is also increasing, and hence we have constructed

two increasing functions whereby f is their difference. O

Perhaps the most powerful consequence of Jordan’s decomposition theorem is

that it conveniently allows us to generalize a vast number of results that hold true



for monotone functions to functions of bounded variation. The following theorems

plays a vital role in the theory of differentiation.

Theorem 1.1.5. (Lebesgue’s Theorem) Let [ : [a,b] — R be a monotone

function. Then f’(x) exists and finite a.e. in (a,b).

Theorem 1.1.6. (Fubini’s Theorem) Let f, : [a,b] — R be a sequence of
monotone functions such that >~ fo(z) = f(z). Then, f'(x) =", fi(z) a.e.
in (a,b).

Corollary 1.1.7. The statement of Theorem 1.2.4 and Theorem 1.2.5 holds true

for functions of bounded variation.

Theorem 1.1.8. (Stieljes Integral) Let f and g be continuous functions defined

on [a,b], and assume that g has bounded variation. Then,

lim S £ gan) — oo 1)) = / fdg

n—008,—0
exists and agrees for all x} € [x_1, T].
Proof. For each n, let P,[a,b] be a partition of [a,b]. Let
my, = inf{f(x) : x € [xg_1, 2|}

M, = inf{f(x) : x € [zx_1,x1]}

and their corresponding sums,

s =) _mi(g(xr) = g(zr-1))

Sp =Y My(g(xx) — g(xx1)).

k=1

Now consider,

n—00,0n,—0

S—s=lim > Mg(te) — g(teor)) — mi(g(te) — g(te—1))

< sup [ My, — i {g) "



By assumption, (g)‘f’b < 00 and supy, |[My —my| — 0 as f is assumed to be contin-

uous. Hence, we have shown that both sums must agree in the limit. a

Definition 1.1.9. Let f : [a,b] — C. Suppose that for every ¢ > 0, there is a
0 > 0 such that,

o > i [f(di) — flew)| <e
e For every finite, pairwise disjoint, family {(cg, dx)}7_; of open subintervals of
la, b] for which 77, |dy — x| < 6.

Then, f is said to be an absolutely continuous function on [a, b].

Theorem 1.1.10. (The Fundamental Theorem of Calculus) Let f : [a,b] —

R be absolutely continuous. Then,

1. For every x € (a,b), there exists a function f’(t) such that

f(z) = fla) + / " podr.

2. f has bounded variation, and its total variation is given by
= [ il

Remark 1.1.11. A key point to the concept of absolutely continuity is that there
exists continuous functions f such that its derivative f’ = 0 a.e., yet f is strictly
increasing. These functions are called singular functions and we wish to avoid
them. The first example of this kind was given by Cantor. Interested readers may
consult chapter 5 of [17] and chapter 8 of [25]. O

Definition 1.1.12. Let p and v be measures on a measurable space (02, F),
such that for all A € F, u(A) = 0 <= v(A) = 0. Then, u is said to be
an absolutely continuous measure with respect to v. On the other hand, if

pu(A) >0 <= v(A) =0, then we say p is a singular measure with respect to v.

Theorem 1.1.13. (Lebesgue Decomposition) Let p be a measure on a mea-
surable space (§2, F). Then, for a given measure v, j can be uniquely decomposed

as
p==&+n

where £ is absolutely continuous, and 7 is singular with respect to v.



1.2 Random Variables and Stochastic Processes

This section is intended to give some basic definitions to random variables and
stochastic processes, so this thesis would be more self-contained. Readers can feel
free to skip to the next chapter.

Definition 1.2.1. Let T  be a set, (2, F,P) a measure space and (F,E) a probabil-
ity space. A mapping X : (Q, F,P) — (E,&),t € T is called a random variable
X is (Q,F) — (E, ) measurable.

Definition 1.2.2. Let X be a random variable defined on a probability space
(Q, F,P).
1. The expectation of X, denoted by EX is defined by,

/Q 2dP(z).

2. The law of X is a function F' : R — [0,1] defined by Fx(z) = P(X < )
If F'is an absolutely continuous function, we call fx(z) = 0,Fx(z) as t

probability density function of X.

Definition 1.2.3. Let {X,,} be a sequence of random variables. We say
L X,“5X & PweQ: X,(w) = X(w))=1.
2. X, &5 X <« E(|X, — X[P) — 0 for p > 1.
3. X, 5 X < P(|X,—X|>¢e)—0forale>0.
4. X, L X — Fx, (x) — Fx(x) pointwise.

Definition 1.2.4. Let T be a set. A stochastic process X;,t € T, defined over
a probability space (2, F,P) is a family of random variables. For every w € 2, the
mapping ¢t — X;(w) is called the trajectory of Xj.

Definition 1.2.5. A filtration (F;,¢ € R) is defined to be a collection of sub-o-
algebras of F such that F, C F; for all s < t. Further, if F; satisfies,

1. F; = N4 Fs. This is called the continuity criterion.

2. Fy contains all P-null sets.
We say that F; is a standard filtration.

Definition 1.2.6. A filtered probability space is a probability space (2, F,P)
equipped with a filtration 3, denoted by (2, F, F;, P).

Definition 1.2.7. A stochastic process X; is said to be adapted to a filtration F;
if X, is F; measurable. It is said predictable if the map (¢,w) — X;(w) is measurable
with respect to the predictable o-algebra P.

Definition 1.2.8. The predictable o-algebra P is the o-algebra on R x €
generated by the process X;, adapted to F;, with left continuous paths.



CHAPTER 2

[to Calculus and Martingales

I would like to use this chapter to give an overview of Brownian motions, martingales
and Ito stochastic calculus. It begins with a detailed construction of the Ito’s
integral with respect to an abstract martingale. We will then move onto Ito’s
change of variables formula and also give a number of applications, including the
martingale representation theorem. It is intended to develop enough theory to talk
about Malliavin calculus in chapter three. Thus, a number of closely related topics
such as the reflection principle are regretfully left out. Good references to this

chapter are [10], [40], [38] and [28], all of which provides a reasonably full coverage.

2.1 Brownian Motion

Between 1827 and 1829, an English botanist, Robert Brown, discovered that the
movements of pollen particles under the microscope underwent extremely wild os-
cillations. This became later known as Brownian motion. He first hypothesised
that the wild movements was related biologically to pollen particles themselves,
but later he realised that other inorganic particles also exhibited the same type
of motion. Today, the best accepted explanation of such a motion is caused by
extremely frequent bombardments by neighbouring particles. We first look at a
heuristic derivation of how such a motion may evolve in time before giving the for-
mal definition of the Wiener process, a mathematical object that is used to model
the Brownian motion.

Consider the physical movement of such a particle on R. In every At units of
time, a particle is bombarded from either left or from the right with probability 0.5,
and the particle moves Ad units to the opposite direction after each bombardment.
Let ¢;(x) be the probability distribution of the position of particle at time ¢. From

the above physical reasoning, we have

1 1
Yi() = 5%&(%’ — Az) + 51/%—&(37 + Ar).
Subtracting 1, _a.(z) from both sides to give
1
At

() = vicae)) = (sl = A0) = visalo) + Sl + 80) ).



Since the bombardments occurs in extremely small intervals, it makes sense to
consider the limit At — 0 and Ax — 0. However, this needs to be done with care,
as blindly letting At = Az — 0 would imply that

o0 1 (@¢ aw)

ot 2\0x Or

Y

which means that the displacement is constant, i.e. there is no motion! However,
if we let Az = v/ At — 0, we would obtain,

oy _10%
ot 2 0x2

along with the initial condition that

where ¢ is the Dirac -function. Einstein first formulated this model in 1905, with a
number of additional constant terms each with its own physical interpretation. This
initial value problem is equivalent to the heat equation studied by Fourier nearly
a century earlier. It can be solved via a Fourier transform over the direction of x.
Let

o) = [ i,

then our initial value problem becomes,

) _ i)
Yo(s) =1

which can be solved to obtain

Hence, taking the inverse transform (or by inspection), we obtain the probability

density
I a2
@Z)t(l‘) = \/%e 2t

Thus, we see Brownian motions are characterised by independent and identical

increments that are normally distributed with mean zero and variance ¢, where t is

the amount of time elapsed. We are now in position to give some formal definitions.

Definition 2.1.1. (Wiener Process) Let (2, F,F;,P) be a filtered probability
space, and W; be a stochastic process. W, is called a Wiener process with respect
to ft if



1. Wy =0 a.s.

2. W, is F;-measurable for every t.

3. P(we Q:t— W w) is a continuous function in t) = 1.

4. W, — Wy is independent to F; for all t > s and Wy — W, ~ N(0,t — s)

The standard Brownian motion (starting at 0) satisfies the axioms of a Wiener
process. It will be shown later this chapter that it is in fact the unique stochastic

process that fulfils properties 1 - 4.

Remark 2.1.2. Strictly speaking, the Brownian motion and Wiener processes
are two different things. While the former refers to the physical motions of small
particles, the latter is a mathematical model of the former in an idealistic situation.
Some properties of Wiener paths (as we will see) such as almost surely nowhere dif-
ferentiability is in fact false for the physical Brownian motion, since it is impossible

for a particle to be bombarded by its neighbours continuumly often. O

A more formal way of viewing the Wiener process is as a stochastic process taking
values over the set of all possible trajectories. Let C,la, b] be the set of continuous
functions f defined on [a,b] with f(a) = a. Let Q = Cy[0,T] and F = B(Cy[0, b)),
where B(Cy[0,b]) is the o-algebra generated by open sets (with respect to the sup
metric) of Cy[0,T]. The filtration F; in this case would be a sequence of sub-o-
algebras. In 1923, Wiener showed that there is a well defined measure p on this
measure space, known as the Wiener measure. Elements of Cy[0,7] under the
Wiener measure corresponds to the sample paths of the Brownian motion, and the
probability space (Cy[0,T], F, i) is called the classical Wiener space. Readers
are referred to [24] for details in the construction.

The following are some well known properties of the Brownian motion taken
from [24] that are relevant to our development.

1. The Brownian paths are almost surely of unbounded variation on arbitrarily

small time intervals.

2. As a consequence, the Brownian paths, with probability one (with respect to

the Wiener measure), are nowhere differentiable at any point.

Proposition 2.1.3. Let X be a random variable defined on (2, F,P), and let

G C F. Then, there exists a unique random variable Y such that

1. Y is G-measurable
2. E(14Y) = E(14X) for every non-empty set A € F.

Proof. This is an easy consequence of the Radon-Nikodym theorem. a
Definition 2.1.4. (Conditional Expectation) The random variable Y in propo-

sition 2.1.10 is defined to be the expectation of X conditioned on G, denoted by
E(X|G).



Properties of the conditional expectation: Let (2, F,[P) be a probability
space and let G be a g-subalgebra of F. Then,

1. E(aX +bY|G) = aEX + DEY

2. VH € F,E(E(X|G)|H) = E(X|H).

Further properties of the conditional expectation can be obtained in chapter 1
of [10] and [40].

Example 2.1.5. Let W, be a Wiener process, and JF; be the filtration generated by
W;. For s < t, we wish to calculate E(W;|Fs). Observe that Wy is F,-measurable,
and for all A € F,

E(1aW;) = E(14W,) + E(14(W, — Wy)).

By independence, E(14(W; — Wy)) = E(1)E(W; — W) = 0, since Wy — W is a
normally distributed with 0 mean. Therefore, we have shown that Wy = E(W;|F).
O

We give the following definition of a martingale by means to generalize the result

of the previous example.

Definition 2.1.6. Let 7' C R and F; a filtration over €). A stochastic process X,

is said to be a martingale if

1. X, is Fs-measurable for every t.
2. E|X}| < oo for every t.
3. E(Xi|F) = X,

A direct consequence of the definition is that M is a martingale iff M; — M, is
independent to F,. Hence,

E(MSQ - MS1)<Mt2 - Mtl) =0

if (s1,82) N (t1,t2) = 0. Secondly, we observe that EM; = EM, for all martingales
M.

The following is a list of elementary results related to martingales that will be

useful later on. Proofs of these can be found in [10] and [28].

Definition 2.1.7. Stopping Time A random variable 7 : Q — [0, 00) is a stop-

ping time if {w : 7(w) <t} is F;-measurable.

Theorem 2.1.8. Optional Stopping Time Theorem Let M; be a martingale

and let v and T be stopping times with respect to a common filtration F;. Then,

E(M,|F,) =M,



Definition 2.1.9. Given a stochastic process X and a stopping time 7, we define
the stopped process by X7 = X,,,. This is a replication of X, and frozen at time
T.

Definition 2.1.10. M is a local martingale iff there exists a sequence of stopping

times 7, — 00, such that M™ are martingales for all n.

Remark 2.1.11. The concept of a local martingale is of central importance
to stochastic calculus, as we will see later that the stochastic integral of a local
martingale will always be another local martingale. The same cannot be said for

martingales when the integral is taken over an infinite horizon. a

Proposition 2.1.12. Every bounded local martingale is a martingale.

Proof. Let M be a bounded local martingale, so that M7 (w) — M (w) pointwise.

We may apply the dominated convergence theorem to obtain,

E(M;|Fs) = lim E(Mg" F,) = lim X;fn — X,.

n—oo

Hence, every bounded local martingale is also a martingale. O

However, I would like to stress that local martingales are much more general
than martingales. A common misconception is to believe that local martingales
only need to be integrable in order to be martingales. A counter example can be

constructed with the aid of so called It6’s lemma, section 5.2 of [40] has the details.

Theorem 2.1.13. If M is a continuous local martingale with finite first and second

moment and has bounded variation, then M is constant almost surely.

Proof. Without loss of generality, we can assume the constant to be My = 0. Since
M is assumed to have bounded variation, we can apply the fundamental theorem

of calculus to get

t
M} = M§ + 2/ M,dM,.
0

We can further write the integral as a Riemann sum since M is assumed to be

continuous. Hence,

M = Mg + lim 2> M, AM,,.

n—oo 4
=1

M was assumed to have first and second moments, applying dominated convergence

theorem and exploiting independent increments of martingales, we have

n—oo

EM] = Mg + lim 2 "EM, AM,, = M =0.
=1

Since M? > 0, we may conclude that M; = 0 almost surely. O

10



This is an extremely important result for our purposes, as it demonstrates that
the classical integration theory does not apply when we are integrating with respect
to any interesting martingales. I will give an explicit example to further demonstrate
this problem in the following section, and then we will discuss the possible ways of

fixing the problem.

2.2 Construction of the Ito Integral

In this section, we formulate the construction of the Ito integral with respect to
an abstract martingale over [0,7]. Remarks will be made concerning how this

formulation may generalise to obtain an integral over [0, c0).

Definition 2.2.1. Let P, = (to,tl, ...,tn) = {0 =ty <t <..<t, = T} be a
partition of [0, 7], we define At =t —tx_; and AX,, = X;, —X;,_,, and the mesh,

Op = Slép [tk — ti—1]

for k=1,...,n and t;, € P,.

Definition 2.2.2. Given a function f : [a,b] — R. We define the quadratic

variation over the interval [a, ] as

()3’ = ggglo; AF ().

Example 2.2.3. Let W(w) be a trajectory of the Wiener process. Then,

n

(W)5P(w) = lim Y (AW,,)%

n—00,0,—0
" k=1

To compute the quadratic variation directly (path-wise) seems to be a difficult
task! Instead, we shall take a probabilistic approach which will the type of proving
technique we will be using for most of this chapter. Consider,

E(i(AWth —(b- a))2 - E(i(AWtk>2 — (Atk))g

- ZH:E(AWtk)“ + 2(At)E(AW,, )2 + (Aty,)?

_ i(B(Atk)Z — 2(Aty)? + (Aty,)?

< 2t max(Aty) 29,0,

11



where the fourth line was obtained by noting that the kurtosis of a N (0, At) random
variable is 3(At)?. Therefore, we have shown that V2, W = b —a in L. O

Example 2.2.4. The following example shows that the Wiener process is not

integrable in the Stieljes sense. Consider,

n—00,0n,—0

/b WdW = lim Zn: W (tp) (W (te) = W (tx-1))

Next, we evaluate the above using t; = t; and t,_; and call the respective limits
S and S'. If [WdW exists (under Stieljes), then we would expect S — 5" = 0.

However,

n

S=8 =l S (W)Wt = Wteo1) = Wte) (W(t) - W(te-) )

n

=l S () = W ()

= VAW

a,

=b—a

O

The previous example suggests that what is stopping us from defining the
stochastic integral the “usual” way more or less caused by this additional quadratic
variation term that functions of bounded variation did not have. This suggests that
we should study the quadratic variation in more detail before we could give the

definition of a stochastic integral.

Theorem 2.2.5. For every continuous and bounded martingale M of finite
quadratic variation,

1. (M)S* =0 a.s. whent = 0.

2. (M), is everywhere increasing.

3. The process M? — (M), is a martingale adapted to F;.

Proof. Since (M) is required to be increasing, by Theorem 1.1.5, (M )5 has bounded
variation. Hence, if there are two valid candidates A and B for such a process, by
Theorem 2.1.12, the process A — B = 0 a.s. Thus we have proven uniqueness.

For a given subdivision of [0, 00), 6 = {t;c =0 < t; < ...} such that only a finite

number of ¢;’s in each closed interval [0, ¢], we define

(M) =) (M,

i

o
—

— My,)? + (M, — My,)?

i+1

Il
o

12



where k is such that ¢, <t < t;,1. Further, observe that for t;, <t < tx.1,

E[(My,, — My )*|Fs] = E[(My,,, — My) + (M; — My,))?| F]
= E[(My,,, — My)*|F] + (M — My,)*

Thus, for t; < s < tji1,

E[TY (M) — T2 (M)|F.] = E( ST (M, — My + (M, — My + (M, ,, — Ms>2|fs)
(M, — M7

E
E

where the second to last line and the last line is obtained by exploiting the inde-

pendence of increments. Hence,
E(M{ — T (M))|F,) = E(M{ — (M{ — MZ|F,) = M

and thus M? — T?(M) is a continuous martingale.

Now, for any given a > 0 and d,, be a sequence of subdivisions of [0, a] such
that |6,| — 0, we prove that T°" converges in L% Let § and §' be two subdivisions,
and 66" be the subdivision obtained by taking the union of points of 0 and ¢’. Let
X =T%M) —T%(M), and observe that

S

(
(TP (M) = T2 (M) + (T2(M) = T (M) + () (M) = T} (M) | F)
(M} = MZ|F,) + (T2(M) = T (M)) = E(M — MZ|F,)

and hence X is a martingale. Therefore,

EX; = E[(T;(M) — T, (M))*] = E(T,” (X))

a

Using the inequality (z; + x3 + ... + 2,)? < 2(2? + 22 + ... + 22) for real numbers
X1, ..., Ty, We have
T (X) < 2T(T°) + T7(T7))

and thus it suffices to prove that ET%% (T?) — 0 as |6] + |§'| — 0.

