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History and Introduction

The Malliavin calculus, also known as the stochastic calculus of variations, is an

infinite dimensional differential calculus on the Wiener space. Much of the theory

builds on from Itô’s stochastic calculus, and aims to investigate the structure and

also regularity laws of spaces of Wiener functionals. First initiated in 1974, Malli-

avin used it in [31] to give a probabilistic proof of the Hörmander’s theorem and its

importance was immediately recognized.

It has been believed up until near the end of the 19th century that a continuous

function ought to be smooth at “most points”. The only sort of non-differentiable

incidents that were the isolated sharp corners between two pieces of smooth curves,

whose behaviour is similar to the graph of f(x) = |x| around x = 0. It was not

until 1861, when the German mathematician K. Weierstrass first gave an example

of a function that was continuous but nowhere differentiable on R:

f(x) =
∞∑

k=0

(
3

4

)k

cos(3kπx)

This was a striking phenomenon at the time, as it signals that there could be a

new class of continuous functions that are essentially not governed by almost all of

the calculus developed at the time. For example, the integration by substitution

formula for
∫
gdf breaks down completely if f is nowhere differentiable.

This type of wild sharp oscillation is not entirely abstract nonsense. In fact, a

path which can be modelled by a continuous nowhere differentiable function was

observed in real life 50 years before Weierstrass’ example, by the English botanist

Robert Brown while observing movements of pollen particles under the microscope.

This was known as the Brownian motion.

In the early 20th century, many physicists including A. Einstein expressed great

interest in modelling quantum particle movements with Brownian motion. Ein-

stein’s paper in 1905 was considered by many as the first breakthrough in giving a

mathematical model to the Brownian motion. In 1923, an American mathematician

Norbert Wiener gave a mathematically rigorous definition (in a measure theoretic

sense) to Brownian motion based on the idea of independent increments. An in-

teresting fact to note here, is that Wiener’s work had appeared before Kolmogorov

formalized the theory of probability which occurred in 1931.
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However, a problem that remained to be unsolved for another thirty years was

how one could make sense of ∫
fdW,

where W is the Wiener process. Almost all of the results known at the time sug-

gested it was impossible. Essentially, there is no hope of constructing a Lebesgue-

Stieljes type integral of the form
∫
f dg if g is of infinite variation - the Brownian

paths have this property.

Between 1942 and 1951, a Japanese mathematician K. Itô was able to give a

reasonable definition of such an integral in probabilistic terms (as opposed to path-

wise). Further, he showed how change of variables were made via a lemma, now

known as Itô’s lemma. It essentially states that if f is a twice differentiable function

in x and t and Xt = σWt where Wt is a standard Wiener process, then,

df =
∂f

∂Xt

dXt +
∂f

∂t
dt+

1

2
σ2 ∂

2f

∂X2
t

dt.

We see that this formula serves a similar purpose to the chain rule in classical

calculus, but with an extra “correction term” that can be roughly understood as

something to account for the non-zero quadratic variation of Wiener paths. Itô

discovered the above only as a lemma, while his ultimate goal at the time was to

prove a martingale representation theorem: If Mt is a martingale with bounded

quadratic variation, then there exists a square integrable adapted process fs, such

that

Mt =

∫ t

0

fsdWs.

Itô’s work really opened the gate to a new world of stochastic analysis. In

particular, people began to realize that there were tools available in stochastic

calculus that can be used to solve problems in deterministic calculus. The Feynman-

Kac formula, first appeared in 1947, and rigorously proven in 1965, was perhaps

the highlight such example, where an initial problem involving partial differential

equations was solved by solving a corresponding stochastic differential equation.

The Itô calculus found its immediate applications in diffusion theory and quantum

mechanics, and later in mathematical finance.

One question of particular interest at this stage is to ask for an explicit expression

for fs in the martingale representation. An immediate reaction at this point, taking

into account of the fundamental theorem of calculus, is that the fs term should

correspond to a differentiation type of operation in the probabilistic setting. It

turns out that we have fs = E(DtMt|Fs), where Dt is the Malliavin derivative.

This is called Clark’s representation.

Malliavin’s initial intentions in developing his calculus really had very little to do

with Clark’s representation. He was working to give sufficient conditions to which a
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random variable possesses a smooth probability density. He showed that this could

be done if a certain matrix involving Malliavin derivatives was invertible and its

inverse is integrable in Lp for all p ≥ 1, almost surely. Based on this, and exploiting

the connections between SDEs and PDEs, he was able to give a probabilistic proof

of Hörmander’s theorem. There has been an extensive amount of work done to

generalize Malliavin’s ideas for giving regularity conditions of stochastic partial

differential eqautions (SPDE). In 1982, 1984 and 1987, Stroock, Bismut and Bells

respectively have demonstrated three different ways that the Malliavin calculus

could be approached from.

In 1999, the Malliavin calculus found itself yet another playground in the field

of mathematical finance. It is often of interest to investors to know the sensitivity

of the underlying stock price with respect to various parameters. Obviously, this

involves taking derivatives. These sensitivity measures are called Greeks, as they are

traditionally denoted by Greek letters. They are extremely difficult to calculate even

numerically. The main problem is that the derivative term needs to be approximated

using the finite difference method and such approximations can become very rough.

The integration by parts formula obtained from Malliavin calculus can transform a

derivative into an weighted integral of random variables. This gives a much accurate

and fast converging numerical solution than obtained from the classical method.

My thesis will be written in six chapters. Chapter 1 briefly refreshes the theory of

functions of bounded variations, and also some basic definitions of random variables

and stochastic processes.

Chapter 2 will establish the Itô integral, Itô’s lemma and Itô’s martingale repre-

sentation theorem. This chapter aims to set a firm foundation for the development

of Malliavin calculus.

Chapter 3 begins with an illustration of the chaos decomposition theorem. Then,

it develops the Malliavin calculus and links it back to the chaos decomposition

to establish some fascinating results. A common aim of chapters 2 and 3 is to

demonstrate precisely how the classical deterministic calculus fails to extend to the

infinite dimensional setting, and how the probabilistic calculus fixes these problems.

Chapter 4 provides an introduction to the first application of Malliavin calculus,

we give the sufficient conditions to which the probability density of a given random

variable is smooth.

Chapter 5 begins by briefly sketching through the basic theory of stochastic dif-

ferential equations and stochastic flows, and their relations with partial differential

equations. In particular, it demonstrates how Malliavin calculus can be mixed with

these ideas to give a probabilistic proof of Hörmander’s theorem.

Chapter 6 concludes the thesis by illustrating a very recent development in the

area of mathematical finance, whereby Malliavin calculus is used to give stable

Monte Carlo simulation algorithms.
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Chapter 1

Tools From Analysis

The sole purpose of the first chapter is to introduce and revise the main ideas

from analysis that are required to understand and appreciate rest of the thesis.

Section 1.1 on functions of bounded variations is essentially a summary of the key

concepts from [17]. Where we begin by exploring some quite general conditions

for the existence of a derivative and analogues of fundamental theorem of calculus

under Lebesgue’s definition of integration. Section 1.2 will introduce the basics of

probability and random variables from a measure theoretic point of view.

1.1 Functions of Bounded Variation

The set of functions with bounded variation are particularly nice, in the sense that

most of the classical calculus operations such as differentiation are problem free. A

large part of this thesis attempts to resurrect the situation in cases when we are

dealing with functions or paths of unbounded variation, such as the trajectories of

a Brownian motion. Perhaps it would be appropriate to first explore the case when

function has bounded variation, so that we can really appreciate the efforts spent

in studying the unbounded variation case.

Definition 1.1.1. Let Pn[a, b] = (x0, x1, ..., xn) such that a = x0 < x1 < ... <

xn = b. Define δn to be the mesh of Pn by

δn = sup
k
|xk − xk−1|.

Definition 1.1.2. Given a function f : [a, b] → C, we define the total variation

over the interval [a, b] as

〈f〉a,b
1 = lim

n→∞,δn→0

n∑
k=1

|x(tk)− x(tk−1)|.