13



Let s; € 60’ and t; be the rightmost point of § such that ¢; < s < spi1 < tr41;

we have

To (M) =T (M) = (My,,, — My,)* — (My, — M)

Sk+1 Sk Sk1
= (M, — My)(My, ., + M, —2M,,)
and hence,
Tfél(T(;) < T,f‘sl(]\/[) sup | M, ., + M, — 2M,, .
k

Applying the Cauchy-Schwartz inequality gives,
: : 2
BT (1%) < (B (0FEswp I, + M, - 205, ')
k
By continuity of M, the first factor would go to zero as |0| + |§'| — 0. It suffices to

show that the second factor is bounded by a constant independent of § and §’.
Let A =00' ={0 =1ty < t; < ...} and for simplicity, let @ = ¢,,. Then,

2
(Z Mtk Mtk 1 )
k=1

=2 (T2(M) = TR (M))(T (M) = Ti (M) + Y (My, = My, )",
k=1 k=1

/—\

n

We have shown before that E[T(M) — T4 (M)|F,] = E[(M, — M,,)?|F,], and
hence,

(LA =23 E(M, ~ M) (B0 - T () + S B, - M)
E(Zsup|M Mtk|z —TH (M)

+Sup‘Mtk Mtk 1‘ Z Mtk Mtk 1) )

k=1

= E((Z sup | M, — ‘Mtk|2 + sup | My, — Mtk_1|2)T55,(M)).
k k

a
By assumption, M is a bounded martingale, and hence there exists a constant C

such that [M] < C. Since, E[T2(M) — TH(M)|F,] = E[(M, — M,,)*|F,], we can
establish that ET?% (M) < 4C?. Thus,

a

E(T2(M))? < 4C*(E(2sup |M, — My, |* 4 sup | M,, — M,,_,|*) < 48C*
k k

14



Therefore, we have shown that T has a limit (M)9® as n — oo in L?, and hence in
probability. It remains to show that we could choose (M)y* within the equivalence
class to have the desired properties. For any sequence converging in L?, we may
extract a subsequence that converges almost surely. In particular, there exists a
subsequence of partitions o,, such that Tf”‘“ converges a.s. uniformly on [0,t] to
(M)3* that is continuous. Moreover, the subsequence may be chosen such that

J
To™ < T2, and so (M)9" is increasing on Ugd,,, which is dense on [0,t]. By

s C Ony, and that Ugd,, is dense in [0,¢]. Since for every u < v, we have

continuity, (M), is increasing everywhere. O

Remark 2.2.6. What theorem 2.2.5 is really telling us is that

1. The existence of the quadratic variation for a general martingale M.

2. (M)5" is non-decreasing, and hence a process of bounded variation. Therefore,
classical Lebesgue integration theory can be applied to the quadratic variation
process.

This is the key result in establishing stochastic integration with respect to abstract

martingales. O

Now we would like to state a few propositions that generalises the previous the-
orem. In particular, we would like to extend it to martingales that are unbounded,
like the Wiener process.

Proposition 2.2.7. For every stopping time T, we have (M%), = (M)%.
Theorem 2.2.8. For every continuous local martingale M, the result of the

previous theorem applies. In particular,

sup 17" (M) — (M),"

s<t

converges to zero in probability.
Proof. Let {7,} be a sequence of stopping times defined by
T, = inf{t : |M;| > n}.

Since M is assumed to be continuous, it cannot explode to oo in finite time. Then,
we have 7, — oo and X,, = M™ is a bounded martingale. By theorem 2.2.5,
there is, for each n, a continuous adapted and non-decreasing process A,, such that
Ao =0 and X? — A, is a martingale. Furthermore, (X72,; — A,41)™ is a martingale
and is equal to X2 — A’ ,. By the uniqueness property, we have A7\, = A,.
Hence, for each n, we can unambiguously define (M)/» = A, as clearly we have
(M™)% — (M) being martingales. Letting n — oo in the definition of (M) will

uniquely recover the quadratic variation process (M ),.

15



To prove the convergence property, let d,& > 0 and ¢ fixed. One can find a
stopping time 7 whereby M7 is a bounded martingale and P(7 < ¢) < 4. Since
TA(M) and (M) coincide with T2(M7) and (MT) respectively on [0, 7], we have

P (sup 7200 — (30, > <) <6+ (supl720r7) - (417, > )

s<t s<t

and by theorem 2.2.5, the last term goes to zero as |A| — 0. O

Remark 2.2.9. A frequently-occurring phenomenon in this chapter is that a lot
of convergence result such as above weakens from L? to convergence in probability
when we extend the domain from [0, 7] to [0,00). Their proofs are very similar to
the argument carried out in the above, and will be omitted. Interested readers may
consult [10] and [40] for details. O

Definition 2.2.10. (Covariation) Let M and N be continuous local martingales,

we define

(M, N) = T[(M + M)y = (M = N,
In particular, we have (M, M) = (M).

Theorem 2.2.11. Let M and N be local martingales and let ¢,, be a sequence of
partitions of [0, s]. Define

Tsan(MuN>: Z(Mti+1_Mt)(Nt Ny )7

i i+l PV
then,
2
1. (M, N) 2% v, N,
2. MN — (M, N) is a local martingale.

3. (M, N) is the unique continuous process with the above properties.
Proof. Note that for fixed partitions ¢,

T8 (M, N) = LT3 (M + N) = T3 (M — ).

and so 79" (M, N) LN (M, N) follows by convergence of quadratic variation. Check-
ing 2. is routine algebra, and 3. follows from the uniqueness of the quadratic

variation. O

Remark 2.2.12.

1. The preceding theorem is true for s = oo as well, but convergence weakens
to sense of probability. The proof is again a routine exercise with stopping

times.
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2. Note that (M, M) is an increasing process, and hence it has bounded variation.
Thus it makes sense to talk about [ fd(M, M) or [ fd(M, M) in the Lebesgue

sense.

O

Carrying the idea forward from the previous remark, we have

Proposition 2.2.13. Let a > 0 and 0! = {ty =0 < t; < ... < t, = a} be a
partition of [0, a]. Set t} =t; + \(t;41 —t;), where A € [0,1]. Let M and N be local
martingales and H a bounded continuously adapted process. Then,

li Hy [(Mpy — M, ) (N — N)| =X | Hgd(M,N),
Jim, 37 Al = M)y = M) = [ HAMN)

in L2, This also hold in case when a = 0o, but convergence weakens to the sense of

probability.
Proof. Let (M, N)g i* = (M,N)y» — (M,N),,, and by the previous theorem,

ZHt M —Mt)(th—Nti)—<MaN>§fA} — 0

where convergence is in L?. Since (M, M) and (N, N) are increasing processes and
hence (M, N') has bounded variation. Moreover, integrals in the Lebesgue sense can

be defined via a Riemann sum with respect to (M, N). Hence,

%}iﬂoan[(Mtg = M, )(Npp = Ny,)] = lim ZHt (M, Ny

= lim Z AH,, (M, Ny

where the second to third line is obtained by approximating (M, N);i* with A(M, N )ﬁ“
This error in this approximation tends to 0 uniformly in A since (M, N) has bounded

variation. (write something for case when a = 00). O

Corollary 2.2.14. Let f : R — R be a C! function and f' be its formal derivative.
Then,

waw%ﬂmmmwwwe[ﬂmwmm&

%
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Proof. Since f € C* and M continuous, we have (f(M,,,,)—f(My,)) — f'(My,) (M,
M,;,) as |d| — 0. Hence by proposition,

i+l

lim [(f(Mtz+1) - f(Mti))(Nti+l - N = lim Z f Mt Mt i+l Mti)(NtHl - Ntl>

[6]—0 <= |6]—0
i

- / f/(M.)d(M, N),.

Next, we state a Cauchy-Schwarz type inequality that would lead us to the

O

famous Kunita-Watanabe inequality.

Proposition 2.2.15. For any continuous local martingales M and N, and mea-

surable processes H and K,

/|H\|K||d(MN| <(/H2 (M, M) > (/K2 NN)

holds a.s. for t < oo.

Applying Holder’s inequality to the above with }17 + % = 1, we obtain
Theorem 2.2.16. (Kunita-Watanabe Inequality)
E(/ |\H,||K,||d(M, N)| ) H/ H2d(M, M), /KQNN
0

The main purpose of this result is to provide an upper bound for f A(M,N)s,

which becomes a key step in setting up Itd’s isometry.

We are now in position to set up the Ito integral, but we first should identity
some Hilbert space type structure over the set of continuous local martingales. Let
H? be the space of continuous L2-bounded martingales, that is, for each M € H?2,
we have sup, EM? < co. Let H2 be the subspace of H? such that for every M € H2,
My = 0. This space have a default inner product defined by

(M,N) = /OO M Ngds
0
We can further define an H?-norm to these spaces by
1M][3e = tim (B(MP)2
Polarization of this norm gives rise to an inner product, which thus make H? a

Hilbert space.

18



For each M € H?, we define £L2(M) as the space of martingales with the property
that, if K € £2(M), then

K|, = E / K2d(M, M), < o
0

Again, the norm ||K||y; can be made to an inner product via polarization, and

hence £2(M) is a Hilbert space.

Theorem 2.2.17. [It6’s Isometry] Let M € H?, for each K € L*(M), there is a
unique element of HZ, denoted by K.M, such that

(KM, NY = K.(M,N) = / K.d(M, N),
0
for every N € H?. The map K — K.M is an isometry from L?*(M) into H3.
Proof. Uniqueness is easy, since if L and L’ are two martingales of Hg, such that
(L, Ny = (L', N), then one can establish (L — L', L — L') = (L — L"), = 0. By
Theorem 2.1.13, the only martingale with zero quadratic variation in H(Z) is the zero

process, and hence L = L' a.s. It remains for us to prove the existence part.
We first work with case when M, N € HZ. By the Kunita-Watanabe’s inequality,

‘E(/OOO Ko d{M, N))‘ < /OOO K2d(M, M), /OOO d(N,N),

< K| al [N ]2
Hence, N — E[(K.(M,N))s] is a linear and continuous map on HZ. By Riez

2 2

representation theorem, there exists K.M € H3, such that
(K.M,N)y2 = E[(K.M)oNoo| = E[(K.(M,N))s]

for every N € HZ. Since elements of H2 are L?*—bounded, it follows by an easy
application of Holder’s inequality that they are also uniformly integrable. Hence,

for every stopping time T', we have

E[(K.M)7Nr]

E[E[(K.M)oo|Fi] N7

(K. M)ooN]
(KM, N)")o]
(K.(M, N))r]

[
E[
E[
E[
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Since the choice of T' was arbitrary, it follows that (K.M)N — K.(M, N) is a mar-
tingale. Further,

K|, =E / K2d(M, M),
0

= E[(K?.(M, M))x]
= B[(K.(M, K.M))s]
= E[(K.M)3]

= ||K.M|[3.

This shows that the map K — K.M is an isometry. Now, if M, N € H? instead of
H2, we still have (K.M, N) = K.(M, N), because the covariation of any constant

martingale is always zero. a

The following theorem relates the quantity K.M to a Riemann sum.

Theorem 2.2.18. Let M € H} and K € L*(M) as before; 6% = {to = 0 < t; <

... < t, = a} be a sequence of partitions of [0, a].

n—1
lim > " Ky, (M, — M,) = (K.M),.
=0

15,10

Proof. Consider the case when K is bounded first. Let

n—1 n—1
Tan - Z Ktil(twhti)sén = Z Kti(Mti+1 - Mtl)
i=0 =0

Then, one easily checks that T°" converges to K pointwise, bounded by ||K||s,
and also S% = T° M. Thus, by uniqueness of the isometry, as n — oo, we have
To — M and S — K.M boths in L2, Finally, we relax the boundedness of K
and we could achieve the same result (except now converging in probability) with

an appropriate choice of stopping times. O

Definition 2.2.19. Let M be a continuous local martingale, define the space of

2

(M), consisting of elements K

progressively measurable processes denoted by £

for which there exists a sequence of stopping times 7,, — oo, such that

Tn
E( K2d(M, M>S) < o0.
0

Theorem 2.2.20. The previous theorem extends the choices of K to L% _(M).

loc
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Definition 2.2.21. (It6 Integral) Let M be a continuous local martingale and
K € L2 _(M). The Ito’s stochastic integral of K with respect to M is defined by

loc

t
/ KM, = (K.M),.
0

Remark 2.2.22. Many texts, such as [10] and [28] give the definition of the It
integral as a Riemann sum at a much earlier point of the chapter. I have chosen
an alternative approach, by establishing everything we need to know on quadratic
variation processes first, it makes our lives a lot easier in setting up the It6’s lemma

in the next section. O

Definition 2.2.23. A continuous semi-martingale is a process (X;, F;) which
has a decomposition
X=Xo+M+V

where M is a continuous local martingale and V' a continuous process of bounded
variation, both F; adapted.

Remark 2.2.24. The above decomposition is unique and it is called the Doob-

Meyer decomposition. a

Proposition 2.2.25. (Properties of the Ité integral) Carrying forward the
notation from the previous definition, let Y € L£L*(M). Then

1. The Ito integral is a continuous and linear,

t t t
/stXs=/ stMer/ YsdV
0 0 0

2. The process Z; = f(f Y,dM;, is an adapted L*-local martingale.

In the definition of the Itd integral, we have chosen to use the leftmost point
of each interval as our sample point in constructing the Riemann sum. One may
enquire what would happen if we had chosen some other point instead. It turns
out that as far as convergence is concerned, the choice of the points does not really
matter. The following proposition is an exercise taken from [40], it tells us exactly

how other types of Riemann sums are related with the Ito integral.

Proposition 2.2.26. Let p be a measure on [0, 1], and 0 be a partition of [0,a],

X a continuously adapted process and M a local martingale. We define

S(l; - Z(Mtz‘ﬂ - Mtl)/o f(th + )\<Xti+1 - Xti)d/’[’()\)'

i
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Then,
t ¢

lim Sg‘:/ f(XS)dMs+u/ f(Xe)d(X, M),
0 0

|6|—0

where [i = fol sdu(s).

Proof. Since f € C! and X continuous,

1
Sg = Z(Mti+1 - Mtz)/o f(th + )‘(Xti-H - th)d:u(/\)

= S My = Ma) [0+ PNy = X))

= Z(Mti+1 - Mtz)f(th) + Z(Mti+1 - Mti)(Xti+1 - Xti)f,<Xt¢)A )\du(k)

= Z(Mti+1 - Mtz)f(th) + ﬂ Z(Mti+1 - Mti)(Xti+1 - th)f/(th)
By Theorem 2.2.14,

S (Mo = M) 5 [ X,

7

and by Proposition 2.2.9,

S (M, — Mo)(Xo, — X)) (X)) 5 / F1(X)d(X, M),

7

and hence we have finished the proof. O

Corollary 2.2.27. The Ito integral is the unique stochastic integral that is a local

martingale.

Remark 2.2.28. The case when f(z) = z, and p is a probability measure has a
interesting interpretation. It tells us exactly how the Riemann sum of a stochastic
integral converges when we randomly choose our sample points according to a given
probability distribution. One could interpret it as the law of large numbers for
stochastic Riemann sums. In particular, when p = dy, we recover the It6 integral;
when p = 0,/ we would get the so-called Stratonovich integral, where p, is the
Dirac-0 measure centered at x. It turns out that each of the It6 and Stratonovich
integrals has its own advantages. For example, all Ito integrals are F;-adapted
local martingales which makes numerical calculations very easy. The Stratonovich
integral, on the other hand, transforms in a much more friendlier manner under
change of variables in the sense that it is follows the chain rule of ordinary calculus.
O
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Definition 2.2.29. Let M be a local martingale and X € £2(M). The Stratonovich
integral, denoted by [ .o dM, is defined to be

t t
1
/ X, o dM, :/ XodM; — (X, M),.
0 0

2.3 1t0’s Lemma and Applications
2.3.1 1Ito’s Lemma on R and R"™

Ito’s Formula, originally stated as a lemma, can be thought of as a chain rule for
stochastic calculus. It is perhaps most commonly stated in most undergraduate

textbooks as,

OF OF ~ 10°F
AF, = 5B+ EdtJrQaXth

where B, is the standard Brownian motion process, and F; = F(t, B;), for some
twice differentiable function F'. Here, we see that it actually looks like the chain
rule, with an extra correction term involving a second derivative in it.

The most intuitive way to understand of why it works, is to simply perform a

Taylor series expansion as follows.

dF;, = —dB; + —dt + dBydt + —dt2

oF oF 0*°F 49 0*F 0*F
OB, ot oB? ! dB,0t Ot2

and then argue that dt* = dB,dt = 0, while dB} = dt and hence it would
immediately give us the result.
We now give a more rigorous statement and proof of Ito’s formula, in a more

general setting.

Lemma 2.3.1. (Ité’s Lemma) Let X; be a continuous local martingale and V; be
a process of locally bounded variation. Let f : R* — R be a C? function on (x,v),
such that Fy, = f(X;, V;). Then, a.s. for each t, we have

Lorf
. 072

‘of
o Oz

‘of

Fy, — Fy = 90

(X, V)dX, + | 2(X,, V,)dV, + (X, V,)d(X),

Proof. Let {67} be a sequence of partitions of [0,¢], such that |§|} — 0 as n — oc.

Then, by the mean value theorem, we know there exists a sequence of random times
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n; and 7; € [t;,t;41], such that,

f(Xta VD = f(X(b Vb) + Z (f(th-H? ‘/jtj-f—l) - f(th-Hv V;ij> + f(th+17 ‘/tj) - f(tha V;])>

n—1

0
( g+17 )(WJH B V;) + 8_£(th’ %j)<th+1 - th)

Jj=0

92
o°f
8 2(Xﬂj>‘/;fj)<th+1 - th)2>

= ; ((%(Xtﬂvt ) + )(‘/tj+1 o ‘/;fj)
j=0

+ 2, v

<

X))

1

anX Vi 2V (X X, )?
+ @( tjo tj)+8j ( tiy1 tj)

where of of
8} = %<th+17 VT]') - 8_<th’ sz)
,  O°f 0*f

53':@()(%7%) o 775 (X, Vi)

Since it was assumed that the partial derivatives of f were to be continuous over
[0,¢], they must also be uniformly continuous as [0, ] is compact. Therefore, as
n — oo, we are forced to have [6;'| — 0, and hence both sup, |¢}| and sup; |¢7]
would tend towards 0.

Now it suffices to show that the three terms above converges to each of the
three integrals respectively. We do this in two steps, very much like the approach
we took to prove theorem 2.2.4. First, we will prove theorem 2.3.1 for bounded X
and V', and note that this implies that both 8f and are also bounded, as both
derivatives are assumed to be continuous over a compact set [0,¢]. Having done
that, we will construct a sequence of stopping times that would extend our result
to the general case.

Since V' was assumed to be of bounded variation,

‘of

Lixvav,

n—1
af n—oo
Z %(th+l’ VT]')<‘/;J+1 - VJ) -

J=0

as an ordinary Lebesgue-Stieltjes integral. By theorem 2.2.14,

2 —x) 2 [ x, vyax,,

ta+1 j
T
=0 a
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and by proposition 2.2.9,

n—1

a2f 2 82f
> (—W (X0, Vi) + e?) (Kiyor = X0, 5 | 55 (X0 V),
J=0

Thus, we have proved theorem 2.3.1 in the case when X and V' are bounded.

To extend to the general case, let 7, = inf{t > 0 : |X;| V |V;| > n} and let
X' = Xipr, 11, >0 and V)" = Viur,. Both X and V™ are bounded, therefore
theorem 2.3.1 holds a.s. with £ A n in place of t, as the probability of X never
reaching infinity is one. Hence, theorem 2.3.1 holds in the general case, by letting

n — 00, except convergence weakens to the sense of probability. O

[t6’s lemma can be generalised to higher dimensions as follows,

Theorem 2.3.2. Let X = (X}, X?,..., X") be a continuous local martingale and
V = (VL V2, ..,V") be a process of locally bounded variation. Let f : R*™ — R"
be a C? function on (x,v), such that F; = f(X;, V). Then, a.s. for each t, we have

a-f 7 (2
Ft—FO_Z( 8xZ(XS,V )dX! + /81} XS,V)dV>

=1

+Z ZZ/ axzaxa (X, V)d(X,Y),

=1 j=

Theorem 2.3.3. (Ité’s lemma for Stratonovich integrals) Carrying through the

symbols and notations used in the previous theorem, we have

Ft—FOZZ(/ gg(XS,V) dX? + / f XS,V)dV’)

=1

The proof of Theorems 2.3.2 and 2.3.3 is analogously similar to that of The-
orem 2.3.1 and thus is left out. It is worth commenting that the Stratonovich
integral transforms in the exact same fashion as the Lebesgue integral for functions

of bounded variations.