Moreover, if 〈f〉a,b
1 <∞, we say f ∈ BVa,b, where BVa,b denotes the set of functions

that has bounded variation over the interval [a, b].
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Heuristically, one could think of 〈f〉a,b
1 as the total amount of vertical oscillation

of f throughout the interval [a, b]. Therefore, it should be intuitive that for mono-

tone functions f , then 〈f〉a,b
1 = |f(a) − f(b)|, which also implies that f ∈ BVa,b.

Moreover, if one could find a finite partition of [a, b], such that f is monotone on

each of the partitions, then f ∈ BVa,b. However, perhaps against our intuition but

the converse is false: consider the following example,

Example 1.1.3. Let q1, q2, q3, ... be an ordering of the rational numbers in (0, 1),

and let 0 < a < 1. Define f : [0, 1] → R by

f(x) =

{
ak, if x = qk;

0, otherwise.

Consider any sequence of partitions Pn = (0 = x0, x1, ..., xn = 1) of (0, 1)... and the

contribution to total variation of each rational point is at most 2ak,

〈f〉a,b
1 ≤

∞∑
k=1

2ak =
2a

1− a
<∞

Therefore, we see that f ∈ BV0,1, while it’s clearly impossible to partition [0, 1] into

subintervals Ij such that for each j, f is monotone on Ij. 2

Theorem 1.1.4. (Jordan Decomposition) Let f ∈ BVa,b, then there exist non-

decreasing functions g and h such that f = g − h.

Proof. Define

g(x) =
1

2
(〈f〉a,x

1 + f(x))

h(x) =
1

2
(〈f〉a,x

1 − f(x)),

then, f(x) = g(x)− h(x). Thus we need to check that g and h are increasing. Let

α, β ∈ [a, b] with α < β, then

g(β)− g(α) =
1

2
((〈f〉a,β

1 − 〈f〉a,α
1 ) + f(β)− f(α))

≥ 1

2
(〈f〉α,β

1 − |f(β)− f(α)|)

≥ 0.

A similar argument shows that h is also increasing, and hence we have constructed

two increasing functions whereby f is their difference. 2

Perhaps the most powerful consequence of Jordan’s decomposition theorem is

that it conveniently allows us to generalize a vast number of results that hold true
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for monotone functions to functions of bounded variation. The following theorems

plays a vital role in the theory of differentiation.

Theorem 1.1.5. (Lebesgue’s Theorem) Let f : [a, b] → R be a monotone

function. Then f ′(x) exists and finite a.e. in (a, b).

Theorem 1.1.6. (Fubini’s Theorem) Let fn : [a, b] → R be a sequence of

monotone functions such that
∑∞

n=1 fn(x) = f(x). Then, f ′(x) =
∑∞

n=1 f
′
n(x) a.e.

in (a, b).

Corollary 1.1.7. The statement of Theorem 1.2.4 and Theorem 1.2.5 holds true

for functions of bounded variation.

Theorem 1.1.8. (Stieljes Integral) Let f and g be continuous functions defined

on [a, b], and assume that g has bounded variation. Then,

lim
n→∞δn→0

n∑
k=0

f(x∗k)(g(xk)− g(xk−1)) =

∫ b

a

fdg

exists and agrees for all x∗k ∈ [xk−1, xk].

Proof. For each n, let Pn[a, b] be a partition of [a, b]. Let

mk = inf{f(x) : x ∈ [xk−1, xk]}

Mk = inf{f(x) : x ∈ [xk−1, xk]}

and their corresponding sums,

sn =
n∑

k=1

mk(g(xk)− g(xk−1))

Sn =
n∑

k=1

Mk(g(xk)− g(xk−1)).

Now consider,

S − s = lim
n→∞,δn→0

n∑
k=0

Mk(g(tk)− g(tk−1))−mk(g(tk)− g(tk−1))

= lim
n→∞,δn→0

n∑
k=0

(Mk −mk)(g(tk)− g(tk−1))

≤ sup
k
|Mk −mk|〈g〉a,b

1

3



By assumption, 〈g〉a,b
1 <∞ and supk |Mk −mk| → 0 as f is assumed to be contin-

uous. Hence, we have shown that both sums must agree in the limit. 2

Definition 1.1.9. Let f : [a, b] → C. Suppose that for every ε > 0, there is a

δ > 0 such that,

•
∑n

k=1 |f(dk)− f(ck)| < ε

• For every finite, pairwise disjoint, family {(ck, dk)}n
k=1 of open subintervals of

[a, b] for which
∑n

k=1 |dk − ck| < δ.

Then, f is said to be an absolutely continuous function on [a, b].

Theorem 1.1.10. (The Fundamental Theorem of Calculus) Let f : [a, b] →
R be absolutely continuous. Then,

1. For every x ∈ (a, b), there exists a function f ′(t) such that

f(x) = f(a) +

∫ x

a

f ′(t)dt.

2. f has bounded variation, and its total variation is given by

〈f〉a,x
1 =

∫ s

a

|f ′(t)|dt.

Remark 1.1.11. A key point to the concept of absolutely continuity is that there

exists continuous functions f such that its derivative f ′ = 0 a.e., yet f is strictly

increasing. These functions are called singular functions and we wish to avoid

them. The first example of this kind was given by Cantor. Interested readers may

consult chapter 5 of [17] and chapter 8 of [25]. 2

Definition 1.1.12. Let µ and ν be measures on a measurable space (Ω,F),

such that for all A ∈ F , µ(A) = 0 ⇐⇒ ν(A) = 0. Then, µ is said to be

an absolutely continuous measure with respect to ν. On the other hand, if

µ(A) > 0 ⇐⇒ ν(A) = 0, then we say µ is a singular measure with respect to ν.

Theorem 1.1.13. (Lebesgue Decomposition) Let µ be a measure on a mea-

surable space (Ω,F). Then, for a given measure ν, µ can be uniquely decomposed

as

µ = ξ + η

where ξ is absolutely continuous, and η is singular with respect to ν.
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1.2 Random Variables and Stochastic Processes

This section is intended to give some basic definitions to random variables and

stochastic processes, so this thesis would be more self-contained. Readers can feel

free to skip to the next chapter.

Definition 1.2.1. Let T be a set, (Ω,F ,P) a measure space and (E, E) a probabil-

ity space. A mapping X : (Ω,F ,P) → (E, E), t ∈ T is called a random variable

X is (Ω,F)− (E, E) measurable.

Definition 1.2.2. Let X be a random variable defined on a probability space

(Ω,F ,P).

1. The expectation of X, denoted by EX is defined by,∫
Ω

xdP(x).

2. The law of X is a function F : R → [0, 1] defined by FX(x) = P(X ≤ x).

If F is an absolutely continuous function, we call fX(x) = ∂xFX(x) as the

probability density function of X.

Definition 1.2.3. Let {Xn} be a sequence of random variables. We say

1. Xn
a.s.−−→ X ⇐⇒ P(ω ∈ Ω : Xn(ω) → X(ω)) = 1.

2. Xn
Lp

−→ X ⇐⇒ E(|Xn −X|p) → 0 for p ≥ 1.

3. Xn
P−→ X ⇐⇒ P(|Xn −X| > ε) → 0 for all ε > 0.

4. Xn
d−→ X ⇐⇒ FXn(x) → FX(x) pointwise.

Definition 1.2.4. Let T be a set. A stochastic process Xt, t ∈ T , defined over

a probability space (Ω,F ,P) is a family of random variables. For every ω ∈ Ω, the

mapping t→ Xt(ω) is called the trajectory of Xt.

Definition 1.2.5. A filtration (Ft, t ∈ R) is defined to be a collection of sub-σ-

algebras of F such that Fs ⊂ Ft for all s < t. Further, if Ft satisfies,

1. Ft = ∩s>tFs. This is called the continuity criterion.

2. F0 contains all P-null sets.

We say that Ft is a standard filtration.

Definition 1.2.6. A filtered probability space is a probability space (Ω,F ,P)

equipped with a filtration Ft, denoted by (Ω,F ,Ft,P).

Definition 1.2.7. A stochastic process Xt is said to be adapted to a filtration Ft

if Xt is Ft measurable. It is said predictable if the map (t, ω) → Xt(ω) is measurable

with respect to the predictable σ-algebra P .

Definition 1.2.8. The predictable σ-algebra P is the σ-algebra on R × Ω

generated by the process Xt, adapted to Ft, with left continuous paths.
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Chapter 2

Itô Calculus and Martingales

I would like to use this chapter to give an overview of Brownian motions, martingales

and Itô stochastic calculus. It begins with a detailed construction of the Itô’s

integral with respect to an abstract martingale. We will then move onto Itô’s

change of variables formula and also give a number of applications, including the

martingale representation theorem. It is intended to develop enough theory to talk

about Malliavin calculus in chapter three. Thus, a number of closely related topics

such as the reflection principle are regretfully left out. Good references to this

chapter are [10], [40], [38] and [28], all of which provides a reasonably full coverage.

2.1 Brownian Motion

Between 1827 and 1829, an English botanist, Robert Brown, discovered that the

movements of pollen particles under the microscope underwent extremely wild os-

cillations. This became later known as Brownian motion. He first hypothesised

that the wild movements was related biologically to pollen particles themselves,

but later he realised that other inorganic particles also exhibited the same type

of motion. Today, the best accepted explanation of such a motion is caused by

extremely frequent bombardments by neighbouring particles. We first look at a

heuristic derivation of how such a motion may evolve in time before giving the for-

mal definition of the Wiener process, a mathematical object that is used to model

the Brownian motion.

Consider the physical movement of such a particle on R. In every ∆t units of

time, a particle is bombarded from either left or from the right with probability 0.5,

and the particle moves ∆d units to the opposite direction after each bombardment.

Let ψt(x) be the probability distribution of the position of particle at time t. From

the above physical reasoning, we have

ψt(x) =
1

2
ψt−∆t(x−∆x) +

1

2
ψt−∆t(x+ ∆x).

Subtracting ψt−∆t(x) from both sides to give

1

∆t
(ψt(x)− ψt−∆t(x)) =

1

∆t

(
1

2
ψt−∆t(x−∆x)− ψt−∆t(x) +

1

2
ψt−∆t(x+ ∆x)

)
.

6



Since the bombardments occurs in extremely small intervals, it makes sense to

consider the limit ∆t→ 0 and ∆x→ 0. However, this needs to be done with care,

as blindly letting ∆t = ∆x→ 0 would imply that

∂ψ

∂t
=

1

2

(
∂ψ

∂x
− ∂ψ

∂x

)
= 0,

which means that the displacement is constant, i.e. there is no motion! However,

if we let ∆x =
√

∆t→ 0, we would obtain,

∂ψ

∂t
=

1

2

∂2ψ

∂x2

along with the initial condition that

ψ0(x) = δ(x)

where δ is the Dirac δ-function. Einstein first formulated this model in 1905, with a

number of additional constant terms each with its own physical interpretation. This

initial value problem is equivalent to the heat equation studied by Fourier nearly

a century earlier. It can be solved via a Fourier transform over the direction of x.

Let

ψ̂t(s) =

∫
R
e−ixsψt(x)dx,

then our initial value problem becomes,

∂ψ̂t(s)

∂t
= −1

2
s2ψ̂t(s)

ψ̂0(s) = 1

which can be solved to obtain

ψ̂t(s) = e−1/2s2t.

Hence, taking the inverse transform (or by inspection), we obtain the probability

density

ψt(x) =
1√
2πt

e−
x2

2t .

Thus, we see Brownian motions are characterised by independent and identical

increments that are normally distributed with mean zero and variance t, where t is

the amount of time elapsed. We are now in position to give some formal definitions.

Definition 2.1.1. (Wiener Process) Let (Ω,F ,Ft,P) be a filtered probability

space, and Wt be a stochastic process. Wt is called a Wiener process with respect

to Ft if

7



1. W0 = 0 a.s.

2. Wt is Ft-measurable for every t.

3. P(ω ∈ Ω : t→ Wt(ω) is a continuous function in t) = 1.

4. Wt −Ws is independent to Fs for all t > s and Wt −Ws ∼ N(0, t− s)

The standard Brownian motion (starting at 0) satisfies the axioms of a Wiener

process. It will be shown later this chapter that it is in fact the unique stochastic

process that fulfils properties 1 - 4.

Remark 2.1.2. Strictly speaking, the Brownian motion and Wiener processes

are two different things. While the former refers to the physical motions of small

particles, the latter is a mathematical model of the former in an idealistic situation.

Some properties of Wiener paths (as we will see) such as almost surely nowhere dif-

ferentiability is in fact false for the physical Brownian motion, since it is impossible

for a particle to be bombarded by its neighbours continuumly often. 2

A more formal way of viewing the Wiener process is as a stochastic process taking

values over the set of all possible trajectories. Let Cα[a, b] be the set of continuous

functions f defined on [a, b] with f(a) = α. Let Ω = C0[0, T ] and F = B(C0[0, b]),

where B(C0[0, b]) is the σ-algebra generated by open sets (with respect to the sup

metric) of C0[0, T ]. The filtration Ft in this case would be a sequence of sub-σ-

algebras. In 1923, Wiener showed that there is a well defined measure µ on this

measure space, known as the Wiener measure. Elements of C0[0, T ] under the

Wiener measure corresponds to the sample paths of the Brownian motion, and the

probability space (C0[0, T ],F , µ) is called the classical Wiener space. Readers

are referred to [24] for details in the construction.

The following are some well known properties of the Brownian motion taken

from [24] that are relevant to our development.

1. The Brownian paths are almost surely of unbounded variation on arbitrarily

small time intervals.

2. As a consequence, the Brownian paths, with probability one (with respect to

the Wiener measure), are nowhere differentiable at any point.

Proposition 2.1.3. Let X be a random variable defined on (Ω,F ,P), and let

G ⊆ F . Then, there exists a unique random variable Y such that

1. Y is G-measurable

2. E(1AY ) = E(1AX) for every non-empty set A ∈ F .

Proof. This is an easy consequence of the Radon-Nikodym theorem. 2

Definition 2.1.4. (Conditional Expectation) The random variable Y in propo-

sition 2.1.10 is defined to be the expectation of X conditioned on G, denoted by

E(X|G).

8



Properties of the conditional expectation: Let (Ω,F ,P) be a probability

space and let G be a σ-subalgebra of F . Then,

1. E(aX + bY |G) = aEX + bEY
2. ∀H ∈ F ,E(E(X|G)|H) = E(X|H).

Further properties of the conditional expectation can be obtained in chapter 1

of [10] and [40].

Example 2.1.5. Let Wt be a Wiener process, and Ft be the filtration generated by

Wt. For s < t, we wish to calculate E(Wt|Fs). Observe that Ws is Fs-measurable,

and for all A ∈ Fs,

E(1AWt) = E(1AWs) + E(1A(Wt −Ws)).

By independence, E(1A(Wt −Ws)) = E(1A)E(Wt −Ws) = 0, since Wt −Ws is a

normally distributed with 0 mean. Therefore, we have shown that Ws = E(Wt|Fs).

2

We give the following definition of a martingale by means to generalize the result

of the previous example.

Definition 2.1.6. Let T ⊂ R and Ft a filtration over Ω. A stochastic process Xt

is said to be a martingale if

1. Xt is Ft-measurable for every t.

2. E|Xt| <∞ for every t.

3. E(Xt|Fs) = Xs.

A direct consequence of the definition is that M is a martingale iff Mt −Ms is

independent to Fs. Hence,

E(Ms2 −Ms1)(Mt2 −Mt1) = 0

if (s1, s2) ∩ (t1, t2) = ∅. Secondly, we observe that EMt = EM0 for all martingales

M .

The following is a list of elementary results related to martingales that will be

useful later on. Proofs of these can be found in [10] and [28].

Definition 2.1.7. Stopping Time A random variable τ : Ω → [0,∞) is a stop-

ping time if {ω : τ(ω) ≤ t} is Ft-measurable.

Theorem 2.1.8. Optional Stopping Time Theorem Let Mt be a martingale

and let ν and τ be stopping times with respect to a common filtration Ft. Then,

E(Mτ |Fν) = Mν

9



Definition 2.1.9. Given a stochastic process X and a stopping time τ , we define

the stopped process by Xτ = Xt∧τ . This is a replication of X, and frozen at time

T .