2.3.2  Representations of Martingales

We have seen from the beginning that the concept of a martingale is something

that generalises the Wiener process. In this section, we will head backwards to see
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how these two concepts are really related. In previous section, we established that

all processes of the form
t
Ft - FO +/ fdes
0

are martingales, where W, is the standard Wiener process. The conclusion of this
section is to show that the converse is also true. In fact, this was one of It6’s initial
motivations for establishing earlier results. For rest of the thesis, we define F; as

the filtration generated by the Wiener process W; unless otherwise defined.

Theorem 2.3.4. (Ité’s Martingale Representation Theorem) Let M, be
a continuous L? martingale of with respect to F,. Then, there exists a unique

continuously adapted process f; € L?, such that

t
F,=EF, + / £ dW,.
0

Proof. For simplicity, I will only prove the one-dimensional case as higher dimen-
sional cases are similar. Before we tackle the problem directly, I would like to

establish a number of lemmas.

Lemma 2.3.5. Fixt > 0. The set of random variables

{¢(Wt1, ...,Wt 11 € [O,t],(b S CSO(R"),n = 1,2, }

is dense in L*(Q2, F;, P).

Proof. Let {t;} be a dense subset of [0,7] and for each n = 1,2,..; let H, =
o(Wiy, ... Wi,). Then H,, C H,yq and F, = o(lJ.~, H,). By the towering contain-
ment property, for each g € L*(Q, F;, P),

g = E(g9|F) = JLHSOE(mHn)

where the limit is taken in L?. By the Doob-Dynkin theorem (c.f. page 7 [38]),
there exists Borel measurable functions g, such that E(g|H,) = ¢.(Wy,, ..., Ws,),
while each Borel measurable functions can be approximated in L? by a member of
. O

Lemma 2.3.6. The linear span of random variables of the type

exp ( /0 ()W) — % /O t h2(s)ds)
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is dense in L*(Q, F;,P), where h € L?[0,t] and h is independent of w (i.e. functions
of the above form form a basis of L*(Q2, F;,P)). The set of processes of this form

are termed as exponential martingales denoted by &.

Proof. Suppose g € L*(€Q, F;,P) and is orthogonal to all functions of the above form
with respect to (£2, 5, P). Then, in particular,

GIA) = /Q exp(M Wi (0) + . + MWW (0))g(w)dP(w) = 0

for all A = (A, ..., \,) € R", and all ¢4, ..., t, € [0,]. Since G()) is real analytic in
A € R”, it follows that it has an analytic extension to the n-dimensional complex

space C" given by,
G(z) = / exp(z1 Wy (W) + ... + 2, W3, (w))g(w)dP(w) = 0
Q

for 2 = (z1,...,2,) € C". In particular, G = 0 on the imaginary axis, namely,

G(iA, ..., i\,) = 0 for all (Aq,...,\,) € R™. For ¢ € C*°(R™), we have

/ (Wi, s Wi, )9 (w)dP(w) = / (QW)‘”/Q( é(y)e"(ylw’”+'“+y"Wt")dy)g(w)dP(W)
Q Q R
= [ ([ ety )y
= @m)™” | O(y)Gliy)dy = 0

where
b= 2m) " [ p(x)e " Vda;
R’ﬂ

we have used the Fourier inversion theorem in to get the first line and Fubini’s
theorem to obtain the second line of the calculations (Folland 1984). Hence, we
have shown that g is orthogonal to a dense subset of £2(Q, F;,P), and we conclude

that ¢ = 0, and the exponential martingales do form a basis of L?(Q, F;, P). O

Having proved the previous two lemmas, it makes sense for us to first prove the

representation theorem on the set of exponential martingales. Define

Y, = exp (/Ot h(s)dW, — %/Ot h2(s)ds>.

A straight forward application of It6’s Lemma shows that

t
n=n+/nmww&
0
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and hence Y; satisfies the martingale representation theorem. Now, we can ap-
proximate a general F' € L*(Q, F;,P), by a linear combination F™ of exponential

martingales. Then for each n, we have
t
Fr(w) =EF + [ f"(5,0)dB.(w
0

where f" € L?[0,t] are continuous F;-adapted processes. Observe that, by Ito’s

isometry

B(F - ) = (B0 - )+ [ - )

- @& - Py CB(f — £

— 0

as m and n tends to infinity. Hence, {f"} is a Cauchy sequence in £2([0,] x ),
and hence converges to some limit f € £2([0,¢] x Q). Moreover, there exists a
subsequence f™ of f that converges to f almost surely on (0,%) x 2. Therefore,
f(t,.) is a measurable function for almost every ¢. By modifying f(¢,w) on a set
of Lebesgue measure zero (in the t-direction), we can obtain a new f(¢,w) that is
Fi-adapted. Hence,

n—oo n—oo

t t
F=lim F, = lim (EF”+ / fgdBS) _EF + / f.dB,,
0 0

where the limit holds in the L? sense. Hence we have shown that the martingale
representation theorem holds for all F' € L*(Q, 7, P).
To show the uniqueness of f, suppose that F' € L*(Q, F;,P) and

F=FEF + /Dt fHt,w)dWy(w) = EF + /Ot At w)dWi(w).

Then, by 1to’s isometry,

t 2 t
_ 1 p2 _ 1 r2y2
O—E(/O (fs fs)dWS) /OIE(fS f)ds.

Hence, f!' and f? disagree on at most a set of measure zero, and therefore the

martingale representation is unique. O

The martingale representation theorem has impact in a number of areas. One
that is particularly important is that by solely developing a calculus on Wiener
processes is enough to solve almost all the problems we want with calculus of mar-

tingales. This is generally highly desirable in dealing with problems in finance. In
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the language of mathematical finance, the existence and uniqueness of the process
fs corresponds to that of replicating hedging strategies. However, in practical situ-
ations, one would like to obtain a formula for the replicating strategy f,, as opposed
to only the knowledge of its existence. To this extent, we will see in the next chapter

that f, can actually be explicitly evaluated using the Malliavin calculus.
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CHAPTER 3

Concepts of Malliavin Calculus

3.1 Introduction and Motivations

We aim to develop a probabilistic differential stochastic calculus over an infinite
dimensional space. The standard example of such an “infinite dimensional space”
is the classical Wiener space, (Cy[0,T], F,u). The theory will be developed on a
more general level, along with some solid examples in more familiar spaces such as
Co[0,T]. A particular focus will be made on illustrating how classical deterministic
calculus fails, and how the problems are fixed by the probabilistic calculus.

Let (2, F,P) be a complete probability space, and L*(Q2, F,P) or simply L?
when there is no risk of confusion, denote the set of square integrable random
variables on that space. Loosely speaking, the Malliavin calculus aims to talk about
quantities such as ‘Cil—i, where I’ € L? and w € Q. To define such a term over a finite
dimensional subspace is relatively straight forward. Essentially the theory boils
down to classical functional calculus. However, we would like to extend this theory
to an infinite dimensional space like L?(£2, F,P). We will do this in four stages. The
first three stages involve looking at mainly L? spaces, where the celebrated chaos
decomposition theorem plays a central role. The chaos decomposition is essentially
an orthogonal basis of the space L*(€, F,P) in terms of multiple It6 integrals; which
makes it possible to approach Malliavin calculus from a Fourier type perspective.
Finally we will give a brief examination of Skorohod integration in LP spaces.

Good references for the material developed in the next three chapters include
2], [3], [4], [11], [23], [19], [31],[32], [35], [37], [41] and [43]. [2] [37] gives a friendly
introduction, while [19], [35] and [41] covers the theory to much greater detail.
[31] is Malliavin’s original paper in 1976, [32] is also written by Malliavin, but it is
written for advanced audiences. [4] and [11] provides very interesting alternative ap-
proaches to the development of Malliavin calculus. [3], [23] and [43] are much more
application focused, but the theory are sufficiently well treated and they provide a

good insight to how Malliavin calculus connects with other areas of mathematics.
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3.2 Ito-Wiener Chaos Decomposition
3.2.1 Multiple Ito Integrals

We will set up the multiple Ito-integrals that are central to the [to-Wiener chaos
decomposition. First, I would like to stress that there are some potential difficulties
with defining the iterated Ito integral. We cannot simply proceed as one does in
ordinary several variable calculus, since It0 integrals are processes that are adapted
to a filtration F;. As a consequence, the ordering of the iteration must agree with
the ordering of time. One approach to fix this problem is

Let T'> 0 be fixed, n € N and S,(T) = {(t1,...,tn) € [0, T)" : t; < ... < t,}. Let
W be a Wiener process adapted to the filtration F;. We would like to make sense

of an iterated Ito integral of the following form,

Jnf:/OT (/Ot (/(:2f(tl,tg,...,tn)thl)...thn_l)thn.

Let k > 2 € Nand ¢t > 0, for an arbitrary function g : R* — R, let g,(u) = g(u, s)
where u € RF"! and s € R. Observe that

1Sk(t)(u7 S) = 1Sk—1(u)1[0’t](s)

for all (u,s) € Si(t). Hence, by Fubini’s theorem, for each g € L?(Sy(t)), we have
gs € L*(Sk_1(s)) for all s € [0,t] and furthermore,

¢
/ g(v)dkv:/ (/ gs(u)dk_lu)ds.
Sk(t) 0 Sk—1(s)

The above identity and Fubini’s theorem allow us to interchange E and fg for
functions in L?(Sk(¢)). Then we can recursively define multiple integrals over Sy (t)

as follows:

Yig(w,s) :=g(s), (deterministic);
YVEg(w,s) = [JY* g(w,u)dW,, (in L?).

where we can understand Y* : L?(Sy(t)) — L2(W) as the operator that performs
the k — 1-fold integral. The next proposition will show us that these operators are
well defined.

Proposition 3.2.1. Let k,l € N and t > 0. Then, Y* : L?(S(t)) — LZ(W)

defines a linear isometry between the Hilbert spaces. Further, for k # [,
(Y*g,Y'h) 2y = 0

for all g € L*(Si(t)) and h € L*(S(t)).
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Proof. There is nothing to prove for k = 1. For k > 1, we proceed by induction to
show that the Y*’s are linear isometries,

Y gl 2y = E( / t(ykgy(s)ds)
= [(Eortosr

- /OtE(/OS(Y’“‘lgs)(u)Qdu) ds
:/Ot (/Skl(s)gg(u)du)ds

= / g*(v)d*v
Sk(t)

= ||9||%2(sk(t)) < o0,

where the third to fourth line was obtained by using the inductive hypothesis. Now,
we prove the orthogonality relations as follows. For each fixed m € N, suffice to
show that (Y, Y“mh)ﬁg(w) =0 for all k € N. First, consider the case k = 1. We

have,

0. Y0 s = ([ t (e mysys) = | g E((Y ) (5))ds = 0,

since ¢(s) is deterministic and Y"™h is a martingale that starts at 0. For the inductive

step, observe that
E((Y*9)(s)(Y**™h)(s)) = (Y g, Y™ h) 2. mp) = (Y g0, Y h) 2wy = 0

for all s € [0, ], by the induction hypothesis. Integrating both sides over [0, ¢] gives
the desired result. O

Definition 3.2.2. For arbitrary T > 0 and f € L?*(S,(T)), we now define the

iterated Ito integrals recursively as follows. Let,
Jof = f

T T
Jnf ::/0 (Y™ f)(s)dW; = /0 (Jn—1fs)dWs.
for n > 1.

We have the following proposition.

Proposition 3.2.3. Letn € N and T > 0. Then, J, : L*(S,(T)) — L*(Q, F;,P)
is a linear isometry. In particular, for n # m, (Jof, Jmg)r2@r.p = 0 for all
f € L*(Su(T)) and g € L*(Sm(T)).
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Proof. J, is the composition of two linear isometries, namely,
L*(S,(T)) — L3(W) — L*(Q, Fr,P) and
f=vir— [orpear,
O

Let L2]0,7]" denote the closed subspace of L2[0,T]" consisting of symmetric

functions, i.e. functions satisfying

f(t, o tn) = f(toq), s tom))

for all permutations o € G,,. The following result from analysis, which we will not
prove, will shed some light as to how should the multiple It6 integrals be extended
to L2[0,T]"

Theorem 3.2.4. Let n € N and T > 0. Then,

HfH%mo,T]n) = n!Hflsn(T)H%?(Sn(T))

for all f € L2([0,T)).
With this result in mind, it is reasonable to have the following definition.

Definition 3.2.5. Let f € L2(]0,T]"), we define the multiple It6 integral of f
by
L.f= n!Jn(f’Sn(T))'

Since [, is merely a scalar multiple of J,, it follows from our previous consider-

ations that [, is a continuous linear operator and

E([nf)2 = HIan%%Q,fT,JP) = ”!HfH%mo,T]n)'

3.2.2  Hermite Polynomials and Chaos Decomposition

We have developed a machinery that allows us to talk about multiple Ito-integrals
of symmetric functions. In particular, we will consider functions in L2([0,T]") of

the form,

G (21, .y ) = Hg(xz)

where g € L2([0,T)).
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Definition 3.2.6. The n-th Hermite polynomial is defined by,

2y d 2
ho(x) = (—=1)"elZ)
(2) = (1) ="

_z_
2

One can also obtain these via the Gram-Schmidt process. The first of these
polynomials are, ho(z) = 1,hi(z) = x, he(z) = 2* — 1 and hz(x) = 2% — 3z. [37]
provides a very thorough discussion on the construction and properties of Hermite
polynomials, we will assume them well known.

Given a > 0, we define

H,(z,a) = Va"h, (%)

We have the following lemma,

Lemma 3.2.7. Let x,t € R and a > 0, then

Therefore, without loss of generality, we may assume that a = 1. Let 7,(t) = x — t
ﬁ 2

IEQ €T
and g(z) = e~ 7, so that e~ 2 = e2 (go7,)(t). Apply Taylor’s formula to g o 7,

gives
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It can be further checked by elementary calculus that

0 19> 0
%Hn(x, a) =nH, 1(x,a) and <§@ + %)Hn(fﬁ, a) =0.

This allows us to prove the following theorem.

Proposition 3.2.8. Let T > 0 and g € L*([0,T]). Then, g™ € L2([0,T|") for all
n € N and,
I(9®") = Hu(Xr, (X, X)1)

where X, := [ g(s)dW,

Proof. We shall prove this by induction on n. Since hi(x) = x, basic algebra shows

that Hi(x,a) = = also. Therefore, the statement we are proving reduces to

I(g) = Xr = / g(s)dW,,

which is true by definition. Now assume the statement is true for some n, and let
¢n+1 = g® et ’S Then7 fOI' au ﬁxed s € [07T]7 ¢n+l(u7s) = <g|[0,s})®ng<8)7

where u € S, (s). From the definition of I,,1, we have

n+1 )

L1 g®n+1 (n+ D ny1(dnga)
= w0t [ Y,
=(n+1)! / / ¢>n+1 (u, r)dW,dW;
n—l—l / / g‘[05]®n)dW dW,
0t 1) [ GO,
0
T
=(n-+ 1)/ 9(s)H, (X5, (X, X)s)dW;
0
where the final step follows by the induction hypothesis. On the other hand, using
the previous remark, together with Itd’s lemma applied to H,, 1 (X7, (X, X)7), we
have

H (6, (X, X)) = (1) [ " H (X (X, X)),

— (n+1) / H,(X,. (X, X).)g(s)dW,.
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Thus we have established that

L1 (") = Hyr (X, (X, X)7).

Remark 3.2.9. The set of random variables,

{XT XT—/OTg<s)dm}

for some g € L? is called the Cameron-Martin subspace of (2, Fr,P). In the case
of Q = ([0, T], the set of allowed ¢ is typically the set of functions with square

integrable derivatives, and the forms a dense subset of Cy[0, 7. O

We are now in position to complete the proof of the theorem.

Theorem 3.2.10. (It6-Wiener Chaos Decomposition) Let T > 0 and F €
L2(Q, Fr,P). Then there exists a unique sequence f, € L([0,T]"), such that

F=EF+) IL(f)

n=1

and

HFH%Q(Q) =EF? + Zn!anH%?([O,T})'

Proof. Let Xp = fo s)dWs, and define the stochastic exponential of X as follows,

e}

1
—n(g”
n=1 n:

1
= —Hy (X7, (X, X)r
n=0 n'

where the second equality comes from applying the previous proposition. Since the
H,’s are bounded by a polynomial, this infinite series converges pointwise on €.

Moreover, using elementary calculus shows that
X7 = E(X)re 31191z o2y

Recall that Lemma 2.3.6 states that,

1. elo 96)Ws ¢ L2(Q, Fp P), for all g € L*([0,T]).

2. {elo 9= . g e 12([0,T])} is a dense subset of L2(, Fr, P),
and thus, £(X)r = Z € L*(Q) as well.
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Let F' € L*(Q,Fr,P) be given. By lemma 2.3.6, there exists a sequence (,
belonging to the linear span of the set {efo 9= . g € [2([0,T])}, so that ||F —

C"HL?(Q) — 0. Each ¢, can be written as a finite sum of the type

ln
k=1

with oy, € R, gi € L*([0,T]) and X% = fo s)dW;. By theorem 2.3.6, and previous

considerations, each stochastic exponential 5 (X k)T can be written as

=Y
' 7

m=0 m

so that ¢, = > °  Ju(¢rn) with {¢ : n € N} C L*(S,,(T)). Orthogonality
and Itd’s isometry now lead to ||Z; — Zj||%2(m =3 ot — ¢, ||L2(Sm for all
i,j € N. Thus, (¢! )ien is a Cauchy sequence in L*(S,,(T)) for every m E N. By
completeness, there exists a limit ¢,,, € L?(S,,(T)) with ||¢,, — (bjnH%Q(Sm(T)) — 0 as
i — 00, and thus we see that > °_ ||¢n — &L, ||LQ(Sm — 0 for i« — oo. Now, by
orthogonality and [to’s isometry again, we see that (Cn)neN is a Cauchy sequence
in L*(Q), and so there exists ¢ := > Jn(dm) € L*(2). Uniqueness of the limit
now implies that

F=(= Z Jm(¢m)'
m=0
To finish the proof, we may extend each ¢, trivially to a function v, € L*([0, T]™)

and consider then the symmetrization wAm of Y,

o = % S o A, € L2([0,T)™),

‘o6

where A, (t1, ... tm) == (to(1), -, tomy) for all (t1,...,t,,) € [0, T]™. Since A, (S (T))
has no common points with S,,(T") for all o # 1, the definition of v, implies that
(Ym0 Ag)ls,.(r) = 0 for all o # 1. Therefore, wAm\sm(T) = %@n, and we obtain

F:iJm (6m) EF+ZI
m=0

Moreover, theorem 3.2.4 implies that

|F||L2 Z ||¢m||L2 (Sm(T)) — Z m!||¢m||%2([0,T])m
m=0

Thus, we have established the chaos decomposition theorem. O
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Remark 3.2.11.

1. The approach I took to establish this theorem is somewhat non-standard. The
more popular approach, as taken by [35] and [37] for example, is to establish

that
2(Q, Fr,P @ Hy

where H,, is the space spanned by the set h, (W;,). One then show, that each
of the H,,’s can be related to the limit of a discretisation of the multiple Ito
integral. The advantage of that approach is that no prior exposure of Itd’s
isometry is required, but this makes the proofs are somewhat longwinded. For
this reason, I have chosen a more geometric type of argument which relies on
to a very large extent of [t0’s isometry.