Definition 2.1.10. M is a local martingale iff there exists a sequence of stopping

times τn →∞, such that M τn are martingales for all n.

Remark 2.1.11. The concept of a local martingale is of central importance

to stochastic calculus, as we will see later that the stochastic integral of a local

martingale will always be another local martingale. The same cannot be said for

martingales when the integral is taken over an infinite horizon. 2

Proposition 2.1.12. Every bounded local martingale is a martingale.

Proof. Let M be a bounded local martingale, so that MTn(ω) → M(ω) pointwise.

We may apply the dominated convergence theorem to obtain,

E(Mt|Fs) = lim
n→∞

E(MTn
t |Fs) = lim

n→∞
XTn

s = Xs.

Hence, every bounded local martingale is also a martingale. 2

However, I would like to stress that local martingales are much more general

than martingales. A common misconception is to believe that local martingales

only need to be integrable in order to be martingales. A counter example can be

constructed with the aid of so called Itô’s lemma, section 5.2 of [40] has the details.

Theorem 2.1.13. If M is a continuous local martingale with finite first and second

moment and has bounded variation, then M is constant almost surely.

Proof. Without loss of generality, we can assume the constant to be M0 = 0. Since

M is assumed to have bounded variation, we can apply the fundamental theorem

of calculus to get

M2
t = M2

0 + 2

∫ t

0

MsdMs.

We can further write the integral as a Riemann sum since M is assumed to be

continuous. Hence,

M2
t = M2

0 + lim
n→∞

2
n∑

i=1

Msi
∆Msi

.

M was assumed to have first and second moments, applying dominated convergence

theorem and exploiting independent increments of martingales, we have

EM2
t = M2

0 + lim
n→∞

2
n∑

i=1

EMsi
∆Msi

= M2
0 = 0.

Since M2
t ≥ 0, we may conclude that Mt = 0 almost surely. 2
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This is an extremely important result for our purposes, as it demonstrates that

the classical integration theory does not apply when we are integrating with respect

to any interesting martingales. I will give an explicit example to further demonstrate

this problem in the following section, and then we will discuss the possible ways of

fixing the problem.

2.2 Construction of the Itô Integral

In this section, we formulate the construction of the Itô integral with respect to

an abstract martingale over [0, T ]. Remarks will be made concerning how this

formulation may generalise to obtain an integral over [0,∞).

Definition 2.2.1. Let Pn = (t0, t1, ..., tn) = {0 = t0 < t1 < ... < tn = T} be a

partition of [0, T ], we define ∆t = tk− tk−1 and ∆Xtk = Xtk −Xtk−1
, and the mesh,

δn = sup
k
|tk − tk−1|

for k = 1, ..., n and tk ∈ Pn.

Definition 2.2.2. Given a function f : [a, b] → R. We define the quadratic

variation over the interval [a, b] as

〈f〉a,b
2 = lim

δn→0

n∑
k=1

|∆f(tk)|2.

Example 2.2.3. Let W (ω) be a trajectory of the Wiener process. Then,

〈W 〉a,b
2 (ω) = lim

n→∞,δn→0

n∑
k=1

(∆Wtk)
2.

To compute the quadratic variation directly (path-wise) seems to be a difficult

task! Instead, we shall take a probabilistic approach which will the type of proving

technique we will be using for most of this chapter. Consider,

E
( n∑

k=1

(∆Wtk)
2 − (b− a)

)2

= E
( n∑

k=1

(∆Wtk)
2 − (∆tk)

)2

=
n∑

k=1

E(∆Wtk)
4 + 2(∆tk)E(∆Wtk)

2 + (∆tk)
2

=
n∑

k=1

(3(∆tk)
2 − 2(∆tk)

2 + (∆tk)
2

≤ 2tmax(∆tk)
δn→0−−−→ 0,
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where the fourth line was obtained by noting that the kurtosis of a N(0,∆t) random

variable is 3(∆t)2. Therefore, we have shown that V 2
a,bW = b− a in L2. 2

Example 2.2.4. The following example shows that the Wiener process is not

integrable in the Stieljes sense. Consider,∫ b

a

WdW = lim
n→∞,δn→0

n∑
k=0

W (t∗k)(W (tk)−W (tk−1))

Next, we evaluate the above using t∗k = tk and tk−1 and call the respective limits

S and S ′. If
∫
WdW exists (under Stieljes), then we would expect S − S ′ = 0.

However,

S − S ′ = lim
n→∞,δn→0

n∑
k=0

(
W (tk)(W (tk)−W (tk−1))−W (tk−1)(W (tk)−W (tk−1))

)
= lim

n→∞,δn→0

n∑
k=0

(W (tk)−W (tk−1))
2

= V 2
a,bW

= b− a

2

The previous example suggests that what is stopping us from defining the

stochastic integral the “usual” way more or less caused by this additional quadratic

variation term that functions of bounded variation did not have. This suggests that

we should study the quadratic variation in more detail before we could give the

definition of a stochastic integral.

Theorem 2.2.5. For every continuous and bounded martingale M of finite

quadratic variation,

1. 〈M〉0,t
2 = 0 a.s. when t = 0.

2. 〈M〉2 is everywhere increasing.

3. The process M2 − 〈M〉2 is a martingale adapted to Ft.

Proof. Since 〈M〉2 is required to be increasing, by Theorem 1.1.5, 〈M〉2 has bounded

variation. Hence, if there are two valid candidates A and B for such a process, by

Theorem 2.1.12, the process A−B = 0 a.s. Thus we have proven uniqueness.

For a given subdivision of [0,∞), δ = {t0 = 0 < t1 < ...} such that only a finite

number of ti’s in each closed interval [0, t], we define

T δ
t (M) =

k−1∑
i=0

(Mti+1
−Mti)

2 + (Mt −Mtk)
2

12



where k is such that tk ≤ t < tk+1. Further, observe that for tk < t < tk+1,

E[(Mtk+1
−Mtk)

2|Fs] = E[((Mtk+1
−Mt) + (Mt −Mtk))

2|Fs]

= E[(Mtk+1
−Mt)

2|Fs] + (Mt −Mtk)
2

Thus, for tj < s < tj+1,

E[T δ
t (M)− T δ

s (M)|Fs] = E
( k−1∑

i=j+1

(Mti+1
−Mti)

2 + (Mt −Mtk)
2 + (Mtj+1

−Ms)
2|Fs

)
= E[(Mt −Ms)

2|Fs]

= E[M2
t −M2

s |Fs]

where the second to last line and the last line is obtained by exploiting the inde-

pendence of increments. Hence,

E(M2
t − T δ

t (M))|Fs) = E(M2
t − (M2

t −M2
s |Fs) = M2

s

and thus M2
t − T δ

t (M) is a continuous martingale.

Now, for any given a > 0 and δn be a sequence of subdivisions of [0, a] such

that |δn| → 0, we prove that T δn
a converges in L2. Let δ and δ′ be two subdivisions,

and δδ′ be the subdivision obtained by taking the union of points of δ and δ′. Let

X = T δ(M)− T δ′(M), and observe that

E(Xt|Fs) = E(T δ
t (M)− T δ′

t (M)|Fs)

= E(T δ
t (M)− T δ

s (M)) + (T δ
s (M)− T δ′

s (M)) + (T δ′

s (M)− T δ′

t (M))|Fs)

= E(M2
t −M2

s |Fs) + (T δ
s (M)− T δ′

s (M))− E(M2
t −M2

s |Fs)

= Xs

and hence X is a martingale. Therefore,

EX2
a = E[(T δ

a (M)− T δ′

a (M))2] = E(T δδ′

a (X)).

Using the inequality (x1 + x2 + ... + xn)2 ≤ 2(x2
1 + x2

2 + ... + x2
n) for real numbers

x1, ..., xn, we have

T δδ′

a (X) ≤ 2(T δδ′

a (T δ) + T δδ′

a (T δ′))

and thus it suffices to prove that ET δδ′
a (T δ) → 0 as |δ|+ |δ′| → 0.
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Let sk ∈ δδ′ and tl be the rightmost point of δ such that tl ≤ sk < sk+1 ≤ tl+1;

we have

T δ
sk+1

(M)− T δ
sk

(M) = (Msk+1
−Mtl)

2 − (Msk
−Mtl)

2

= (Msk+1
−Msk

)(Msk+1
+Msk

− 2Mtl)

and hence,

T δδ′

a (T δ) ≤ T δδ′

a (M) sup
k
|Msk+1

+Msk
− 2Mtl|2.

Applying the Cauchy-Schwartz inequality gives,

ET δδ′

a (T δ) ≤
(

E(T δδ′

a (M))2E sup
k
|Msk+1

+Msk
− 2Mtl|4

) 1
2

.

By continuity of M , the first factor would go to zero as |δ|+ |δ′| → 0. It suffices to

show that the second factor is bounded by a constant independent of δ and δ′.

Let ∆ = δδ′ = {0 = t0 < t1 < ...} and for simplicity, let a = tn. Then,

(T∆
a (M))2 =

( n∑
k=1

(Mtk −Mtk−1
)2

)2

= 2
n∑

k=1

(T∆
a (M)− T∆

tk
(M))(T∆

tk
(M)− T∆

tk−1
(M)) +

n∑
k=1

(Mtk −Mtk−1
)4.

We have shown before that E[T∆
a (M) − T∆

tk
(M)|Ftk ] = E[(Ma − Mtk)

2|Fs], and

hence,

E(T∆
a (M))2 = 2

n∑
k=1

E(Ma −Mtk)(T
∆
tk

(M)− T∆
tk−1

(M)) +
n∑

k=1

E(Mtk −Mtk−1
)4

≤ E
(

2 sup
k
|Ma −Mtk |

n∑
k=1

(T∆
tk

(M)− T∆
tk−1

(M))

+ sup
k
|Mtk −Mtk−1

|2
n∑

k=1

(Mtk −Mtk−1
)2

)
= E

(
(2 sup

k
|Ma −Mtk |2 + sup

k
|Mtk −Mtk−1

|2)T δδ′

a (M)

)
.

By assumption, M is a bounded martingale, and hence there exists a constant C

such that |M | ≤ C. Since, E[T∆
a (M) − T∆

tk
(M)|Ftk ] = E[(Ma −Mtk)

2|Fs], we can

establish that ET δδ′
a (M) ≤ 4C2. Thus,

E(T∆
a (M))2 ≤ 4C2(E(2 sup

k
|Ma −Mtk |2 + sup

k
|Mtk −Mtk−1

|2) ≤ 48C4
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Therefore, we have shown that Tδn
a has a limit 〈M〉0,a

2 as n→∞ in L2, and hence in

probability. It remains to show that we could choose 〈M〉0,a
2 within the equivalence

class to have the desired properties. For any sequence converging in L2, we may

extract a subsequence that converges almost surely. In particular, there exists a

subsequence of partitions δnk
such that T

δnk
t converges a.s. uniformly on [0, t] to

〈M〉0,t
2 that is continuous. Moreover, the subsequence may be chosen such that

δnk+1
⊂ δnk

, and that ∪kδnk
is dense in [0, t]. Since for every u < v, we have

T
δnk
u ≤ T

δnk
v , and so 〈M〉0,t

2 is increasing on ∪kδnk
, which is dense on [0, t]. By

continuity, 〈M〉2 is increasing everywhere. 2

Remark 2.2.6. What theorem 2.2.5 is really telling us is that

1. The existence of the quadratic variation for a general martingale M .

2. 〈M〉0,t
2 is non-decreasing, and hence a process of bounded variation. Therefore,

classical Lebesgue integration theory can be applied to the quadratic variation

process.

This is the key result in establishing stochastic integration with respect to abstract

martingales. 2

Now we would like to state a few propositions that generalises the previous the-

orem. In particular, we would like to extend it to martingales that are unbounded,

like the Wiener process.

Proposition 2.2.7. For every stopping time T , we have 〈MT 〉2 = 〈M〉T2 .

Theorem 2.2.8. For every continuous local martingale M , the result of the

previous theorem applies. In particular,

sup
s≤t

|T δn
s (M)− 〈M〉0,s

2 |

converges to zero in probability.

Proof. Let {τn} be a sequence of stopping times defined by

τn = inf{t : |Mt| ≥ n}.

Since M is assumed to be continuous, it cannot explode to ∞ in finite time. Then,

we have τn → ∞ and Xn = M τn is a bounded martingale. By theorem 2.2.5,

there is, for each n, a continuous adapted and non-decreasing process An such that

A0 = 0 and X2
n−An is a martingale. Furthermore, (X2

n+1−An+1)
τn is a martingale

and is equal to X2
n − Aτn

n+1. By the uniqueness property, we have Aτn
n+1 = An.

Hence, for each n, we can unambiguously define 〈M〉τn
t = An, as clearly we have

(M τn)2 − 〈M〉τn
t being martingales. Letting n→∞ in the definition of 〈M〉τn

t will

uniquely recover the quadratic variation process 〈M〉t.
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To prove the convergence property, let δ, ε > 0 and t fixed. One can find a

stopping time τ whereby M τ is a bounded martingale and P(τ ≤ t) < δ. Since

T∆(M) and 〈M〉 coincide with T∆(M τ ) and 〈M τ 〉 respectively on [0, τ ], we have

P
(

sup
s≤t

|T∆
s (M)− 〈M〉s| > ε

)
< δ + P

(
sup
s≤t

|T∆
s (M τ )− 〈M τ 〉s| > ε

)
and by theorem 2.2.5, the last term goes to zero as |∆| → 0. 2

Remark 2.2.9. A frequently-occurring phenomenon in this chapter is that a lot

of convergence result such as above weakens from L2 to convergence in probability

when we extend the domain from [0, T ] to [0,∞). Their proofs are very similar to

the argument carried out in the above, and will be omitted. Interested readers may

consult [10] and [40] for details. 2

Definition 2.2.10. (Covariation) Let M and N be continuous local martingales,

we define

〈M,N〉 =
1

4
[〈M +N〉2 − 〈M −N〉2].

In particular, we have 〈M,M〉 = 〈M〉.

Theorem 2.2.11. Let M and N be local martingales and let δn be a sequence of

partitions of [0, s]. Define

T δn
s (M,N) =

∑
ti∈δn

(Mti+1
−Mti)(Nti+1

−Nti),

then,

1. T δn
s (M,N)

L2(Ω)−−−→ 〈M,N〉s.
2. MN − 〈M,N〉 is a local martingale.

3. 〈M,N〉 is the unique continuous process with the above properties.

Proof. Note that for fixed partitions δn,

T δn
s (M,N) =

1

4
(T δn

s (M +N)− T δn
s (M −N)).

and so T δn
s (M,N)

P−→ 〈M,N〉 follows by convergence of quadratic variation. Check-

ing 2. is routine algebra, and 3. follows from the uniqueness of the quadratic

variation. 2

Remark 2.2.12.

1. The preceding theorem is true for s = ∞ as well, but convergence weakens

to sense of probability. The proof is again a routine exercise with stopping

times.
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2. Note that 〈M,M〉 is an increasing process, and hence it has bounded variation.

Thus it makes sense to talk about
∫
fd〈M,M〉 or

∫
fd〈M,M〉 in the Lebesgue

sense.

2

Carrying the idea forward from the previous remark, we have

Proposition 2.2.13. Let a > 0 and δn
a = {t0 = 0 < t1 < ... < tn = a} be a

partition of [0, a]. Set tλi = ti + λ(ti+1− ti), where λ ∈ [0, 1]. Let M and N be local

martingales and H a bounded continuously adapted process. Then,

lim
|δ|→0

∑
i

Hti [(Mtλi
−Mti)(Ntλi

−Nti)] = λ

∫ a

0

Hsd〈M,N〉s

in L2. This also hold in case when a = ∞, but convergence weakens to the sense of

probability.