2. The decomposition L?(Q2, Fr,P) = @7, H,, was first known by Wiener before
any stochastic integration theory had appeared. The elements in H, were
traditionally known as Wiener chaos. In 1951, It6 showed in [22], that these
Wiener chaos can in fact be recognised as multiple It6 integrals.

O

3.3 The Malliavin Derivative

This section is devoted to the development of a differential calculus on an infinite
dimensional measure space like LP(Q2, F,P). Before we begin, let us recall some
ideas from functional analysis. [ will first demonstrate how far these ideas can
be pushed until the approach becomes problematic. I then introduce some new

probabilistic concepts to fix these problems.

Definition 3.3.1. (Fréchet Derivative) Let X and Y be Banach spaces and let
U be an non-empty open subset of X. A mapping f : U — Y has a directional
derivative at x € U in the direction of v € X, ||v||x = 1 if

fx +ev) = f(x)

. d
D, f(z) = lim 5 = @t ev)l—o

exists. If D, f(x) indeed exists, then we call it the directional derivative of f (at
x in direction of v). Moreover, we say that f is Fréchet differentiable at z € U

if there exists a linear operator A : X — Y such that

o I ) = £(x) — ABlly

=0.
h—0 [IAllx

If this is the case, we call A the Fréchet derivative of f at x.

We now try to apply the definition of a Fréchet derivative to classical Wiener
space (2, F,u), where Q = Cy[0,T] and pu is the Wiener measure. Observe that
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under the sup-norm, Cy[0,7] is a Banach space, which has a densely embedded
Hilbert subspace H'!, defined by,

H'={h € Cyl0,T]: W € L*[0,T]}.

We call H!, the space of all continuous functions with square integrable derivatives,

the Cameron-Martin subspace. We equip H! with an inner product defined by

(9. 1)1 = / W () (t)dt

The fact that this is dense in C[0,7] is a consequence of the Stone-Weierstrass
theorem. It turns out that to obtain a theory involving derivatives in all directions
is still an open problem (see chapter 4 of [37] for details). Thus, we will first
restrict ourselves to defining a directional derivative of a random variable F' only in
the directions in the Cameron-Martin subspace. We will later see that this theory
generalises quite easily to allow derivatives in directions of the so-called isonormal

Gaussian processes.

Definition 3.3.2. Let F': 2 — R be a random variable. We say F' has a derivative

in the direction of v, where

o= [ o(s)ds, g e L(0,T),

in the strong sense at w if

Flw+2y) = F)
15

d :
D, Fw) = T-F(w+ 7)o = lim

exists in L*(Q2). If in addition there exists ¥(t,w) € L*([0,T] x ), such that

D) = [ wltwlgla

then we say F' is Fréchet differentiable at w, with Fréchet derivative defined
by
D, F(w) = ¢(t,w)

and we thus D, (F) = (D,F,~). The set of all Fréchet differentiable random vari-
ables will be denoted by D ».

Remark 3.3.3. We can understand

T
| uttw
0
as a matrix multiplication in continuous dimensions. O
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Example 3.3.4. Let Q = ([0, T] be a Banach space, H = L?([0,T]) and h € H.

Suppose that . .
Flw) = ( /0 h(s)dWs) () = /0 h(s)duw(s).

If ~(t fo s)dWy for some g € H and t <T. , then

Flh+ey) = / F(8)d(w(s) +v(s)

_ / Fets) e [ S6)ats)as

F(w+m / £(s

for all € > 0. Therefore, DtF(w) =¢(t,w) =h(t) forallt € [0,T] and w € Q. O

Hence,

Following a standard procedure in analysis, we introduce a type of Sobolev norm.

Definition 3.3.5. Let D; 3 denote the set of Fréchet differentiable random vari-
ables F' with the Sobolev norm,

1Fll2 = /11 + IDFI a0 110y < 00

At this stage, we would like to do the following two things:

1. Generalise the concept of a derivative to more general measure spaces.

2. Hope that D; 5 is a Sobolev space under the norm ||.||1 2.

Unfortunately, a derivative in the sense of Fréchet will not allows us for any of
these. The reason is that in general, we will be interested in random variables F' that
are defined P-almost surely, while the Fréchet derivative is implicitly dependant on
the continuity of F' with respect to some topology. For this reason, it is necessary
that our notion of derivative should not depend on any topological structure of €2,
that is, we need a derivative which acts in the weak sense.

To address the second problem, if we are working in the classical Wiener space, it
is evident that the existence of a Fréchet derivative of a random variable F' depends
on the existence of a continuous version of F. The following example (taken from
an exercise in section 1.2 of [35]) demonstrates the existence of a random variable,
I that do not possess a continuous version. Moreover, there exists a sequence of
Fréchet differentiable random variables F;,, — F' pointwise. This demonstrates that
D; 5 is not complete, and hence cannot be made into a Sobolev space as we hope it

would be.
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Example 3.3.6. Let W = {W, : ¢t € [0,T]} be a one dimensional Wiener process
defined on a complete probability space (€2, F,P) with natural filtration F;, and
h € L?[0,T]. Consider the random variable

Fe /OT h(t)dW,.

We claim that F' will not have a continuous version if there does not exist a cor-
responding signed measure p on [0, 7] such that h(t) = u((t,1]), for all ¢ € [0, 1],

Lebesgue-almost everywhere. O

Proof. Suppose F' has a continuous modification, that is, there exists G € Cy[0, T
such that G = F, P-almost surely. Moreover, linearity of the Ité-integral implies
that G : (5[0, 7] — R is a continuous linear functional. By Riez representation
theorem, for each w € €, there exists g, € Cy[0, T such that,

6 = ([ Th(t)dwt) @- ety

Application of integration by parts (corollary 2.3.4) shows that

/OT go(t)w(t)dt = (/OTh(t)th> (w) = —/OTw(t)dh(t) LK

for some constant K. The expression on the far left is an honest Lebesgue integral,
thus forces — fOTw(t)dh(t) to be also a well defined integral. Hence there exists
a signed measure p such that h(t) = u((¢,7]). Consequently if h(t) does not
admit a corresponding p, then the random variable F' will not have a continuous
modification.

On the other hand, we know that dh(t) can be made into a signed measure if and
only if h(t) has bounded variation on [0, 7). Let h(t) to be any continuous function
of unbounded variation so that F' ¢ D; . For such an h, we choose a sequence of
differentiable functions h,,, such that h,(t) — h(t) uniformly on [0,T]. Let

T
0

Then clearly F,, € D;, for all n, and by example 3.3.6, we have D, F,, = h,(t).

2
Hence, F}, is a Cauchy sequence under the ||.||; 2 norm. But, F, L F,and F ¢ D 5.

i.e. the space D 5 is not complete. O

In conclusion, we see that anything remotely depends on the topology of €2 will
be doomed to failure, and the Fréchet derivative is not sufficient in order to extend
the theory to a more general setting. To remedy this, we introduce the Malliavin

derivative, a generalisation of the Fréchet derivative defined in the weak sense. The
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Malliavin derivative give the solution to both of the two problems that we have

encountered.

Remark 3.3.7. A close analogy of the relationship between Fréchet and Malli-
avin derivative for random variables F', is the relationship between Riemann and
Lebesgue integration for some function f. The definitions of both Riemann and
Fréchet sets up the theoretical foundation at an intuitive level, yet both approaches
had a common problem of the domain being an incomplete space. One of the main

purposes of the work of Lebesgue and Malliavin serves is to solve this problem. O

The set of directions in whom Malliavin differentiation is defined is the normal
generalisation of the concept of a Cameron-Martin subspace, the space of so-called

isonormal Gaussian processes.

Definition 3.3.8. A stochastic process W = {W(h), h € H} defined in a complete
probability space (€2, F,P) is an isonormal Gaussian process (on H), if W is a

centered Gaussian family of random variables, such that

(W(h),W(g))a = (h,9)u
for all h,g € H.

Example 3.3.9. Let Q = L*0,7] and h € Q, and if for all T > 0,

W (h) = / " h(s)aw.,

then observe that for each g € €,

(W (h), Wr(9))a :E( /0 ' h(s)dW,, /0 ' g(s)dWs> - /0 ' F(5)g(s)ds

where the last equality was obtained by Itd’s isometry. Hence, {W (h) : h € L*[0,T]}

is an isonormal Gaussian process. a

Remark 3.3.10.
1. Suppose H be a Hilbert space and for h € H, let W (h) be an isonormal

Gaussian process. Then the map h — W (h) is a linear map. For any A and
€ R and g,h € H, we have

E(W (A A+ pg) — AW (h) — uW (g))
= [IN2 + gl 3 + NIRIE + 2 llgl 1
= 2X\(Ah 4 pg, h) g — 2u(Ah + pg, g) i + 2Mu(h, 9)
= N[|nll5 + 1 lgllF — MO+ pg, h) g — p(Nh + pg, 9)u + 2\ u(h, 9)
=0
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The mapping h — W (h) provides a linear isometry of H onto a closed sub-
space of L%(Q), F,PP), consisting of zero-mean Gaussian random variables.

2. One can always associate an abstract Wiener space to a Hilbert space H. That
is, a Gaussian measure p on a Banach space €2, such that H is continuously
injected onto €2, with the following inclusions, 2* C H* ~ H C (), dense,
then

[ e utay) = 3 lalfy
Q

for any x € Q*. Readers are referred to section 1.4 of [19] and [30] for a
detailed construction of Gaussian measures on general Banach spaces.

This is in fact a very popular way of generalising the notion of differentia-
tion from classical Wiener spaces, it is pursued by [4],[11], [19] and [23]. In
such cases, the probability space €2 is again endowed with a reasonably nice
topology, however such topological structures are redundant as the concepts

we introduce from this point are aimed to hold on general measure spaces.

O
Let C5°(R™) denote the set of infinitely differentiable functions f : R" — R,

such that f and its partial derivatives of all orders have polynomial growth. Let S
be the set of all smooth random variables, such that if F' € S, then there exists
hi, ..., h, € H such that

F = f(W(hy), o, W(ha),

where f € C>°(R"). Let P, S, and Sy be the set of smooth random variables of the
above form such that f € Rlzy,...,z,], f € Cp°(R™) (f and its partial derivatives
of all orders are bounded) and C§°(R™) (f has compact support) respectively. Note
that P C S,8) C S, C S, and that both P and Sy are dense in L?(2) (see section
1.2 of [35] for detailed proof).

Definition 3.3.11. The Malliavin derivative of a smooth random variable F'

of the above form is the stochastic process {D;F,t € T'} given by

DF=Y ;Z (W (h)s ooy W (R i(F):

We will drop the subscript ¢ where there is no risk of confusion.

Example 3.3.12. Consider the case when f(z) = z, so F' = W(h). Then,
trivially we obtain D;W(h) = h(t). This agrees with what we obtained for the

Fréchet derivative. O
In fact, we have a much stronger result.
Proposition 3.3.13. Let F be a smooth random variable over Cy[0,T] and H*

be its canonical Cameron-Martin subspace. Then if F' € D, 5 and D, F' = D, F, for
all H'.
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Proof. Let h,hy, ho,...,h, € H'. Since SUDse(0,7] E|W,(g)|Y < oo for all n € N and
g € H', we see that

(DE, h)yg = lim ~[F( (hs) + e, Bt oW () + €, ) = FOV (), W ()]

where the chain rule (c.f. chapter 7 of [9]) for Fréchet derivative was used to obtain

the second line. O

Remark 3.3.14.
1. Since S is dense in LP(£2), intuitively we would like to define the Malliavin

derivative of a general F' € LP({2) by means of taking limits. However, there is
still one potential problem. Suppose {F,} and {G,} are two sequences both
approaching F' under the L? norm. There is no guarantee at this stage, why
should DF, and DG, should also approach the same limit. This problem
will be solved in the forthcoming theorem, where we establish the so called
closability property.

2. When working with a general measure space (£2, F, P) that may not necessarily
be endowed with a topology, perhaps the closest analogy to “continuous maps”
would be the closure of the set of smooth maps. For this reason, we first
defined the Malliavin derivative over the set of smooth random variables, and
we will prove that such a derivative is stable under taking limits, and hence
obtain its closure.

(Il

We would like to prove that D is closable as an operator from LP(€2) to LP(Q2, H),
and thus hope to define the Malliavin derivative of a general object F' by means of
a limit. Before this is possible, we need to introduce the idea of the product rule

for differentiation and also the integration by parts formula.
Lemma 3.3.15. Let F,G € S, then D(FG) = G.DF + F.DG.

The proof of this lemma is a direct consequence of the definition of the Malliavin

derivative, and also the product rule for ordinary calculus.

Lemma 3.3.16. If F € S and h € H, we have

E(DF,h) g = E(FW (h)).
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Proof. Let {e,}nen be a complete orthogonal system of H. Without loss of gener-

ality, we may assume that h = ey, and that F'is of the form
F=f(W(e),...,W(en)),

where f € C>°(R™). Let p,, denote the n-fold Wiener measure, then

of
E(DF = —
P
= f(x)z1dp,(x)
Rn
= E(FW(h)),
and hence the lemma follows. O

Lemma 3.3.17. Let F,G € S, and h € H. Then,

E(G(DF, h)y) = E(—F(DG, h)y + FGW (h)).

Proof. Apply the integration by parts formula to F'G to obtain,
EFGW (h)) =E(G(DF,h)g) + E(F(DG,h)y)
and the lemma follows. a

Theorem 3.3.18. The Malliavin derivative D : LP(2) — LP([0,T] x Q) is closable

as an operator.

Proof. Tt suffices to prove that if a sequence of smooth random variables { F} } ),

p(T2
0, and DF}, LTI, ¢, then € = 0 in the sense of LP(L?[0, T}, Q), since S is dense
in LP(§2). Let G € Sy and h € H. Then by the previous lemma, we have for each
keN,

E((§, h)uG) = lim E(G(DFy, h)u)

k—o0
= klim E(—F,(DG,h)y + FL,GW (h))
= 0.
The last equality holds since F} converges to zero in LP, and both G and DG were

assumed to be bounded. Since the choice of G was arbitrary in &, and that S is
dense, this implies that & = 0. O
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Definition 3.3.19. (Malliavin Derivative) Let F' € LP(Q2) and {F,,} a sequence
of smooth random variables converging to F' in LP. We define, the Malliavin deriva-
tive of F' to be

DF = lim DF,.

n—oo

Remark 3.3.20. To see the above definition is well defined, we would like to verify
that if F,, — F and G,, — F, it follows that lim,,_.., DF,, = lim,_,., DG,,. To see
this, consider H,, = F,, — G,,, so that H,, — 0. The preceding theorem implies that
DH, — 0, and hence DF' is well defined. O

Definition 3.3.21. We will denote the domain of D in LP(§2) by D ,, and we

equip this space with the norm

1F 1o = (1F 120 + IDFIE 20 mcy)

for every F' € Dy,

We have apparently two different derivatives at this stage, and we wish to inves-
tigate the relations between them. By lemma 3.3.13, we know that if F' € S, then
DF = DF. Combining definition 3.3.19 and theorem 3.3.18, we have DF = DF
for all F' € D12 ND; .

Example 3.3.6 showed that Dy 5\ Dy # 0. On the other hand, it is well known
that Dy \ Dy # 0 (c.f. [37]). The reason is that the Fréchet derivative is defined
by a local property. But to prove the closability criteria for Malliavin derivatives,
we had to assume that F' € LP(£2), which is a global condition. Therefore, it is no
surprise that Dy o\ Dy o # (), as I can be locally smooth to accommodate for taking

Fréchet derivatives, yet globally not integrable.

Definition 3.3.22. We can further make D, » into a Hilbert space by equipping

it with the inner product

for F, G c DLQ.

Furthermore, we shall define the iterated derivatives of k-times weakly differen-

tiable random variables.

Definition 3.3.23. Let F' be a smooth random variable and k a positive integer.
We define
Df , F=DyD,..DyF.
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Let Dy, denote the set of all k-times differentiable random variables, subject to

11 = (1F e +ZHDJF||W[OT o ) < 0

In particular, we define,
Dk,oo = ﬂ ]D)k,p

1<p<oo

and

Do = ] Di.oo-
keN

Remark 3.3.24. Note that the derivative D¥F is considered as a measurable

function on the product space [0, 7] x Q. O

For higher order derivative operators D*, we also have a closable condition

analogous to that of D. See section 1.5 of [35] for proof.

Proposition 3.3.25. Let {F,,n > 1} be a sequence of random variables in Dy, ,,,
with k > 1, and p > 1. Assume that F, Y@, g and sup,, || Fullkp < oo, then
Fe Dk,p-

So far, we have given a rigorous but not so instructive definition of the Malliavin
derivative. The following theorem will tell us how the D operator behaves in the
L? setting, with respect to the orthogonal basis we constructed from the Wiener

chaos decomposition.

Theorem 3.3.26. Let F' € L*(Q)), with chaos decomposition,

F =3 In(fn)

m=0

where f,, € L>(S(T)™). Then F € D, 5 if and only if

Z mm!”fm”%?([o,T]m) <0
m=1

In case when the above hold, we have

DF = " mIp_1(fm)

and that -
||DF||%2([0,T]><Q) = Z mm!”fm”%?([o,T]m)-
m=1
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Heuristically, this theorem tells us that the Malliavin derivative essentially re-
moves the iterates of multiple It6 integrals as ordinary operators of differentiation
do to polynomials. This intuition can be made rigorous via the so called “Wick
product”, where It6 integrals can be recognised as algebras of Wick polynomials.
Its applications span from quantum field theory to fractional Brownian motion and
stochastic PDEs. Readers are advised to read [37] for an introductory treatment,

and [18] for a more detailed study.

Proof. Let f,, be a sequence of square integrable functions over [0,T]™, W(g) an

isonormal stochastic process for some ¢ in a Hilbert space H, and let

N

FN =" Lu(fm)-

m=0

By proposition 3.2.8, and using the fact (W, W), = T, we have

D,FN =" hl, (W(g)g(t) = > hue1(W(g))g(t) = > mIp_1(fu(u,1)).

for some u € [0,7]™'. By Itd’s isometry, the I, ; terms belongs to L*(Q2), and
hence DFY € L2([0,T] x Q) and F¥ € Dy 5 for every N € N. Thus it remains to
find conditions in order that DFY is stable as N — oo. Let [ be a square integrable
symmetric function in n variables, and L = I,,(I). Then, both Fy and L are smooth

random variables; so we can apply lemma 3.3.15 to obtain,

lim E[(DFY h)yL] = lim E[-FN(DL,h)g + FNLW (g)]
=E[-F(DL,h)g + FLW (g)]
=E[(DF,h)gL],
where the second line is obtained by the dominated convergence theorem and where
Gy o)
Now it remains to show that the derivative is convergent in the D 3 norm. For

N > n, we have

E[(DFY, h)yL] =E {(n + 1)1, (/OT fria (s t)h(t)dt) L} :

which means the projection of (DF, h)y onto the n-th Wiener chaos is

I, (/OT an(.,t)h(t)dt) |
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Hence, if {e;} is an orthonormal basis of H, we obtain that,

*[53 (/ o) |

=1

Z [(DF, ez

me'HmeL?(OT]

= HDFHLQ([O,T]XQ)

< 00,

which completes the proof. O

We still need a final ingredient, a chain rule to govern the differential operator

under composition of maps; and Leibnitz rule to govern differentiation of products.