Proof. Let 〈M,N〉tiλti = 〈M,N〉tiλ − 〈M,N〉ti , and by the previous theorem,∑
i

Hti [(Mtλi
−Mti)(Ntλi

−Nti)− 〈M,N〉tiλti ] → 0

where convergence is in L2. Since 〈M,M〉 and 〈N,N〉 are increasing processes and

hence 〈M,N〉 has bounded variation. Moreover, integrals in the Lebesgue sense can

be defined via a Riemann sum with respect to 〈M,N〉. Hence,

lim
|δ|→0

∑
i

Hti [(Mtλi
−Mti)(Ntλi

−Nti)] = lim
|δ|→0

∑
i

Hti〈M,N〉tiλti

= lim
|δ|→0

∑
i

λHti〈M,N〉ti+1

ti

= λ

∫ t

0

Hsd〈M,N〉s

where the second to third line is obtained by approximating 〈M,N〉tiλti with λ〈M,N〉ti+1

ti .

This error in this approximation tends to 0 uniformly in λ since 〈M,N〉 has bounded

variation. (write something for case when a = ∞). 2

Corollary 2.2.14. Let f : R → R be a C1 function and f ′ be its formal derivative.

Then, ∑
i

[(f(Mti+1
)− f(Mti))(Nti+1

−Nti) →
∫ a

0

f ′(Ms)d〈M,N〉s.
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Proof. Since f ∈ C1 andM continuous, we have (f(Mti+1
)−f(Mti)) → f ′(Mti)(Mti+1

−
Mti) as |δ| → 0. Hence by proposition,

lim
|δ|→0

∑
i

[(f(Mti+1
)− f(Mti))(Nti+1

−Nti) = lim
|δ|→0

∑
i

f ′(Mti)(Mti+1
−Mti)(Nti+1

−Nti)

=

∫ a

0

f ′(Ms)d〈M,N〉s.

2

Next, we state a Cauchy-Schwarz type inequality that would lead us to the

famous Kunita-Watanabe inequality.

Proposition 2.2.15. For any continuous local martingales M and N , and mea-

surable processes H and K,

∫ t

0

|Hs||Ks||d〈M,N〉|s ≤
(∫ t

0

H2
sd〈M,M〉s

) 1
2
(∫ t

0

K2
sd〈N,N〉s

) 1
2

holds a.s. for t ≤ ∞.

Applying Hölder’s inequality to the above with 1
p

+ 1
q

= 1, we obtain

Theorem 2.2.16. (Kunita-Watanabe Inequality)

E
(∫ ∞

0

|Hs||Ks||d〈M,N〉|s
)
≤
∣∣∣∣∣∣∣∣ ∫ ∞

0

H2
sd〈M,M〉s

∣∣∣∣∣∣∣∣
p

∣∣∣∣∣∣∣∣ ∫ ∞

0

K2
sd〈N,N〉s

∣∣∣∣∣∣∣∣
q

.

The main purpose of this result is to provide an upper bound for
∫
.d〈M,N〉s,

which becomes a key step in setting up Itô’s isometry.

We are now in position to set up the Itô integral, but we first should identity

some Hilbert space type structure over the set of continuous local martingales. Let

H2 be the space of continuous L2-bounded martingales, that is, for each M ∈ H2,

we have supt EM2
t <∞. Let H2

0 be the subspace of H2 such that for every M ∈ H2
0,

M0 = 0. This space have a default inner product defined by

(M,N) =

∫ ∞

0

MsNsds

We can further define an H2-norm to these spaces by

||M ||H2 = lim
t→∞

(E(M2
t ))1/2.

Polarization of this norm gives rise to an inner product, which thus make H2 a

Hilbert space.
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For eachM ∈ H2, we define L2(M) as the space of martingales with the property

that, if K ∈ L2(M), then

||K||2M = E
∫ ∞

0

K2
sd〈M,M〉s <∞.

Again, the norm ||K||M can be made to an inner product via polarization, and

hence L2(M) is a Hilbert space.

Theorem 2.2.17. [Itô’s Isometry] Let M ∈ H2, for each K ∈ L2(M), there is a

unique element of H2
0, denoted by K.M , such that

〈K.M,N〉 = K.〈M,N〉 :=

∫ ∞

0

Ksd〈M,N〉s

for every N ∈ H2. The map K → K.M is an isometry from L2(M) into H2
0.

Proof. Uniqueness is easy, since if L and L′ are two martingales of H2
0, such that

〈L,N〉 = 〈L′, N〉, then one can establish 〈L − L′, L − L′〉 = 〈L − L′〉2 = 0. By

Theorem 2.1.13, the only martingale with zero quadratic variation in H2
0 is the zero

process, and hence L = L′ a.s. It remains for us to prove the existence part.

We first work with case whenM,N ∈ H2
0. By the Kunita-Watanabe’s inequality,∣∣∣∣E(∫ ∞

0

Ksd〈M,N〉
)∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣ ∫ ∞

0

K2
sd〈M,M〉s

∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣ ∫ ∞

0

d〈N,N〉s
∣∣∣∣∣∣∣∣

2

.

≤ ||K||M ||N ||H2 .

Hence, N → E[(K.〈M,N〉)∞] is a linear and continuous map on H2
0. By Riez

representation theorem, there exists K.M ∈ H2
0, such that

(K.M,N)H2 = E[(K.M)∞N∞] = E[(K.〈M,N〉)∞]

for every N ∈ H2
0. Since elements of H2

0 are L2−bounded, it follows by an easy

application of Hölder’s inequality that they are also uniformly integrable. Hence,

for every stopping time T , we have

E[(K.M)TNT ] = E[E[(K.M)∞|Ft]NT ]

= E[(K.M)∞N
T
∞]

= E[(K.〈M,N〉T )∞]

= E[(K.〈M,N〉)T ]
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Since the choice of T was arbitrary, it follows that (K.M)N −K.〈M,N〉 is a mar-

tingale. Further,

||K||2M = E
∫ ∞

0

K2
sd〈M,M〉s

= E[(K2.〈M,M〉)∞]

= E[(K.〈M,K.M〉)∞]

= E[(K.M)2
∞]

= ||K.M ||2H2 .

This shows that the map K → K.M is an isometry. Now, if M,N ∈ H2 instead of

H2
0, we still have 〈K.M,N〉 = K.〈M,N〉, because the covariation of any constant

martingale is always zero. 2

The following theorem relates the quantity K.M to a Riemann sum.

Theorem 2.2.18. Let M ∈ H2
0 and K ∈ L2(M) as before; δa

n = {t0 = 0 < t1 <

... < tn = a} be a sequence of partitions of [0, a].

lim
|δn|→0

n−1∑
i=0

Kti(Mti+1
−Mti) = (K.M)t.

Proof. Consider the case when K is bounded first. Let

T δn =
n−1∑
i=0

Kti1(ti+1,ti)S
δn =

n−1∑
i=0

Kti(Mti+1
−Mti).

Then, one easily checks that T δn converges to K pointwise, bounded by ||K||∞,

and also Sδn = T δn .M . Thus, by uniqueness of the isometry, as n → ∞, we have

T δn → M and Sδn → K.M boths in L2. Finally, we relax the boundedness of K

and we could achieve the same result (except now converging in probability) with

an appropriate choice of stopping times. 2

Definition 2.2.19. Let M be a continuous local martingale, define the space of

progressively measurable processes denoted by L2
loc(M), consisting of elements K

for which there exists a sequence of stopping times Tn →∞, such that

E
(∫ Tn

0

K2
sd〈M,M〉s

)
<∞.

Theorem 2.2.20. The previous theorem extends the choices of K to L2
loc(M).
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Definition 2.2.21. (Itô Integral) Let M be a continuous local martingale and

K ∈ L2
loc(M). The Itô’s stochastic integral of K with respect to M is defined by∫ t

0

KsdMs = (K.M)t.

Remark 2.2.22. Many texts, such as [10] and [28] give the definition of the Itô

integral as a Riemann sum at a much earlier point of the chapter. I have chosen

an alternative approach, by establishing everything we need to know on quadratic

variation processes first, it makes our lives a lot easier in setting up the Itô’s lemma

in the next section. 2

Definition 2.2.23. A continuous semi-martingale is a process (Xt,Ft) which

has a decomposition

X = X0 +M + V

where M is a continuous local martingale and V a continuous process of bounded

variation, both Ft adapted.

Remark 2.2.24. The above decomposition is unique and it is called the Doob-

Meyer decomposition. 2

Proposition 2.2.25. (Properties of the Itô integral) Carrying forward the

notation from the previous definition, let Y ∈ L2(M). Then

1. The Itô integral is a continuous and linear,∫ t

0

YsdXs =

∫ t

0

YsdMs +

∫ t

0

YsdVs

2. The process Zt =
∫ t

0
YsdMs is an adapted L2-local martingale.

In the definition of the Itô integral, we have chosen to use the leftmost point

of each interval as our sample point in constructing the Riemann sum. One may

enquire what would happen if we had chosen some other point instead. It turns

out that as far as convergence is concerned, the choice of the points does not really

matter. The following proposition is an exercise taken from [40], it tells us exactly

how other types of Riemann sums are related with the Itô integral.

Proposition 2.2.26. Let µ be a measure on [0, 1], and δ be a partition of [0,a],

X a continuously adapted process and M a local martingale. We define

Sµ
δ =

∑
i

(Mti+1
−Mti)

∫ 1

0

f(Xti + λ(Xti+1
−Xti)dµ(λ).
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Then,

lim
|δ|→0

Sµ
δ =

∫ t

0

f(Xs)dMs + µ̄

∫ t

0

f ′(Xs)d〈X,M〉s

where µ̄ =
∫ 1

0
sdµ(s).

Proof. Since f ∈ C1 and X continuous,

Sµ
δ =

∑
i

(Mti+1
−Mti)

∫ 1

0

f(Xti + λ(Xti+1
−Xti)dµ(λ)

=
∑

i

(Mti+1
−Mti)

∫ 1

0

f(Xti) + f ′(Xti)(λ(Xti+1
−Xti))dµ(λ)

=
∑

i

(Mti+1
−Mti)f(Xti) +

∑
i

(Mti+1
−Mti)(Xti+1

−Xti)f
′(Xti)

∫ 1

0

λdµ(λ)

=
∑

i

(Mti+1
−Mti)f(Xti) + µ̄

∑
i

(Mti+1
−Mti)(Xti+1

−Xti)f
′(Xti)

By Theorem 2.2.14,

∑
i

(Mti+1
−Mti)f(Xti)

P−→
∫ a

0

f(Xs)dMs

and by Proposition 2.2.9,

∑
i

(Mti+1
−Mti)(Xti+1

−Xti)f
′(Xti)

P−→
∫ t

0

f ′(Xs)d〈X,M〉s

and hence we have finished the proof. 2

Corollary 2.2.27. The Itô integral is the unique stochastic integral that is a local

martingale.

Remark 2.2.28. The case when f(x) = x, and µ is a probability measure has a

interesting interpretation. It tells us exactly how the Riemann sum of a stochastic

integral converges when we randomly choose our sample points according to a given

probability distribution. One could interpret it as the law of large numbers for

stochastic Riemann sums. In particular, when µ = δ0, we recover the Itô integral;

when µ = δ1/2 we would get the so-called Stratonovich integral, where µx is the

Dirac-δ measure centered at x. It turns out that each of the Itô and Stratonovich

integrals has its own advantages. For example, all Itô integrals are Ft-adapted

local martingales which makes numerical calculations very easy. The Stratonovich

integral, on the other hand, transforms in a much more friendlier manner under

change of variables in the sense that it is follows the chain rule of ordinary calculus.

2
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Definition 2.2.29. LetM be a local martingale andX ∈ L2(M). The Stratonovich

integral, denoted by
∫
. ◦ dM , is defined to be∫ t

0

Xs ◦ dMs =

∫ t

0

XsdMs −
1

2
〈X,M〉t.

2.3 Itô’s Lemma and Applications

2.3.1 Itô’s Lemma on R and Rn

Itô’s Formula, originally stated as a lemma, can be thought of as a chain rule for

stochastic calculus. It is perhaps most commonly stated in most undergraduate

textbooks as,

dFt =
∂F

∂Xt

dBt +
∂F

∂t
dt+

1

2

∂2F

∂X2
t

dt

where Bt is the standard Brownian motion process, and Ft = F (t, Bt), for some

twice differentiable function F . Here, we see that it actually looks like the chain

rule, with an extra correction term involving a second derivative in it.

The most intuitive way to understand of why it works, is to simply perform a

Taylor series expansion as follows.

dFt =
∂F

∂Bt

dBt +
∂F

∂t
dt+

1

2

(
∂2F

∂B2
t

dB2
t + 2

∂2F

∂Bt∂t
dBtdt+

∂2F

∂t2
dt2
)

and then argue that dt2 = dBtdt = 0, while dB2
t = dt and hence it would

immediately give us the result.

We now give a more rigorous statement and proof of Itô’s formula, in a more

general setting.

Lemma 2.3.1. (Itô’s Lemma) Let Xt be a continuous local martingale and Vt be

a process of locally bounded variation. Let f : R2 → R be a C2 function on (x,v),

such that Ft = f(Xt, Vt). Then, a.s. for each t, we have

Ft − F0 =

∫ t

0

∂f

∂x
(Xs, Vs)dXs +

∫ t

0

∂f

∂v
(Xs, Vs)dVs +

1

2

∫ t

0

∂2f

∂x2
(Xs, Vs)d〈X〉s

Proof. Let {δn
t } be a sequence of partitions of [0, t], such that |δ|nt → 0 as n→∞.

Then, by the mean value theorem, we know there exists a sequence of random times
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ηj and τj ∈ [tj, tj+1], such that,

f(Xt, Vt) = f(X0, V0) +
n−1∑
j=0

(
f(Xtj+1

, Vtj+1
)− f(Xtj+1

, Vtj) + f(Xtj+1
, Vtj)− f(Xtj , Vtj)

)

=
n−1∑
j=0

(
∂f

∂v
(Xtj+1

, Vτj
)(Vtj+1

− Vtj) +
∂f

∂x
(Xtj , Vtj)(Xtj+1

−Xtj)

+
∂2f

∂x2
(Xηj

, Vtj)(Xtj+1
−Xtj)

2

)

=
n−1∑
j=0

((
∂f

∂v
(Xtj , Vtj) + ε1

j

)
(Vtj+1

− Vtj)

+
∂f

∂x
(Xtj , Vtj)(Xtj+1

−Xtj)

+

(
∂2f

∂x2
(Xtj , Vtj) + ε2

j

)
(Xtj+1

−Xtj)
2

)

where

ε1
j =

∂f

∂v
(Xtj+1

, Vτj
)− ∂f

∂v
(Xtj , Vtj)

ε2
j =

∂2f

∂x2
(Xηj

, Vtj)−
∂2f

∂x2
(Xtj , Vtj).

Since it was assumed that the partial derivatives of f were to be continuous over

[0, t], they must also be uniformly continuous as [0, t] is compact. Therefore, as

n → ∞, we are forced to have |δn
t | → 0, and hence both supj |ε1

j | and supj |ε2
j |

would tend towards 0.

Now it suffices to show that the three terms above converges to each of the

three integrals respectively. We do this in two steps, very much like the approach

we took to prove theorem 2.2.4. First, we will prove theorem 2.3.1 for bounded X

and V , and note that this implies that both ∂f
∂x

and ∂2f
∂x2 are also bounded, as both

derivatives are assumed to be continuous over a compact set [0, t]. Having done

that, we will construct a sequence of stopping times that would extend our result

to the general case.

Since V was assumed to be of bounded variation,

n−1∑
j=0

∂f

∂v
(Xtj+1

, Vτj
)(Vtj+1

− Vtj)
n→∞−−−→

∫ t

0

∂f

∂v
(Xs, Vs)dVs

as an ordinary Lebesgue-Stieltjes integral. By theorem 2.2.14,

n−1∑
j=0

∂f

∂x
(Xtj , Vtj)(Xtj+1

−Xtj)
L2

−→
∫ t

0

∂f

∂x
(Xs, Vs)dXs,
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and by proposition 2.2.9,

n−1∑
j=0

(
∂2f

∂x2
(Xtj , Vtj) + ε2

j

)
(Xtj+1

−Xtj)
2 L2

−→
∫ t

0

∂2f

∂x2
(Xs, Vs)d〈X〉s

Thus, we have proved theorem 2.3.1 in the case when X and V are bounded.