Theorem 3.3.27. (Chain rule) Let ¢ : R™ — R be a continuously differentiable
function with bounded partial derivatives. Suppose that F = (F',..,F™) is a
random vector, with F* € Dy, for i = 1,2, ...,m. Then, ¢(F) € D;, and,

— J¢

D) =X 5,

(F)DF',

Theorem 3.3.28. (Leibnitz Rule) Let I be a subset of {t1, ..., t;}, and |I| denote
the cardinality of I. Then, we have

The following corollary is a consequence of the chain rule and Leibnitz rule

applied simultaneously.
Corollary 3.3.29. Let ¢ € C;°, and F' € Dy. Then, ¢(F) € D

The proof of the preceding theorems are identical to the case of ordinary calculus,
as the Malliavin derivative for smooth random variables are defined via formal
differentiation, and the closable property allows us to approximate the Malliavin

derivative of an arbitrary LP random variable by that of smooth random variables.

3.4 The Skorohod Integral

In this section we consider the dual operator of the Malliavin derivative D*, and we
will primarily focus on the case for D* acting on L*(Q2). An interesting property of
the dual is that it actually coincides with the It integral in the sense that D X =
fot X dW,, for 1to integrable processes X. Moreover, the [to integrable processes
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forms a proper subset of the domain of D*. One could view D* as a generalisation of
the Ito integral, and hence it has been given the name the Skorodhod integral. The
Skorodhod integral and the Malliavin derivative are related by the integration by
parts relation, essentially a generalised statement of lemma 3.3.15. The integration
by parts formulae have some quite significant impacts in many areas of applications
that will be described throughout chapters 4, 5 and 6.

Let p,q > 1 be such that p~! + ¢~! = 1. The Malliavin derivative D is closed
and has domain on a dense subset of LP({2), so its dual D* should also be closed
but with domain contained in L?(2). In this section, we give a detailed treatment
of the case p = ¢ = 2 via the [to-Wiener chaos expansions. In particular, we will
show how D* coincides with the It6 integral defined in chapter 2 for processes that
are adapted to the Wiener filtration. We leave the case of a general p until the next

section.

Definition 3.4.1. (Skorohod Integral) We denote the adjoint of the operator D
as D*, so D* is an unbounded operator on L*(T x ) with values in L*(Q), such

that,

1. The domain of D*, denoted by D* is the set of processes £ € L*(T x ) such
that

' Dthtdt‘ = |[E(D¢F, &) r210,11] < || F]l2,
(0,17

for all F' € D 9, and c is a constant independent of &.
2. If £ € D*, then D*(£) € L*(2) and satisfies

E[(D:¢, F)r20,1m] = E(¢, (D*F);).

for any F' € D 5.

Remark 3.4.2.

1. The operator D* transforms square integrable processes back to random vari-
ables. Hence, D* is the dual of D just in the T-direction.
2. The second equality mentioned above is called the integration by parts
relation. It is the key to many applications in Malliavin calculus.
(Il

We now turn to the chaos expansion of L? random variables to study some

properties of D*.
Theorem 3.4.3. Let £ € L*(T x Q) with expansion as in theorem 3.2.10. Then,

D*f = Z Im-‘rl(fm)
m=0
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converges in L*(Q), and f,, is the symmetrisation of f,, in (m + 1)-dimensions,
defined by

m

A 1
(et t) = ———( For(trs ot t ettty et ) ).
ottt = 2 (st )3 i b i)

Remark 3.4.4. Intuitively, D* increases the level of Wiener chaos by one degree

at a time. Hence, we need to replace f,, with f,, so f € Dom(Z41). O

Proof. We have the following lemma.

Lemma 3.4.5. Let & € L*(T x Q), by virtue of the chaos expansion theorem,
there exists a family of deterministic functions f,(t1,...,tm,t) € L*([0,T]™!) such

that every f,, is symmetric in the first m variables and

ft = Z Im(fm('ut)>>

where convergence is taken place in L*(T x ) and

o0

amﬂzzmmﬁmmw

m=0

Ema@mﬂ>=E(

[0,7]

Proof. The is an immediate consequence of the chaos decomposition theorem (the-
orem 3.2.10). O

Now we prove the theorem. First consider G = I,(g) for some symmetric

function g and n > 1. Applying Fubini’s theorem and then It6’s isometry, we have
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that

]E’(étv DtG)LQ[O,T} = Z E(Im(fm(v t))) nlﬂ—l(g(‘v t))L2[0,T]
m=0

= E(In—l(fn—l(" t))? n[n—l(g(" t))LZ[O’T]

=Eln In—l n—1\- In—l - d
( /[ L el ) Ea(ot0) t)
- /[ Bl (s ) s g )

— n(n — 1)! /[ a0, ) o

- n!(fnfh g)LQ[OvT]n
= E(L(fo1)1(9))
= E<]n<fn—1>7 G)LQ[OvT]‘

Hence, for every & € DomD*, the above computation shows that

for every G of the form G = I,,(g). Thus, I,,(f,_1) coincides with the projection of
D*(&) onto the n-th Wiener chaos. Consequently, we have

- 2L L) s
m=0

Conversely, if the above series converges and we denote its limit by S. The preceding

computation gives

E(/m &Dt<i1’n(gn)>dt) :E(vifn(gn)),

n=0

for all N > 0, and hence

‘E gtDtht' < VIl @1 Fll 229
[0.7]

for any random variable F' with a finite chaos decomposition. But such a set is
dense in L?*(Q) D D2, and hence we conclude that ¢ € DomD*. O
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Corollary 3.4.6. The domain of D* coincides with the subspace of L*([0,T] x )

formed by processes that satisfies

o0
S (m 4 DYl Bz < 0.
m=0

Corollary 3.4.7. Let ' € L*(Q) (so F is constant in time), then
T
D*F :/ FAW, = FWy,
0

and consequently,
D*Fl,, =F(W, —W,)
fora <beR.

An immediate consequence of theorem 3.5.3 is that, if £(¢) a deterministic func-
tion, then D*&(t) will coincide with fo (t)dW;. The following theorem generalises
this idea in the sense that the relation holds true for all square integrable adapted

processes.

Theorem 3.4.8. Let W; be a Wiener process and &; a square integrable process
adapted to the Wiener filtration. Then, for allt < T,

(D), = /0 .

From this point, we write the Skorodhod integral as D* or [ dW, interchangably.

Proof. Suppose first that £ is an simple process of the form,

Z 53 J+1]

where {; are square integrable random variables, and 0 <¢; < ... <t,4; <t?. Since

il t;,1) are piecewise constant with respect to ¢, by corollary 3.4.7, we have
D*gt = Z gj(Wthrl - Wt]‘)'
j=1

Moreover, for a general square integrable adapted processes &, we can approximate

2
it by simple processes {". Now, Since since D* is closable, it follows that D*&;? RGN
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D*¢. On the other hand we have
n L2 T
D = 3 & We, - W) > [ gt
j=1 0
By completeness of L?(Q2), we conclude that

T
D¢, = / &,
0
O

We now state the Clark-Ocone representation theorem, which can be viewed
as some mixture of Ito’s representation theorem and the stochastic fundamental

theorem of calculus.

Theorem 3.4.9. Let W, be a one-dimensional Wiener process with natural filtra-
tion F;, and F' € Dy 5. Then,

1
0

Remark 3.4.10. Recall that It6’s martingale representation theorem states under
certain conditions that for a square integrable F', there exists an adapted process f
such that

1
0

The Clark-Ocone representation tells us exactly what [t6’s mysterious f should be.
It is the simply the projective image of D;F under some optional stopping times.
Indeed, we would have no hope of identifying f without the Malliavin-type of
machineries which we have developed. This result is very useful in applications,
since it replaces many purely existential arguments which are based on It6’s repre-

sentation theorem, by constructive proofs. a

Proof. We may assume that F' € D, 5, has the form F =) I,(f,). Then,
DtF’Ft ZmE m—1 fm( ))“’Tt)

— Zm]E m—1 fm(tla m 1 )(1{t1V...Vtm71§t} + 1{t1\/...\/tm712t}>)‘ﬂ]'
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Now, L—1(fm(t1, o tm—1,8)Lisv. ve,,_1<ty) 18 Fi-measurable, while by It6’s isome-
try,
E[Im—lfm(th sy tm—lu t)l{tl\/...\/tmflzt}lj:t] =0.

Hence, we have
E(DF|F) = mlpoa(fn(t, o tme1, )y vt <iy)
m=1

Letting f; = E(D,F|F;), we calculate D* f using the above expression and theorem
3.5.3. We obtain

m=1

But now D*f coincides with the Ito integral of f, and hence the proof is finished.
O

We conclude this section by a final remark that summarises some further prop-
erties of D*. The proofs are routine in the sense that you first check the results
on the Wiener chaos, and conclude for a general L? random variable by a limiting

argument. Precise details of these can be found in section 1.3 of [35].
Remark 3.4.11.
1. Suppose u is a Skorohod integrable process. Let F' € D 5 such that

T
E (FQ/ ufdt) < o0.
0

Then we have,

T T T

0 0 0

In particular, this tells us that Fu; is Skorohod integrable if and only if the
right hand side belongs to L*(12).

2. Heisenberg’s commutation relation: If F' € Dyo([0,7] x Q), then D*F €
Dy 2(2) and VO <t <T', we have

T
D(D*F) = F, + / D, F,dW,.
0

It resembles the Heisenberg’s relation in the sense that DD* — D*D = 1.
O
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3.5  Quick Remark on Ornstein-Uhlenbeck Semigroups

Another well know operator in stochastic analysis is the Ornstein-Uhlenbeck oper-
ator. We will quickly go through its properties and state its relation with Malliavin
calculus. Its action on L?(Q) is defined by

—nt

T(F) =Y S I(F),

n!
n=0

where F' € L*(Q), and it is assumed to have Wiener chaos expansion,

F=> L(f).

It can be shown that (c.f. [35]),
1. The set {T;,t € R, } form a Markov semigroup. In particular, we have T,Ts =
Ty s for all s,t € R.
2. We define its generator £ to be such that
£ T
in the sense of L. A remarkable fact about £ is that LF = —D*DF.
3. Some authors such as [4] uses the Ornstein-Uhlenbeck generator to define the
Malliavin derivative.
4. There are many other nice connections between the Ornstein-Uhlenbeck gen-
erator and the Malliavin calculus. However, we will pursue in a different
direction, and turn to the integration by parts relation for the rest of this

thesis.
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CHAPTER 4

Existence and Smoothness of the Density

One of the most important applications of Malliavin calculus lies in the investi-
gation of existence, smoothness as well as many other properties of densities of
random variables that can be written as Brownian functionals via the integration
by parts relation introduced towards the end of the last chapter. This was in fact
the motivation for P. Malliavin to have developed such a machinery when it was first
introduced in 1976 (see [31]). Malliavin’s initial paper, was followed by a number
of alternative developments on this theory. Interested readers may consult, [4], [3],
[35] and [19]. We will take the approach that makes use of the integration by parts
relation. This approach was originally introduced by Bismut and Michel in 1982,
and it is one of the most popular approaches today (c.f. [1], [3], [35] and [41]).

4.1 Sufficient Conditions for Existence of Density

This chapter will be devoted to establishing various properties of the density based
on the Malliavin matrix. As before, we let W = {W(h),h € H} be an isonormal
Gaussian process associated to the Hilbert space H = L*([0,T1], B, u).

Definition 4.1.1. (The Malliavin Matrix) Let F' = (F*', ..., F™™) € D; 5. Define,

the matrix
op(w) oF(w) o (w)
o2 (W) o2(w o2 (0
sy = | E@ @ o
ot (w) op(w) ... oF™(w)

is called the Malliavin matrix. If detX(w) > 0, a.s., and det X(w)™! € LP for

some p < oo, then ¥ (and F itself) is called non-degenerate.

We begin with the following proposition, which is essentially a one-dimensional

setting of the general case.
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Proposition 4.1.2. Let F € Dy, and suppose that =5 € D] ,. Then the law

HDF [
of ' has a continuous and bounded density given by

0= (120" (7))

Proof. Let a < b, and consider the functions ¢ (y) = 1j4(y) and p(y) = [Y__ (2)d=.
Clearly, p(F) € Dy 5, and by the chain rule, we have

(D(@(F)), DF)y = (F)(DF, DF) i = ¢(F)||DF|[3;.

Now, using the integration by parts relation,

E((F)) =E KD@(F)), Héﬁ@)H}

ks

Hence applying Fubini’s theorem, we obtain

oz r <=5 [ v ()

DF
= E 1F mD*( >:| dS,
/a [ i IDE|I%

which gives the desired result. a

Remark 4.1.3. The sufficient conditions for ﬁ € D, are that
1. F €Dyy, and
2. E(||DF||78) < oc.
O

To generalise the above proposition to higher dimensions, we need the following

result from harmonic analysis.

Proposition 4.1.4. Let pu be a probability measure on R™. Assume that for all
@ € C°(R™), the following inequality holds,

\/ ajgodu] <eillglhe, 1<i<m,
Rm

where the c;’s are constants that do not depend on . Then, j is absolutely con-

tinuous with respect to the Lebesgue measure.
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The most popular method of proving this involves taking Fourier transforms,
and hence it is considered a result of harmonic analysis. Readers are advised to see
[31] for details.

Theorem 4.1.5. Let F' = (F', ..., F'™) be a random vector satisfying the assump-
tions,

1. FP€Dyy foralli,j=1,...m

2. The matrix Y is invertible a.s.

Then, the law of F' is absolutely continuous with respect to the Lebesgue measure
on R™.

Proof. Let ¢ € Cp°(R™) be a fixed test function. By the chain rule, we know that
QO(F) € D174, and that

_ i&-(p(F)DFi.
Hence, _
(D(¢(F)), DF7)y Zazgo F)%4
p(F) olw) o2w) ... olrw) \ [ (De(F), DFY)y
0p(F) | _| o) oBw) ... onw) (D(p(F)), DF?)
Omip(F) orlw) op(w) ... opm(w) (D(@(F)), DF™)

In order to apply proposition 4.1.4, we need to deal with a potential integrability
problem of ¥'. To this end, we use a localising argument.
For any integer N > 1, we consider a function ¥y € C3°(R™ ® R™) such that

N (:)_ 1, leGI(N7
M 0, 2 Ky

where,
g 1
Ky = {E eR"@R™:|EY| < NVi,j, and |det Z| > N}
Note that Ky is a compact subset of GL,, C R™ ® R™ ~ End(R™, R™). Now,
multiplying ¥ to the previous matrix equation we get for each 1,

m

E(Wn(Xr)0ip(F))| = Z]E (Un(Zr)(D(@(F)), DF?) (S5 .

J=1

Now, the second assumption gives us the invertibility of ¥z, which implies that
G = Un(Zp) (X5 € Dy y. Moreover, G is bounded and the first assumption gives
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s (DG, DF’)g € L*([0,T]). By property 1 of remark 3.4.11, this implies that
Un(p) (S5 ) DF? € D*, and hence we may apply integration by parts to get,

E(¥n(Zr)), <>>|—|E< )3 D (W () >ﬂDFJ’>>'

SE( )Ilcblloo < o0.

Therefore, by proposition 4.1.4, the measure (¥ (vz).P)o F~! is absolutely contin-

m

2

j=1

D*(Un(Sp) (S5 ) DFY)

uous with respect to the Lebesgue measure on R™. Thus for any Borel set A € R™

with Lebesgue measure zero, we have

/ Uy (Sp)dP = 0.
F-1(4)

Letting N — oo and using the second assumption, we can establish that P(F~1(A)) =
0, and thereby proving that P o F~! is absolutely continuous with respect to the

Lebesgue measure. O

4.2 Sufficient Conditions for Smoothness of Density

We extend the argument given in the previous section to deduce a sufficient condi-
tion for smoothness of density of a R™ valued random variable. More specifically,

we will prove the following theorem.

Theorem 4.2.1. Let F = (F' ..., F™), such that F' € Dy, and satisfying the

following assumptions,
1. FPeD>® foralli=1,...m

2. The Malliavin matrix X satisfies

(det Sp) ! € ﬂ LP(Q

p>1

Then, F' has an infinitely differentiable density.

Before we begin the proof, we need to first state a lemma. It is a generalisation
to proposition 4.1.4, a standard result in harmonic analysis that we will not prove.

Interested readers are directed to see [31] for details.

Lemma 4.2.2. Let y4 be a probability measure in R™, and fix an open set A C R™.
If for all p € CP(R™), and multi-index o = (ay, ..., ay,), there exists a constant C,
independent of ¢ such that,

\ / aagodu\ < Callllo
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where C'Y is the set of smooth functions compactly supported on a set K C A.

Proof. We first prove that det Z;l € Dy. Let,

1 -1
Y, = <det Yl —)
n

for n =1,2,.... We have assumed that (detXp)~" € (5, LP(Q?), and hence Y,, —
det L' in LP(Q). Clearly, det X € D.. Observe that the functions (,(r) =
(x + %)_1 € Cp° for z > 0. Then by corollary 3.3.30, we conclude that ¢, (det Yp) =
Y, € Dy for all n. On the other hand, the sequence Y,, converges to a limit in LP,
and the operator DF is closed for all k. Hence, D¥Y,, — D¥det X! for all k, and
therefore det 7! € D.

Now we prove the theorem. The main direction of the proof is to construct an

ak
‘E (&'val..ﬁxak (F)) ‘

so that lemma 4.2.1 can be applied.

upper bound for

Let ¢ € C*(R™) with compact support contained in A. By the chain rule, we

obtain

(D(@(F)), DF ) =Y 0ip(F)(DF', DY)y = dip(F)XY.
i=1 i=1
Treat the above as a system of linear equations in the 0;¢(F')’s. Solving the system

we obtain,
m

O:p(F) =Y _(D(p(F)), DFY)u (5"

j=1
Let R be a fixed element in D, and using integration by parts relation we get,

m

E(R(9:)(F)) = Y E[R(D(p(F)), (S5")"" DF)u]

where

@(R) = Y D" (Ruh(3)")

We have shown in the beginning of the proof that, (3,)”" € D.,. Consequently,
since R and DFV are assumed to be in D, it follows that ®;(R) € D, and
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consequently @ is a linear functional of R. Define the multi-index o = (aq, ..., ag),

where o, € {1,...,m} for all p =1, ..., k. Recursively applying the relationship
E(R(9ip)(F)) = E(p(F)®i(R))

to
R ={1,04,(1), Pay(Pa, (1)), -, Paypy (P (---(1)-)) },

we obtain

‘IE (a—kw)) ' B (F) B0, (Bay (1))

0x4,...02,,
< |[]loc|[E[p(F) Pay, (Pay_ (---(1)..))]]
< @]l Clas

where we know |E[p(F)®a, ,(Pa,_,(...(1)...))]] < 0o as & was shown to be a linear
functional. Finally, the theorem holds upon applying lemma 4.2.1. O

Remark 4.2.3.

1. In the finite-dimensional setting, one could formally express the density of
F by f(x) = E(J, o F)). S.Watanabe gave a rigorous interpretation of the
above statement in an infinite dimensional setting (via Malliavin derivatives),
and he was able to deduce an identical result as the preceding theorem. This
approach was illustrated in detail in section 2.4 of [19].

2. As we shall see in the next chapter, a particular interest of studying stochas-
tic differential equations is to determine the behaviour of the density of the
underlying solution. The results developed in this chapter serves as powerful
tools in dealing with such classes of problems.

O
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CHAPTER 5

Stochastic Differential Equations and Stochastic Flows

5.1 Introduction

5.1.1  Formal Definitions

Stochastic differential equations (SDEs) arise naturally in many problems of prac-
tice ranging from quantum mechanics to mathematical finance. Philosophically
speaking, whenever we have imperfect information we can expect randomness of
some degree that perturbs our observations. To include such random behaviour in
our model, intuitively, the differential equation that governs the motion of these
things would take the form

dd—)jt = u(t, X3) + o(t, Xt)%.

dWy
7o dt

be to re-write the above equation in an integral form, where

But of course is undefined with probability one. An alternative approach would

t t
X = X +/ p(s, Xs)ds + / o(s, Xs)dWy
0 0

where the latter integral is in the sense of Ito.

Definition 5.1.1. Let g and o be Borel-measurable functions, with values in
R™ and R™ ® R respectively. A solution to the stochastic differential equa-
tion is a pair (X, W) of adapted processes defined on a filtered probability space
(Q, F, F;,P), such that

1. W is a standard F;-Wiener process in R%.

2. X, satisfies

{ X, = Xo + [} (s, X)dW, + [ o(s, X,)ds (SDE)
XO =,

The above equation is sometimes written in the differential form:

dX; = u(s, Xs)dWs + o(s, Xs)ds.
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We say that the function p is the drift coefficient and o the diffusion coef-
ficient, for historical reasons that the original motivation of studying SDEs was to
model physical diffusions. The process X is sometimes also termed as a diffusion

driven by W. When there is no risk of confusion, we simply say X is the solution
to (SDE) instead of the pair (X, W).

Definition 5.1.2. A solution X of (SDE) on (2, F, F;,P) is said to be a strong
solution if X is adapted to the filtration F}V. A solution which is not strong will

be termed a weak solution.

Example 5.1.3. (Ornstein-Uhlenbeck process) The Ornstein-Uhlenbeck process X
is defined by the following SDE:

dXt = ClXtdt + O'th

XQZZL'.

We wish to find an explicit formula for X; that depends only on W and ¢. The first

equation can be written as
dXt — aXtdt == O'th.
We multiply through by the integrating factor e~ to get

e "odW; = e”(dX; — aXdt)

= d(eiatXt)
Therefore,
¢
e "X, = X, + / e odW,
0
and so .
X; =ex + / e“(t_s)adWS.
0
This gives the martingale representation of the Ornstein-Uhlenbeck process. a

Remark 5.1.4. Most SDEs we encounter are unlikely to have closed form solutions
like the Ornstein-Uhlenbeck process. In fact, most often diffusion processes are
defined by the SDE which it satisfies, rather than an explicit formula. For interest
of the reader, Section 6.1 of [36] has a section discussing various types of SDEs with

explicit form solutions. a

Theorem 5.1.5. (Existence and Uniqueness of Solution) If ;i and o satisfies
the Lipschitz condition, that is if

(1, y1) — (e, yo)|| + o (w1, y1) — (@2, y2)|| < C(l|lzr — zaf| + |[y1 — v2l]),
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Vry,y1 € R and Vao,yo € R™. Then, (SDE) has a unique solution X, adapted to
the filtration F; = o(W;), where uniqueness is in the sense of L.

Proof. Let E be the set of square integrable adapted processes, such that

HXHE:E(‘/OtXSdS)—l- [E(/OtXSdWS)QF < o0.

Then, it is easily verified that ||.||g is a well defined norm, and hence (E, ||.||g) is

a normed linear space. Let X? = z, and for each n € N, we carry out the Picard

iterations as follows. Define,

t t
C(X]) =X{ —I—/ p(s, Xds + / o(s, X)ds
0 0

and X" = C(X™). Then it can be shown that under Lipschitz conditions, C' is a
contraction mapping. The proof can be found in many texts such as [10], [38] and

[40]. Hence, by the contraction mapping theorem, there exists a unique point X,
such that X™ — X in the norm ||.||g. O

Corollary 5.1.6. (Markov Property) Let X; be a solution of (SDE) with p and
o being F; adapted Lipchitz functions. Then, X, satisfies the Markov property,
that

E(o(Xy)|Fs) = E(o(Xy)|o(We)).

for all functions ¢ such that the above expectation is well defined. This is an easy

consequence of uniqueness of solutions.

Remark 5.1.7. The Lipchitz condition is sometimes considered to be too restric-

tive. Some very innocent looking SDE’s like
dX, = X7dt + X} dW,

has solution

1
X, =
S
which means the behaviour of X will become unstable in finite time with probability
one, as P(W; = 1 in finite time ) = 1. O

5.1.2  Connections with Partial Differential Equations

In this section, I shall introduce a surprising connection between SDEs and PDEs.
Quite often the stochastic method actually provides an easier route than solving
the PDE directly.

65



Consider the time-homogeneous m-dimensional SDE, driven by a d-dimensional

Wiener process defined as follows,

XU =,

where o = (0y;) is a m x d matrix. Applying Itd’s lemma to f(X;), for some f € C?
to get

:/ Af(X,)ds + Zaij(xs)g(xs)dws
0 x’

where A is called the infinitesimal generator associated with the SDE e(u(X;), 0(X}))
defined by,

: 0 IR 0"
AZZM](XS)%(Xs)ﬂLéZZ%W(XS)

j=1 i=1 j=1

where
d
Qij = E OikOkj-
k=1

Now, taking expectations on both sides and differentiate with respect to t, we get

0
aEf(Xt) = AEf(X).

Hence we deduce that if we let u(x,t) = E(f(X;)|Xo = ), then u satisfies the

Cauchy problem,
% = Au
u(z,0) = f(z).

The above approach can be generalised to solve the Schrondinger’s equation, a

wave equation that governs quantum mechanical motion:

_iv%(x,t) + V(2)Y(z,t) = ih%/}(xﬂf),

2m

where x = (1, 12, 73) € R3 h is the normalised Plank’s constant and m is the mass

of the particle. In 1947, Richard Feynman introduced a path integral approach to
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express solutions to the above problem at an intuitive level, it was not until 1965
when Kac had made this mathematically rigorous. We can assure that physical
measurements are made to that the constants are all one, and so I shall ignore all

constants that appear in the equation. We will be solving the problem,

% = Lu, on R%
u(0,7) = f(x), on OR%.

where .
L=A+v(X;) = §v2 + v(X).

Theorem 5.1.8. (Feynman-Kac Representation) Let u € C?(RxR?) be a solution

of the above initial value problem, and W be a translated Wiener process on R?,
so that W§ = x. Then,

u(t,z) = B (f(Xt) exp (/Otv(Ws)ds>).

where X satisfies the SDE dX; = p(X;)dt + o(X;)dW,.

The proof of this resembles very similar ideas to the case of the Cauchy problem.

Readers are referred to chapter 7 of [38] for a detailed argument.

5.2 Stochastic Flows and Malliavin Calculus

Let us remind ourselves of SDE1 defined in section 5.1.1,

{ X =a+ [ p(X,)ds + [} o(X,)dW,, (SDE1)
XO =,

where o(Xj;) is an m x d matrix, X; and u(X;) are m dimensional vectors, and W
is a d-dimensional Wiener process. The study of stochastic flows is about studying
the map ¢ : (z,t,w) — R™, where ¢(z,t,w) = X;(w), where X is the process that
solves the above SDE. In particular, we are interested in looking at how ¢ behaves

under differentiation. Obviously,

0 d
aqb('ra t7 (4)) - %Xt

is undefined P a.s., one of the first properties that was known about solutions to
SDE’s. However, it turns out that both a% and % turns out to be well defined
quantities. If we assume both p and ¢ are C'*° functions, with bounded first partial
derivatives, it can be shown that the map ¢(.,¢,w) : R™ — R™ is a diffeomorphism
for every fixed t and w. On the other hand, % corresponds to, in the weak sense,
of the Malliavin derivative D X;. If we assume again that p,o € C° then it can
be shown the solution to the SDE, X € D, confirming the existence of D,X,.
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We shall devote this section in proving these results under the assumption that
p,o € C*. [35] give a more general treatment to higher order derivatives, [39] and
[29] illustrates analogous results for the case when p and o are only assumed to be

Lipschitz.

Theorem 5.2.1. Let ¢ : (x,t,w) — X,(w) where X is a process satistying
(SDE1) with Xo = x. Then, for almost every (t,w), the function ¢(.,t,w) is a

C*°-homeomorphism from R™ to R™.

Theorem 5.2.2. Let X satisfies (SDE1), and ¢ = ¢(z,t,w) as before. For
p>2T>0keNandR>0,3C =C(p,T,k, R) such that

sap E s 0,00t <€,

lz|<R  \0<{<T

where o = (o, ..., o), |a] = D7, Op = O7...09™ are partial derivatives with

respect to x. Moreover, for t > 0, let
Joi= J(x,t,w) = (9,X (2, 1,0))1<ij<m

be the Jacobian of X with respect to x. Then, J; and J; ' respectively satisfies the
following SDE’s,

Jt—]+/A st+2/ X,)J dWE,
0

t m
Jt‘lzl—/J;1< -3 )ds—Z/ I AD (X)W
0 =1

where [ is the m x m identity matrix, AO1 = (9;b"(x))1<ij<m and Ak1 (x) =
(0ja,i(x))1§i7j§m, k= 1, 2, ., m.

The preceding two theorems are regarded as well known and their proofs are
available in [21], [29] (chapter 4) and [39] (chapter 7). Now we consider the deriva-
tive of X with respect to the “sample paths”, w; this correspond to the weak

derivatives in the sense of Malliavin.

Theorem 5.2.3. If u,0 € C* in (SDE1), with bounded partial derivatives of all
orders, then its unique solution X = X (z,t,w) € Dy (R™),Vx € R™ t > 0, and its
Malliavin matrix ¥ := X(x, t,w) is given by

t
Y =J; [/ Ja(X) (I ) ds| J7
0

where a = oo™, and J; is the Jacobian of X; with respect to the initial value x.
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Proof. By the Heisenberg’s commutation relation,
t d t
DX, = / Db(X,)dr + o(X,) + / / Dyo(X,)dWF
s k=1
t

- / AWV (X,) DX, dr + o(X,) + Z/ DX, dWF,

S

where oy is the k-th column of the matrix o, for £ = 1,...,d. On the other hand,
by theorem 5.3.1 and orthogonality of stochastic integrals, we get

¢
JoJ ! —I+/ AW(X,) S I N dr + o(X +Z/ JdWE,
and hence, multiplying through by o(X;), we get
JJ o (X, / AN (X)) T I o (X dr+o(X +Z/ AV (X)) S I o (X )dWE

Observe that J;J; 'o(X,) and D, X, are satisfied by the same SDE and initial con-

ditions. Hence, by uniqueness of solution, we conclude that
DXy = JuJ o (X) 1y (s), a.s

Therefore,

t
Zt = / (Dth)(DSXt)*dS
0
t
=J, [/ J (X)) (I ds| T
0

Moreover, ||D X¢||3gm = Tr¥; € LP for some p < co. Recursively repeating this
procedure, we can obtain higher order derivatives and show that Vk € N, 0 < ¢ <
T, ||D*X;|| € LP for some p < oo, and consequently, X; € Dy, (R™). O

Remark 5.2.4. In the proof of the preceding theorem, we have deduced that
DXy = JJ; 'o(X)14(s), a.s

This formula is especially useful since it tells us in general how a diffusion driven

by an SDE behaves under the Malliavin derivative operator. O
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5.3 Hypoellipticity and the Hormander’s Theorem

In this section, I intend to discuss the first significant application of Malliavin

calculus, a probabilistic proof of the Hormander theorem. Let,

1 o= N
L= > a”()dd;+ ) b ()o
ij=1 i=1
and consider the Cauchy problem for heat equation,

{ Owu(t,x) = Lu(t,x), t >0,z € R™; (PDE)
u(0,2) = f(=),

A question of particular interest in PDE theory is to obtain the fundamental solution
of a given problem, that is a smooth function p(t,.) on R*™ so that the solution to
(PDE) is given by,

ultia) = [ plto )y = ELf(6(,t,.)

is the solution to (PDE), where ¢(x,t,.) = X;(.) and X, is the solution to a suitable
SDE with initial condition Xy = x. In this case, the fundamental solution of (PDE)
is precisely given by the transition density of the process X;.

By theorem 4.2.1, we know that if the Malliavin matrix for X;, ¥, satisfies

(det %)t € LP

for all p < oo, then the transition probability density p(t,z,y) exists and it is
smooth. Theorem 5.2.3 allows us to calculate ¥; for a reasonably general class of
diffusion processes. Thus, we will develop a sufficient condition for the existence of
a fundamental solution following this path.

Traditionally, it is known that if the matrix a(x) is uniformly elliptic (c.f. [3]),
then a smooth fundamental solution exists. In 1967, L.. Hormander obtained a much
weaker condition for hypoellipticity of differential operators, namely the well known
Hormander’s condition. To state this condition, we write L in the form of vector
fields, and we shall adopt Einstein’s summation convention for the remainder of
this chapter. Let,

Ap() =0h()0ik=1,...,d,

Ao() = (bi(.) — %Zai(.)ajai(.)) O;.
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Observe that, Ay, Ay, ..., A are C* vector fields on R™; and

d

d
> AR =0a"0,0;+ > 0i[0;04]0:

k=1 k=1

Hence, we have,
d

1 2
LZQ;Ak+AO.

Furthermore, we the Lie bracket between the vector fields are given by

[AjrAk]:44f4k__AkAj

Theorem 5.3.1. (Hérmander’s Theorem) If the Lie algebra generated by vec-
tor fields {Ay, [Ao, Axl,k = 1,...,d} is m dimensional at any x € R™, then the

fundamental solution to (PDE) exists and is unique.

Remark 5.3.2. The condition introduced in the preceding theorem is called

Hormander’s condition. O

Proof. The proof will be roughly broken into three parts. First of all, we translate
our (PDE) into the probabilistic setting. The second part, I will state to establish an
upper bound, setting up for applying theorem 4.2.1. Finally, we use theorem 5.3.3
to calculate the Malliavin matrix, and combining with the upper bound derived in
the second part to conclude that its inverse is in LP. It is then a consequence of
theorem 4.2.1 that the fundamental solution (or the transition density) exists and it
is unique. I shall be mainly concentrating on explaining how the Lie algebras come
into play, essentially as a consequence of It0’s lemma; and also the role of Malliavin
calculus in the proof. For a more thorough treatment, readers are advised to see
section 2.3 of [35].

For simplicity of transformation, we will work with stochastic differential equa-

tions in the sense of It6 and Statonovich interchangeably. Let

d

2{:/4S)Uk

k=1

bi=b—

N | —

where AS) ‘= (0;0%)1<ij<m, then Ag(.) = b(.)d;. Observe that the Ito equation

(SDE) can be transformed to the following Stratonovich equation,
dX; = Ag(Xy)dt + Ap(X;) o dWF,

where [ .o dW} is the Stratonovich integral defined in section 2.2. By theorem

2.2.3, Ito’s lemma under Stratonovich integration boils down to ordinary chain
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rule. Hence, Vf € Cp°(R™), we have
df (Xe) = (Aof)(Xe)dt + (A f)(X:) 0 dW.

In the sequel, for V'€ C*(R™ R™), V is also understood as a C* vector field:
V(.) = V¥(.)9;. Note also that the Itd equations that the Jacobian process and its

inverse satisfies in theorem 5.2.2, are transformed to
th = AE)I) (Xt)Jtdt + A](fl) (Xt)Jt o thk
and
dJ = — AN (X))t — I AN (X)) 0 W

respectively as Stratonovich equations, where [151) = (9;0'(2))1<ij<m. Applying

[t6’s lemma in the Stratonovich setting (see theorem 2,;), we have
dlJ; V(X)) = (dJ; 1) o VI(Xe) + J; 0 dV(Xy)

= —J AN (X V(X dt— I AN (X)) V(X)) 0 dW
+ JTH AV (X dt + J7H AV (X,) o dWF.

Now observe that,

(AP (@)V (@) = VI (2)050 (x) = (VI')(x),

and by notations of vector fields, we have A" (z)V (z) = (VAp)(z) and similarly,
AW (2)V () = (VAp)(z). Hence,

dlJ7V(X)] = J7H AW = VA (X)dt + J, € (AV — VAR (X,) o dW

J Ao, VI(X,)dt + J7H A, V](X,) 0 dWF.

Now, let R, := (Xy, J;), so R is an R™ x (R™ ® R™) valued stochastic process
with Ry = (z,I). For any vector field V, define &, : R™ x (R™ @ R™) — R™ by
&v(r) = J W (x) for r = (z,J). Hence, the preceding equation takes form,

dév(Ry) = Eagvy(Re)dt + Ea, vi(Re) o AW
&v(Ry) = V(x).

In order to use theorem 5.2.3 to compute the Malliavin matrix, we need to translate

the above back to It6 equations. Since,

d
1
Sy (Be) 0 AW = §a v (BOAWE + 2 > &a, (a vy (R,

k=1
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it follows that our Stratonovich equation becomes,

déy (Ry) = f{AO,V} (Ry)dt + §{Ak,v}(Rt)de ;. SDE1

where we define the stochastic Lie brackets by,
{Ap, V} =1[Ax, V] k=1,...d

(Ao, VY = [Ag, V] + % S A [Ar, VI

Let lA)n and V, be the following sets of vector fields,

{Ay, ..., A}
Vo = {{A0, V}{A, VLV eV, 1 k=1,...d}, n>1,

VY, = Lnj Vi, n=0,1,2,...

Now, we translate Hormander’s condition to one that accommodates us to give
a bound on |det¥;|~!. An alternative way to state Hormander’s condition is,
Ve € R™ AN > 0 such that Vi, ..., V,, € Vy, such that Vi(z), ..., V,,(z) are linearly
independent. Yet, this condition is equivalent to

(H): Vo € R™, 3N > 0 such that

inf 1LV (2)gm > 0.
inf max (I, V(x))g
where S = {z € R™ : |z| = 1} is the unit sphere in R™.
The reason is that since there are only a finite number of vector fields in each
of the V,,’s, we can arrange them as a matrix. If the matrix is not full rank, then

its rows are linearly independent, and hence 3l € S such that

. 2 o
inf max (1, V(z))gn = 0

. Conversely, if the matrix is full rank, then its rows are linearly independent, and
hence for any [ € S, infics maxy ey, (I, V(2))an is strictly positive.

Let p > 2, all there is left is to check that under (H), V& > 0, the covariance
matrix 3, satisfies (det 3;)™' € LP. Note that (det J;)~! € L” and hence it suffices

to prove the non-degeneracy condition for

t
=, = / T a(X,)(J-Y) ds,
0
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as by theorem 5.2.3, ¥; = J;=,J;. Fix t > 0 and ¢ > 0, define,
Te 1= /{320: | X, —z| VI|[J;P =TI > c '} At
Then 7. is a stopping time, and for £ € (0,t), we have

{1. <e} = {sup|Xs—x| VI =) > c_l}.
s<e

By estimating X; and J; from their defining SDE’s, it can be shown that, for all
p>1

E (sup | X, — 2P V||J; — [Hp> = o(eP/?),
s<e

and therefore, 7,1 € LP. Assuming (H) holds, and taking into account of the
continuous dependence of (SDE1) with respect to the initial value, we see that
Vip € S,AN € Ny, V € Vy and some neighbourhood Sy of [y, for sufficiently large ¢

and small § > 0, we have

/l sup(l, &y (Ry))am > 0.

€So s<T¢
Hence, Vp > 1,

sup P (/OT(z,gV(RS))]%st < 5) <P(67 < €) = o(eP).

€Sy

Suppose that V' = {Ag,, {Ax,_; s {Akys Ake }---}}, where 0 < j < N, 1 < kg <
d,0 < ki,....,k; < d. For such a V, define Vj = Ay, and V; = {4, Vi_1} for
i =1,...,5. We shall prove by induction that for ¢ = 5,5 — 1, ...,0, we have

sup P ([ (1R uds <) = o(e)

1€Sy

We have already shown the case when ¢ = j, so assume that the above holds for
1, and we need to show it also holds for ¢ — 1. To this end, we need the following

lemma, whose proof can be found on section 2.3 of [35].

Lemma 5.3.3. Let X be a one-dimensional Ito process, satisfying

t d ¢
Xt:x+/}§°ds+Z/Ysdef, t>0,
0 k=1 0
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where Y is also a one dimensional It6 process given by,

t d t
th’:y+/zgds+2/ ZFWE, >0,
0 k=10

where z,y € R)Y = (Y1, ...,Y?%) and Z = (Z',..., Z%) are d-dimensional adapted
processes. If 4K > 0 and a bounded stopping time T > 0, such that

sup {[Y?'| + 12| + [Vi + |V} < K

0<t<r

then Vg > 8, v < %, and sufficiently small € > 0, 3¢ > 0 such that

P (/ XZdt < 8‘1,/ (Y27 + |vi|?)dt > e) <ce
0 0

Observe that for [ € S, and any C* vector field V', we have

{ d(L, v (Re))rm = (1, Egag vy (Re))rmdt + (L, Egay vy (Re) )rmdWF
(1, & (Ro))rm = (I, V(2))rm.

By lemma 5.3.3, for ¢ > 8 and sufficiently small ¢, we have

T T d
P </ (l7§%—1<RS)>I%RmdS < €q7/ Z(Lg{Ak»Vi—l}(RS))%RWdS > 5) <o(e?),1 <p < 0.
0 0

k=0
By the inductive assumption, we know that

; d
sup P (/ Z(Z,S{Ahwfl}(Rs))émd‘S < 5) < o(eP).
0

€Sy k=0

Therefore,

sup P (/T(l,f‘/“(RS))ﬁmds < Eq) < o(eP),
0

€Sy

which finishes the inductive step. In particular, for ¢ = 0, we obtain that there
exists k € [1,d], so that

sup P (/OT(Z, €4, (Ry))amds < 5) < o(eP).

€Sy

Since S is compact, we may choose a finite number of neighbourhoods to cover S,
and hence,

r d
F (%Qé / ;mkms))ﬁmds < ) < o(e).
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Since 7 < t, the above inequality obviously holds when 7 is replaced by t. On the
other hand,

t d t
. 2 _ -1 *712
ot [ (& (R = |1ty

= inf(l, Z,l)

leS
= )\min
where A, is the minimum eigenvalue of Z;. It thus follows that A_i € LP for all
1 < p < oo, which means that | det =;|~! € LP, V1 < p < oo. O
Remark 5.3.4.

1. The original probabilistic proof to Hormander’s theorem was given by Malli-
avin in [31] in 1976. The version presented above was based on the idea of
Stroock and Norris in [35].

2. Using a very similar approach to the above, Shigekawa proved in 1980 that
if F'is a L? random variable with a finite Wiener chaos expansion, then the
density of F'is absolutely continuous. However, it is still an open problem to
give an explicit form of the densities to these Wiener chaos.

O
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CHAPTER 6

Applications to Finance

In the final chapter of my thesis, I would like to illustrate some applications of
Malliavin calculus to the industry of mathematical finance. A basic knowledge of
mathematical finance is assumed, otherwise a good introductory reference for this
material is [42] and the first three chapters of [34]. The later chapters of [34] takes
the theory to a fairly advanced level, which might also be of interest to enthusiastic
readers. We begin this chapter by briefly examine the work of Black and Scholes
(1973), and Harrison and Pliska (1981). Then, we introduce some difficulties this
theory faces when one tries to extend it to a more general setting, and how the
Malliavin analysis of stochastic flows might give a solution to the addressed problem.
This approach was initiated by [12] and [13]. [6] provides a friendly introduction to

this area, while [5] focuses on looking specifically at Asian options.

6.1 Classical Theory

Typically in mathematical finance, we work with a market that has one risk free
assets that admits a discount rate r, and n risky assets. The price dynamics of the
risky assets is governed by the stochastic process X = {X; : 0 < ¢ < T}, which is

quite typically defined via a time homogeneous stochastic differential equation,
dXt = ,LL(Xt)dt —+ O'(Xt)th

driven by a Wiener process W;. We say the process is homogeneous in time if
the coefficients p and o are independent of t. Hence the filtration F; generated
by W; will be assumed as the default filtration in the market; or in plain English,
it is simply the public information. For simplicity, we assume in the thesis that
there will be no dividend or tax payments, traders make profits/losses only through
capital gains.
Definition 6.1.1. An process a = {a; € R",0 <t < T} is called a strategy if
1. oy is adapted to F;.
2. [ |auldt < oo
where |ay| = |af| + ... + .
A strategy is in essence a way of allocating different proportion of wealth into

different risky assets at every point in time. The first condition is there to ensure a
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trader’s strategy cannot be dependant on future events, while the second condition
says nobody has access to infinite amount of wealth.

Given a simple strategy «;, that is an adapted process whose values changes
only a countable number of times at t;, i = 1,2, ...; the capital gain S of the trader
is simply,

Z Qt; (Xti+1 - Xti)'

From the developments in chapter 2, we see that by letting A = sup [t;11 — ;]

tending to 0, the capital gain can be expressed as,

T T T
S(O&) = / atht = / atIn,u(Xt)dt + / atO'(Xt)th
0 0 0

where [,, is the n x n identity matrix.

Definition 6.1.2. We say a strategy admits an arbitrage opportunity if
1. P(S(a) > 0) >0, and
2. P(S(a) <0)=0.
We say a market price is arbitrage free if under such circumstances, there exists

no strategy « that admits to arbitrage opportunities.

In a mathematical model, any presence of arbitrage opportunities is clearly
undesirable, as it would mean that investors could be making instantaneous riskless

profits.

Definition 6.1.3. A contingent claim is simply a map ¢ : X — R, i.e. an
recept or payment that depends on the asset dynamics X. We make no further

restrictions of ¢ at this stage.

Example 6.1.4.
1. A European (call) option is a contract that gives the holder the right (but

no obligation) to purchase a certain asset at a future time 7" for an agreed
strike price K. In such cases we have, ¢(X) = (X1 — K),, where T is the
exercising date and K the strike price.

2. An Asian option is when the payoff ¢(X) = ¢ (fOT X, dt, XT>.

3. An American (call) option is like an European option, except the holder can
exercise the option at any time before a future time T.

O

One popular method of pricing these contingent claims is by finding a (not
necessarily, but often unique) price that do not allow arbitrage. It was first shown
in [15] that the price takes the form

P = Eq(o(X)[Xo = x),

78



where Eg here means taking expectation under the risk neutral measure Q. Read-
ers who have not exposed to risk neutral measures can regard it as an ordinary
expectation for purposes of appreciating the ideas introduced in this chapter. I will
only briefly introduce some basic definitions and state an very elementary version
of Girsanov’s theorem in my thesis. Interested readers are advised to consult [15],
[34] and [42] for an introductory reading on the transformations of measures, and
[43] provides a much deeper study.

Definition 6.1.5. Let (2, F) be a measurable space. We say P and Q are equiv-
alent measures if P(A) =0 <= Q(A) =0 for all A € F.

Before we state Girsanov’s theorem, we first state some related facts.

1. If P and Q are equivalent measures (on (£2,F)), and X, is an F;-adapted
process. Then Eq(X;) = Ep (%%Xt).
2. Let h be an adapted process on [0, 7] and consider the set of processes of the

t 1 t
M,; = exp (/ hydWy — —/ hﬁds) .
0 2 Jo

Then, M, is a martingales if

1 t
E exp (5/ hids) < 00.
0

These are called exponential martingales, and they are dense over the space

form

of L? martingales (lemma 2.3.6). The condition stated above is called the

Novikov condition.

Theorem 6.1.6. (Girsanov’s Theorem) Consider M, as above with Novikov
condition satisfied. Let Q be a measure on (2, F) such that for all A € F. Then

Q(A) = Ep(Mr1a4)
defines a new probability measure on (2, F), and
5 t
Wt = Wt — / hst
0

is a Wiener process under Q.

In 1981, Harrison and Pliska in [15] pursued this path and obtained the classical
Black and Scholes formula as a conditional expectation under Q-measure using the

so-called risk neutral martingales. The Black and Scholes formula is a closed form
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solution to the price of an European option, under the assumption that the price

dynamics was governed by
L= pudt + odW
[ g .
t L ¢

Then, the price P is given by

P— 2 <log(x/K) + 7T+ %02T) kT (log(x/K) + 7T — %ozT) ’
ovT ovT

where 7 is the risk free interest rate and it is assumed to be constant over [0, 7]; ®

is the cumulative probability distribution of a N(0,1).

The Black and Scholes option pricing formula was initially published in 1973
using an approach from PDE theory. However, the new approach taken by [15],
is believed to have many advantages. For example, one can immediately deduce
the Black and Scholes price is in fact arbitrage free (see [34] for details) using the
martingale set up in Harrison and Pliska’s method, but this property can be difficult
to prove directly in the PDE approach. Secondly, the new approach can be easily
generalised to give prices of more complicated contingent claims. [16] provides a
very thorough discussion between the two methods.

It is often of interest for investors to look at how sensitive the price of a financial
derivative is with respect to different parameters. These sensitivities coefficients are

traditionally represented by Greek letters, whose definition is summarised as follows:

Greek Sensitivity
A (Delta) Ox
I' (Gamma) 0?2
p (Rho) O
V (Vega) Oy

When the underlying price has a closed form like the case for Black and Scholes,
we can calculate the Greeks analytically - it is just a matter of taking derivatives.
However we may have to resort to numerical techniques when the prices do not have
a closed form. The next section address some of the challenges we face in numerical
evaluation of Greeks, and also suggests a possible solution that uses the Malliavin

integration by parts formula.

6.2 Monte Carlo Methods in Finance
6.2.1 Some Difficulties

We saw in the previous sections that the analytical approach gave quite promising
results in terms pricing an European option, and also calculating the related sen-
sitivities. In real life however, there are many other types of financial derivatives
that are of interest which are more complicated than European option, in the sense

that the option price might depend on the entire path the underlying asset might
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take. In such cases, we need to resort to numerical methods, namely use Monte
Carlo and simulate the paths.

Let X = {X;,0 <t < T} be a stochastic process that determines the price of
a risky asset at time t and ¢ be a contingent claim of the form ¢ = ¢(X). We are

interested in simulating quantities like,
u = Eq(6(X)|X, = ),

which gives the fair price of the contingent claim, and also its partial derivatives:
the Greeks, that tells us how sensitive this price is with respect to its parameters.
For simplicity, we will drop the QQ in the expectation, and simply write [E instead
for the rest of this chapter.

When using finite difference approximation for the Greeks, bumping the price
and taking the sensitivity, one makes two errors: one on the numerical computation
of the expectation via the Monte Carlo as for any simulations, and another one
on the approximation of the derivative function by means of its finite difference.
For example, when applying finite differences to the gamma, one approximates the
second order derivative of the payoff function by

ooy uw(@te) = 2u(r) +u(r —¢)
wi(z) = 2¢

This is obviously very inefficient for non-smooth or discontinuous payoffs, which is
a common occurrence in pricing options. Figure 1 of [6] provides a good example
showing how finite difference can break down. To overcome this inefficiency, [8]
suggested using the likelihood ratio method. If we are interested in the sensitivity
of the option price with respect to some parameter 6, and if we know explicitly the

density function of the underlying variable, p(z;0), we can compute the Greek by,

2w
%Eu =% /u(x)dp(x,&)dx = /u(x)%p(m,@)dm =E (u(m)% log p(z, 6’)) :

The interest of this approach was to avoid the differentiation of the payoff function
in the simulation process. However, this method was quite restrictive since one
needs to have knowledge of the density function explicitly. This is precisely where
Malliavin calculus comes into play, more or less in the same way in which it dealt

with densities in chapters 4 and 5.

6.2.2  Simulating Greeks via Malliavin Weights

In the finance industry, we are particularly interested in computing the sensitivity
of the price of a derivative u with respect to its parameters. We consider a financial

market in which two types of financial securities are available, a risk free bond and
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n time homogeneous risky assets whose vector of price dynamics, X; are described
by the SDE,
dXt = M(Xt)dt + U(Xt)th,

where W, is a Wiener process in R" adapted to F;. The coefficients of p and o are
assumed to be Lipchitz to ensure the above SDE to have a unique solution. Let J;
be the Jacobian process associated to X, for 0 <t < T, defined by the stochastic

differential equation,

{ dJy = p/(Xp) Jydt + 320 07(Xa) JydW,
Jo =1,.

where [, is the n X n identity matrix, o; is the i-th column of the covariance matrix

g.

Remark 6.2.1. In the finance literature (e.g. [6]), J is also commonly termed as

the tangent process of X. a

It is necessary at this point to assume that the covariance matrix o satisfies the

uniform ellipticity condition. That is, 3¢ > 0, such that

o (x)o(z)é > olgl”

for any £,z € R". The reason for making such an assumption is that since
i/ and ¢’ are assumed to be Lipschitz and bounded, the Jacobian process J; €
L3(£2,[0,T]), (see e.g. Theorem 2.9 of [28]); hence our assumption insures that the
process {071 (X;)Ji} € L3(2 x [0,T]). Moreover, for any bounded function v, then
o y(X;) € L*(2 x [0,T]) and o~ ' is a bounded function.

Consider a contingent claim ¢(X), with ¢ satisfying some technical conditions
that will be described later; we wish to compute the Greeks of its price u(x) =
E(¢(X)|Xo = x). That is, we need to take derivatives of u with respect to some
parameter A\, a quantities such as drift, the initial conditions and volatility. Our

aim is to express each of them in the form of

% = E(¢(X) x weight)
for some A. This would allow us to avoid the trouble of using finite difference
approach in our simulation procedure. The weight function appeared in the pre-
vious equation is called the Malliavin weight, as it is generally obtained from the
integration by parts relation for Malliavin calculus.

The problem can be approached by looking at perturbed processes, and the

limit as the “amount” of perturbation goes to 0. We first look at sensitivity of price
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with respect to drift. Consider a payoff function ¢ : C[0,7] — R with finite second
moment. The perturbed process X; defined by,

AX; = (u(X7) + ey (X7))dt + o (X)W,

with a corresponding
ut(x) = E($(X7)[XG = ),

and we still denote the non-perturbed process corresponding to € = 0, by X;. The

following theorem gives the sensitivity of u with respect to drift.

Theorem 6.2.2. The function € — u®(x) is differentiable at ¢ = 0 for any x € R",

X():ZL‘)

and the derivative can be written as,

k()

Oe = (¢(X) /OT(U_W(Xt),th)Rn

e=0

Proof. We introduce the random variable

T 52 T
75 — exp (—e [ o, aws -5 ngxt)\@ndt).
0 0

The Novikov condition is trivially satisfied as 0~'v is bounded, and hence we have
EZ5 =1 for every € > 0. It then follows that the probability measure Q¢ defined
by the Radon-Nikodym derivative

dQr
dp

= 75
is equivalent to P, and

ut(z) = Eq- (Z°(T)o(X7)| X5 = ),

where

A T 22 T
75 = exp (—6/ (0™ (Xy), W )gn — 5/ o™ty (Xy)]
0 0

f@dt> .

and {W§,0 <t < T} is defined as
t
Wi =W, — 6/ oy (XE)ds.
0

By Girsanov’s theorem, this is a Wiener process under Q. By considering the

underlying stochastic differential equations, we observe that the joint distribution
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of (X¢, W¢) under Q° coincides with that of (X, W) under P. Hence we obtain,
ut(z) = E(Z70(X)|Xo = ).

On the other hand, by directly calculation we have

1 T e
221 = [ 20 ) Wk,
0

and hence .
1 2
2z -0 2 [ ) W
0

by the dominated convergence theorem. Since E(¢(X)?) was assumed to be finite,

we can apply the Cauchy Schwartz inequality to get,

L @) - u@)) - E (¢<x> / LX), th)Rn> ‘

£

< o2z - - [ oo,

1 T
< K]E‘ (Z;—1)—/ (o™ (X)), dWy)gn
0

€

for some constant K independent of €. Therefore, letting ¢ — 0 we have

X():(L’).

O

~tig L0 (0) ~ ) = 5 (600) [ (07900, e

We now look at sensitivities in the initial condition. Again, we hope to express
the derivative as a weighted expectation of the same functional. For this case, We
only consider square integrable payoff functions of the form ¢ = ¢(Xy,, ..., Xy,,), i.e.
¢ is only dependant on the asset price over a finite number of points in time. The

price of such a contingent claim is typically given by
u(z) = E(o( Xy, - Xy, )| Xo = 2).

We denote 0; as the partial derivative with respect to the i-th argument, and V =
>, 0;. Define the set

r, - {a e 12([0, 7)) /Oti a(t)dt = 1,¥i = 1, m}

We have the following theorem that gives the sensitivity of u with respect to the

initial conditions.

84



Theorem 6.2.3. Under the assumption that the diffusion matrix o satisfies the

uniform ellipticity condition, for any x € R™ and a € T',,,, we have,

X0:$>

Proof. We assume that ¢ is continuously differentiable with bounded gradient, and

Vu(z) = E (¢(Xt1,...,Xtm) /0 a(8) (o (X)) W,

we need to first justify the derivative of u with respect to x can be passed through
the expectation operator. Since ¢ is continuously differentiable by assumption, we

have,

1

x x x x 1 . *
Uy, = W(¢(tha "'7Xtm) — ¢(th+h, ...,thjh)) — W (Z (X ooy X, )1 h)
i=1

converging to zero almost surely as h — 0. Since ¢ was assumed to have bounded
gradient, it follows that the second term of the sum is uniformly integrable. More-
over, we can give an upper bound of the first term by,

1 il

N
H_H(¢(Xtm17 ""Xtmm) - ¢(Xtai+h7 ""Xl.fz;:_h)) S MZ . ||hH
j=1

where M is a uniform upper bound of the partial derivatives of ¢. The uniform
integrability of this upper bound follows from general theory of stochastic flows
(see for example Theorem 37 of [39]), as the X was assumed to be governed by
a stochastic differential equation with Lipschitz coefficients. Hence by dominated

convergence, we apply the expectation operator through limits to obtain

XOZZ').

Now, since the drift and covariance coefficients has bounded continuous derivatives,

Viu(z) =E (Z 0 ( Xy es X, ),
i=1

by remark 5.2.4, X € ;5. Applying the Malliavin derivative, one writes D, X;, =
Jo, J; 'o(t) i<y, for all i = 1,...,m and ¢ € [0, T]. Rearranging the terms and taking

a weighted average gives,

T
Jti = / DtXtia(t)a_lJtdt Va € Fm
0
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Substituting this expression in the equation for V*u(z) gives,

Viu(z) =E (/0 Z (X, .., Xtm)a(t)a_l(t)Jtdt'Xo = x)

T
= ]E (/ Dt¢(Xti7 ceuy Xtm)a(t)a'l(t)Jtdt‘XO = x) ,
0
where we have applied the chain rule for the Malliavin derivative to obtain the last

line. Finally, since a(t)o=1(t).J; € L*(Q x [0,T]) and adapted, we may apply the

integration by parts formula to obtain,

Vu(z) =E (gb(th, ey Xtm)D*(a(t)(a1(Xt)Jt)*)‘XO = x)

X()Zl'),

as the D* operator coincides with the It integral for arguments which are adapted

=E (gb(th, o X)) /OT a(t) (o (X)) J) dW,

processes; and thus establishing the result for ¢ with continuous and bounded gra-
dient.

Now consider the general case for ¢ € L?. Since the set C%° of infinitely dif-
ferentiable functions with compact support is dense in L?, there exists a sequence
¢n € C converging to ¢ in L?. Let u,(z) = E(¢n(Xyy, ..., X3, )| Xo = x) and

en(@) = E((0n( Xy, s Xi, ) — 02 (Xyyy ooy Xo, )| Xo = 1),

It is clear that u, () — u(x) for all z € R™, we only need to verify this convergence

XOZ,I).

is indeed uniformly. Let

g(z) =E (gb(th,...,Xtm)/O a(t) (o™ (X)) J,) dW,

Applying the theorem to the ¢,’s gives,

V() — g(a)] < \E ((%(th, X = 60X X)) [ alt)o R

2
X0_1'>

By the continuity of the expectation operator, this implies that

w)

<en(2)E (/OTa(t)(al(Xt)Jt)*th

< en()p(@).

sup |Vu,(z) — g(x)| < e,(2)e(2) for some & € K,
zeK
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where K is some arbitrary compact subset of R”. This means, Vu,(z) — g(z)
uniformly on compact subsets of R", and hence we may conclude that u is continuous
differentiable and that Vu = g. a

Finally, we look at sensitivity with respect to volatility. As in the previous part,
we assume the payoff ¢ = ¢(Xy,, ..., X}, ) with finite second moment. Before it is

possible to state the next theorem, we need to introduce some definitions. Let,
A t,L
I, = {a € L2([0,T])|/ a(t)dt =1,Vi = 1, m}
ti—1

and let 6 : R" — R™™ be a continuously differentiable map with bounded deriva-
tives. We assume the covariance matrix o + 0 satisfies the uniform ellipticity

condition. That is for every ¢, 3dn > 0, such that
(0 +¢6)"(2)(0 +e)(x)§ > nl¢f?

for any &,z € R™. In order to evaluate the functional derivative with respect to o,

we again take the perturbed process in a similar approach we took with the case of
drift. Define the process X¢ = {X7: 0 <t <T} by,

AX° = p(X7)dt + (0(X?) + 26(X5))dW,,
X5 = .

We introduce the tangent process of X by the following SDE,

{ dZ8 = p/ (XE) ZEdt + 6(XE)dW, + S, (07 + 26, (XF) ZEdW,
XE =0,

where 0,, is the zero vector in R™. As before, we will denote X, .J and Z for X¢, J¢,

and Z° when € = 0. Now consider the process
By=2J", 0<t<Ta.s.

Then we claim that 3, € Dy 5 for 0 <¢ <7T'. This is true since we can express .J -1
as the solution of the SDE,

{ djtil = Jtil (=i (Xt) + Z?ﬂ(az,'(Xt))Q) dt — J{1 Z?:l Uz,'(Xt)thia
Jot =1L,

In particular, the drift and volatility coefficients of the SDE has continuous and
bounded derivatives. Hence by remark 5.2.4, the process J; * € D, 2, and the same
argument also shows that Z € ;5. Therefore, the Cauchy Schwartz inequality
gives B, = Z,J; ' € Dy 5.
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We are now in position to state the theorem that allows us to express the
sensitivity with respect to volatility in the desired form for purposes of Monte

Carlo simulation.

Theorem 6.2.4. For any a € [, and o + 6 satisfying the uniform ellipticity

condition, we have

%UE(@ = E($(Xy, ooy Xp, ) D (071 (X) T Ba(T))| X, = 2)

e=0

where
Z a(t = B )t <<t
Remark 6.2.5. The operator D* in this case cannot be written as an [t6 integral,

since a part of the argument BQ(T) is clearly non-adaptive. a

Proof. We consider only the case when ¢ has continuous and bounded derivatives,
as the general case can be extended via a dense subset argument in a similar fashion
as the previous case. We can also establish in a similar way to the previous part

the validity of differentiation inside the expectation. Namely, we have

- E (Z a;((b(th? ""Xtm>Zti XO e x) X
e=0 i=1

in the sense of L!. By remark 5.2.4, we may take the Malliavin derivative to obtain
DXy, = Jy, J7 o (t) 1<y, for any i = 1,...,m and ¢ € [0,T]. Hence, we get

(95

[ Dot asuy= [ s
—Jtz:/l/tk1 )(Bry, = Bryey )t

- Jtiﬁti
= Ztﬂ

the second to last line holds as a € I',,. Now substitution gives,

T m
=E ( / S 00X Xtmwtxt,.o-1(Xt>Jtﬁa<T>dt‘Xo - a:)
0 =1

T ~
=E (/ Dt¢(Xt17 ...,Xtm)O'_l(Xt)Jtﬁa(T)dt‘Xo = l’)
0

= E(¢( Xy, ..., Xy, ) D* (07 H(X) T Bo(T))| X = ).
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To justify the use of integration by parts in getting the last step, we note that
o Y (Xy)J; € L*(Q x [0,T]) and also F;-adapted. Moreover, we have shown already
that @G(T) € Dy, and it is Fp-measurable. By Cauchy Schwartz, the product

process is also in D » and hence belongs to the domain of D*. In fact, we have

D*(O—_l(X)JBa<T)) = Ba(T)/O (O—_l(X)JBa(T))*th _/0 DtBa(T)U_l(Xt)Jtdt-

O

Remark 6.2.6.
1. The result in theorem 5.2.1 does not require the Markov property of the

process X;. The only requirement for the argument to flow is the adaptiveness
of b,o and ~.

2. The same kind of argument as in the proof of preceding three theorems
generalises in an obvious way to higher order derivatives of u with respect
to € at € = 0 in the sense that we could also express them in the form
E(¢ x weight| Xy = x).

O

We now give some concrete examples. Consider the famous Black and Scholes
model, where we only have one stock S and one risk free asset whose dynamics is
described by

L = rydt + odW,
So = .

The tangent process J of this process is the solution to

th = ’I"tJtdt + O'Jtth,
Jo =1,

and so we have a.s. zJ; = S;. Let ¢ be a square integrable functional that describes
the payoff of a contingent claim. We denote price of such a contingent claim by

u(z), typically we have

ulw) = (eI (Sp)] 8 = o)

and we wish to simulate values for g“, %, g—“ and 2.
T do
First we can calculate an extended p, the directional derivative of u for a per-

turbation 7 on the drift ». By theorem 6.2.2, we have

( fo ”dt¢ / _th’SO = .T> .
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For the delta, the derivative with respect to the initial condition x, we use theorem
6.2.3. It then boils down to calculating the integral fOTa(t)ULéth, where a(t)

satisfies fOTa(t)dt = 1. A trivial choice for such a function is a(t) = 7. Then we

obtain,
T T
J 1 J
t)—dW, = = —dW,
/0 ol )O'S ! T/O oS, !
I
= — —d
T/O xo W
x0T’
and hence,

ou T W
() = = Jo ()t T
e () =E (e QS(ST)xUT) :

Applying theorem 6.2.3 again to the above expression, we may obtain an expression
for the gamma,
0*u

_ (T, 1 W2 1

Finally for vega, we need to apply theorem 6.2.4, and again with a(t) = %, we

T W2 1
g_u —E [e—fo r(tdt 5 g) (_T — Wy — _)} _
o o g

Remark 6.2.7. Of course, the Greeks and the option price of any European

obtain,

option in the Black and Scholes set up can be calculated analytically. However, the
above analysis clearly generalises to a much more general framework. Indeed, all
that’s is required is an square integrable payoff contingent on a process whose SDE
representation has Lipschitz drift and volatility. For example, readers are advised to
see [6] for the case where the asset price follows Heston’s model (which is considered

as a generalisation of Black and Scholes). O

Another example we look at is when the payoff is of the form ¢(X) = ¢ ( fOT Xsds> )

Derivatives of this form are called Asian options and its price is given by

o) = o </Xd) ’XU ~a|.

It was claimed in [12] that

Proposition 6.2.8. Let u be as above, and ¢ € L*[0,T]. Then,
T 2.J2 T -1
Xods | D" | ——— / Jsds) ‘X =zx|.
o[ ) o (55 (U :
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~1
Remark 6.2.9. We note again that the term ( fOT Jsds> is not F; adapted for

t < T, and hence the D* cannot be converted to an It6 integral in this case. a

Proof. We consider only the case that ¢ € C'*° with compact support, as the general
L? case can be done using a dense subsets type of argument. We also assume that

there exists a process a; satisfying,

T
/ J (s, Xo)lecpaeds = 1.
0

In such cases, by the dominated convergence theorem, we can differentiate inside
the integral. We obtain,

- gl ) -s

(o) s

< Xtdt) / / JiJ o (s, X)) Lueras dsdt’Xo_O}
_E|y ( /0 ' Xtdt) / D Xtasdsdt'Xo _ 0}
_E /0 T< ( Xtdt) / DXtasdt> s

_E OT ( (/ Xtdt) J (/OTJst) as) s
_E ¢ (/ Xtdt> D*a,| Xy = o]

We are justified to exchang the orders of D* and fOT in the third to last line as trajec-

. ) ¢’

XO—O]

X0:0:|

tories of D, X; and X, are continuous over [0, 7], and hence dominated convergence

theorem applies. It is then easy to verify that the process

iﬁ) </ JSC“)_I

is a valid candidate for a;. O

Remark 6.2.10. Although we have used Malliavin calculus techniques to avoid
the usage of finite difference method in simulating a derivative, there are still two
potential problems that needs to be discussed.

1. While the finite difference method can perform poorly at places where the

payoft function ¢ is non-smooth or discontinuous, its rate of convergence is
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reasonably satisfactory when ¢ is smooth. In such circumstances, the extra
noise that is obtained by the global effect of the Malliavin integration by
parts that may bring us more trouble than benefit. The next section will
precisely illustrate what exactly is meant and will suggest a way of resolving
this problem via localisation. Figure 2 of [6]

2. Recall that in calculating the Malliavin weights for sensitivity with respect
to the initial condition for example, there was one stage where we had the
freedom to pick an arbitrary function a;, that satisfies fOT a;dt = 1. We im-
mediately took the short cut by picking the most obvious a in our preceding
examples. However, what really ought be done here is to choose such a subject
to certain optimality conditions, such as minimisation of variance for exam-
ple. Currently, this is an area of very active research. [13] discusses some
elementary treatments, and links it with the Euler-Lagrange equations. [7] is
a more recent paper on this topic, and gives a more detailed treatment.

O

6.2.3  Localisation of Malliavin Weights

As mentioned in the previous section, the method of finite difference method is rea-
sonably good for ¢ smooth, while the technique using Malliavin weights obtained
from integration by parts has its advantages in when ¢ is non-smooth or discon-
tinuous. This section is devoted to develop a technique which combines the two,
namely to only apply the Malliavin integration by parts around any singularities of
¢. We illustrate this idea with the delta of a call option in the Black and Scholes.

0

a—xE <ei Ik r(t)dt(ST B K)+> _F (€, I r(t)dtlsT>KJT)

W
—FE (e Jorwdtg _ gy, 2T\
(6 (St )+xaT
Now, (St — K),Wr is likely to be very large if T is large, and obviously it also has
a large variance. The idea is then to introduce a localisation around the singularity
at K. For § > 0, let

0, if s <K —6;
Hy(s) =4 B0 i K -6 <s <K+,
1, if s > K+9.

Let G5(t) = [*_ Hy(s)ds, Fs(t) = (t — K)4 — Gs(t). Then,

3 T a T 8 T
I — Jo r(t)dt . _ Y — Jo r(t)dt I — Jo r(t)dt
~E (e (Sr K)+> ~E <e G(;(ST)> +5-E <e F5(5T))
T T W
= E <€_ fo T(t)dtH(S(ST)JT> + E (e_ fo T(t)thé(ST)M_jj—‘_,) )
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The advantage of writing in this form is that Fs vanishes for s > |K — §|, and thus
Fs(S7)Wr vanishes when Wy is large. A similar idea can in fact be used for all
Greeks, see for example [6] and [12] for details on other kinds of Greeks and/or

financial derivatives.

6.2.4 American Options and Conditional Expectations

It was mentioned in section 6.1 that prices to contingent claims ¢ can generally
be expressed as Eqg(¢(X7)|Xo = x). However, there also other types of contingent
claims, like the American option (c.f. [14], [1] and section 5.1 of [34]) whose option
value takes the form, E(¢(Xr7)|X; = x) say for some ¢t < T, and t is not necessarily
Z€ero.

It was known for a long time that a general conditional expectations of the form
E(¢(X7)| Xt = x) creates computational challenge when one applies Monte Carlo
techniques. The reason is that often we have P(X; = x) & 0, then essentially almost
all simulated paths will not end up hitting {X; = =}, and hence are redundant for
purposes of computing the conditional expectation. The goal of this section is to

transform

E(o(X1)| Xy = ) — E(¢(X7) X weight)

to obtain a more numerically friendly expression for simulation.
Let 4, denote the Dirac delta centered at x. Then, one may express the condi-

tional expectation as,

E(o(Xr)|Xi = z) =

With the aid of the joint distribution of X7 and X;, which we shall denote by

p(z,y), under certain regularity conditions, one computes,
B(0(Xr)5.(X) = [ [ ()6 0)p(a,y)dady
0
[ [ o F e ey

://ﬁ@wwm@wﬂawmw
— B((Fp)H(G)m),

where 7, (x,y) = —% logp, and H(y) = 1y>} + ¢ so that % = 0.(y).

This simple calculation again reveals a similar problem to the one we faced with
the computation of Greeks. Namely, we require some knowledge of the underlying
joint density, which is often not available in practice. However, it does explain the

existence of certain weights, whose computable form will be derived by applying
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the integration by parts relation. We assume from now on that D,Xr, D, X, €

L2([0,T] x Q). We also assume there exists a smooth process u, € H' satisfying,

T
E (/ D, X u.ds
0

A trivial choice of u; under certain regularity conditions is simply us =

J(XT,Xt)> = 1.

1
TDs X"

The following theorem expresses the conditional expectation in the desired form for

numerical computation.

Theorem 6.2.11. Let ¢ be a Lipschitz function, and H(y) = 1;,>} + ¢ for some
c € R, then we have

&(Xr)H(X,)D*(u) — ¢ (Xr)H(X,) [ D, Xrusds

E(¢p(Xr)| X =1t) = E(H(X;)D*u)

Proof. By definition of a conditional expectation, we have

E(¢(XT)1(_8,E) (Xt))
Bl (X2))

E(9(Xr)|X, = ) = lim
Now we use the integration by parts relation to get

E(6(X1)1(—ee)(X1)) = (/ Dy(¢(X7)Ho (X)), ds)—E(ng(XT) Xt/ DXTusds)

=E (gb(XT)HE(Xt)D*u — / D Xrug ds)
where
¢, ity < —¢;
Ho(y)=19 y+e+e if—e<y<e

2e +c, ify>e.
On the other hand, we have

E(H.(X,)D"u) ( / D, H.( Xt)uds)
—E <1(E75)(Xt) /0 DSXtuds)
= 1) (Xt)

The proof is then finished when we let ¢ — 0, since L H.(X;) converges to 2H(X,),
as P(G=0) =0. O

Remark 6.2.12.
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1. If there exists u, that also satisfies

T
E (/ D u.ds
0

E(o(Xr)| Xy = ) =

a(XT,Xt)) =0,

then we have

¢(X7)H(Xy) D" (u)
E(H(X;)D*u)

2. The result in theorem 6.2.5 also works for a general conditional expectation
of the form E(¢(F')|A) for Borel measurable functions ¢, with at most linear

growth at infinity, and A is any measurable set. Please consult [13] and [6]

for details.

3. The existence of ug in the preceding corollary really depends on that DX
is not proportional to D, X;. If the two derivatives are in fact proportional, it
will be shown in section 6.3 that this implies there is some function ¢, such
that X7 = ¢(X;). In such cases, E(Xr|X: = z) = ¢(0).

(I

6.3 Other Applications in Finance

As at today (2004), there are two main types applications of Malliavin calculus
in finance that are known. The first of its kind dates back to 1991, it involves
application Clark’s theorem whose key ideas are illustrated in [26] and [27]. It can
be viewed as an extension to the classical theory introduced by [15]. Where [15] uses
the It0’s martingale representation to argue for the existence of a hedging strategy,
[27] will use Clark’s martingale representation to give an explicit form of it.

This idea was followed on by [20], who applied it to the study of inside traders.
Inside traders by definition are ones whose strategies are G; adapted, where the
public information F; C G;. Traditionally, it is known that under certain condi-
tions, the insider will possess arbitrage opportunities, but the proof was again an
existential one. In [20], Malliavin calculus was used via a Clark-type of argument,
and obtained an explicit arbitrage strategies for the insider.

The second type of application in finance is centered around the integration
by parts formula, it was first introduced in 1999. With hindsight of the materials
covered in chapters 4, 5 and 6, the real power of integration by parts is the ability to
deal with probability densities. Traditional applications of probability theory relied
very much on the knowledge of the density function, yet the density function for
solutions to many important stochastic differential equations do not have an explicit
form. In chapters 4, 5 and 6, we have already seen some treatments provided by
integration by parts formula, and currently this remains to be an area of very active

research.
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A book written by P. Malliavin [32] is scheduled to be released in July 2005.
It will be the first book that aims to systematically cover the ideas of Malliavin
calculus applied to mathematical finance.

Another interesting application of Malliavin calculus is the ability, to some ex-
tent, describe nonlinear functional dependencies of random variables. It is well
known that the covariance or correlation was traditionally used as a popular tool to
determine any linear relationships between two random variables F' and G. When
the functional dependency is nonlinear however, we could somewhat “linearise” such
a relation by looking at the Malliavin derivatives. More precisely, let F' and G be
Fr-measurable and smooth in the sense that D,F' and D,G exists for 0 < ¢t < T.
Then if F' = ¢(G) for some say Lipschitz ¢, we would then have D,F = ¢'(G)D,G
a.s., and thus D,F' and D;G are proportional as functions of . This leads us to

consider, the Malliavin correlation defined by

C(F,G)* = supess ‘foT thFDtGalt‘2
| ’ (fﬁT’Dfﬂ?dt) <f0T|DtG|2dt>

and in case of D;F or D;G are identically zero on [0,7], we then define that
C(F,G) = 1. Two easy observations we make by just staring at the definition
is that, suppose ¢ and ¢ are Lipschitz functions, then F' = ¢(G) <— C(F,G) =1
and C(F,G) = C(¢(F),¢(G)). Since Lipschitz functions are dense in the set of
measurable functions, we can then extend the previous observation to say that
C(F, Q) is constant on o(F) x o(G).

Let us also mention the case when C'(F, G) = 0, obviously this means some form
of L*orthogonality. A question raised by Ustunel (final remarks of [13]) is to ask to
what extent does this Malliavin type of correlation actually leads us to determine
whether two arbitrary L? random variables are independent?

One should observe that if we let X € L?(2) and

X, fX>0 0 if X >0
F = ! — 7 and G =, ’ ! -
0, otherwise; —X, otherwise;

then F and G has disjoint support and hence C(F,G)? will always be zero, yet F
and GG are by no means independent. At this stage, I am hoping to define a class of
“analytic random variables” as an analogue of analytic functions in the sense that
some form of analytic continuation is available. Work with these class of random

variables, let

2

2 ‘ s DfFDdet‘
Cy(F,G)* = supess - -
w (fo nyF|2dt) (fo \DfGPdt)
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and I hope to in the future prove something like if Ci(F,G) = 0 forall k =0, 1,2, ...,

then F' and G are independent random variables.
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