To extend to the general case, let τn = inf{t ≥ 0 : |Xt| ∨ |Vt| > n} and let

Xn
t = Xt∧τn1τn > 0 and V n

t = Vt∧τn . Both Xn and V n are bounded, therefore

theorem 2.3.1 holds a.s. with t ∧ n in place of t, as the probability of X never

reaching infinity is one. Hence, theorem 2.3.1 holds in the general case, by letting

n→∞, except convergence weakens to the sense of probability. 2

Itô’s lemma can be generalised to higher dimensions as follows,

Theorem 2.3.2. Let X = (X1
t , X

2
t , ..., X

n
t ) be a continuous local martingale and

V = (V 1
t , V

2
t , ..., V

n
t ) be a process of locally bounded variation. Let f : R2n → Rn

be a C2 function on (x,v), such that Ft = f(Xt,Vt). Then, a.s. for each t, we have

Ft − F0 =
n∑

i=1

(∫ t

0

∂f

∂xi
(Xs,Vs)dX

i
s +

∫ t

0

∂f

∂vi
(Xs,Vs)dV

i
s

)
+

1

2

n∑
i=1

n∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Xs,Vs)d〈X,Y 〉s

Theorem 2.3.3. (Itô’s lemma for Stratonovich integrals) Carrying through the

symbols and notations used in the previous theorem, we have

Ft − F0 =
n∑

i=1

(∫ t

0

∂f

∂xi
(Xs,Vs) ◦ dX i

s +

∫ t

0

∂f

∂vi
(Xs,Vs)dV

i
s

)

The proof of Theorems 2.3.2 and 2.3.3 is analogously similar to that of The-

orem 2.3.1 and thus is left out. It is worth commenting that the Stratonovich

integral transforms in the exact same fashion as the Lebesgue integral for functions

of bounded variations.

2.3.2 Representations of Martingales

We have seen from the beginning that the concept of a martingale is something

that generalises the Wiener process. In this section, we will head backwards to see
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how these two concepts are really related. In previous section, we established that

all processes of the form

Ft = F0 +

∫ t

0

fsdWs

are martingales, where Wt is the standard Wiener process. The conclusion of this

section is to show that the converse is also true. In fact, this was one of Itô’s initial

motivations for establishing earlier results. For rest of the thesis, we define Ft as

the filtration generated by the Wiener process Wt unless otherwise defined.

Theorem 2.3.4. (Itô’s Martingale Representation Theorem) Let Mt be

a continuous L2 martingale of with respect to Ft. Then, there exists a unique

continuously adapted process ft ∈ L2, such that

Ft = EF0 +

∫ t

0

fsdWs.

Proof. For simplicity, I will only prove the one-dimensional case as higher dimen-

sional cases are similar. Before we tackle the problem directly, I would like to

establish a number of lemmas.

Lemma 2.3.5. Fix t > 0. The set of random variables

{φ(Wt1 , ...,Wtn : ti ∈ [0, t], φ ∈ C∞
0 (Rn), n = 1, 2, ...}

is dense in L2(Ω,Ft,P).

Proof. Let {ti} be a dense subset of [0, T ] and for each n = 1, 2, .., let Hn =

σ(Wt1 , ...,Wtn). Then Hn ⊂ Hn+1 and Ft = σ(
⋃∞

n=1Hn). By the towering contain-

ment property, for each g ∈ L2(Ω,Ft,P),

gt = E(g|Ft) = lim
n→∞

E(g|Hn)

where the limit is taken in L2. By the Doob-Dynkin theorem (c.f. page 7 [38]),

there exists Borel measurable functions gn such that E(g|Hn) = gn(Wt1 , ...,Wtn),

while each Borel measurable functions can be approximated in L2 by a member of

C∞. 2

Lemma 2.3.6. The linear span of random variables of the type

exp

(∫ t

0

h(s)dWs(ω)− 1

2

∫ t

0

h2(s)ds

)
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is dense in L2(Ω,Ft,P), where h ∈ L2[0, t] and h is independent of ω (i.e. functions

of the above form form a basis of L2(Ω,Ft,P)). The set of processes of this form

are termed as exponential martingales denoted by E .

Proof. Suppose g ∈ L2(Ω,Ft,P) and is orthogonal to all functions of the above form

with respect to (Ω,Ft,P). Then, in particular,

G(λ) :=

∫
Ω

exp(λ1Wt1(ω) + ...+ λnWtn(ω))g(ω)dP(ω) = 0

for all λ = (λ1, ..., λn) ∈ Rn, and all t1, ..., tn ∈ [0, t]. Since G(λ) is real analytic in

λ ∈ Rn, it follows that it has an analytic extension to the n-dimensional complex

space Cn given by,

G(z) :=

∫
Ω

exp(z1Wt1(ω) + ...+ znWtn(ω))g(ω)dP(ω) = 0

for z = (z1, ..., zn) ∈ Cn. In particular, G = 0 on the imaginary axis, namely,

G(iλ1, ..., iλn) = 0 for all (λ1, ..., λn) ∈ Rn. For φ ∈ C∞(Rn), we have∫
Ω

φ(Wt1 , ...,Wtn)g(ω)dP(ω) =

∫
Ω

(2π)−n/2

(∫
Rn

φ̂(y)ei(y1Wt1+...+ynWtn )dy

)
g(ω)dP(ω)

= (2π)−n/2

∫
Rn

φ̂(y)

(∫
Ω

ei(y1Wt1+...+ynWtn )g(ω)dP(ω)

)
dy

= (2π)−n/2

∫
Rn

φ̂(y)G(iy)dy = 0

where

φ̂ = (2π)−n/2

∫
Rn

φ(x)e−ix.ydx;

we have used the Fourier inversion theorem in to get the first line and Fubini’s

theorem to obtain the second line of the calculations (Folland 1984). Hence, we

have shown that g is orthogonal to a dense subset of L2(Ω,Ft,P), and we conclude

that g = 0, and the exponential martingales do form a basis of L2(Ω,Ft,P). 2

Having proved the previous two lemmas, it makes sense for us to first prove the

representation theorem on the set of exponential martingales. Define

Yt = exp

(∫ t

0

h(s)dWs −
1

2

∫ t

0

h2(s)ds

)
.

A straight forward application of Itô’s Lemma shows that

Yt = Y0 +

∫ t

0

Ysh(s)dBs,
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and hence Yt satisfies the martingale representation theorem. Now, we can ap-

proximate a general F ∈ L2(Ω,Ft,P), by a linear combination F n of exponential

martingales. Then for each n, we have

F n
t (ω) = EF n +

∫ t

0

fn(s, ω)dBs(ω)

where fn ∈ L2[0, t] are continuous Ft-adapted processes. Observe that, by Itô’s

isometry

E(F n − Fm)2 = E
(
(E(F n − Fm) +

∫ t

0

(fn
s − fm

s )dWs)
2
)

= (E(F n − Fm))2 +

∫ t

0

E(fn
s − fm

s )2ds

→ 0

as m and n tends to infinity. Hence, {fn} is a Cauchy sequence in L2([0, t] × Ω),

and hence converges to some limit f ∈ L2([0, t] × Ω). Moreover, there exists a

subsequence fnk of fn that converges to f almost surely on (0, t) × Ω. Therefore,

f(t, .) is a measurable function for almost every t. By modifying f(t, ω) on a set

of Lebesgue measure zero (in the t-direction), we can obtain a new f(t, ω) that is

Ft-adapted. Hence,

F = lim
n→∞

Fn = lim
n→∞

(
EF n +

∫ t

0

fn
s dBs

)
= EF +

∫ t

0

fsdBs,

where the limit holds in the L2 sense. Hence we have shown that the martingale

representation theorem holds for all F ∈ L2(Ω,Ft,P).

To show the uniqueness of f , suppose that F ∈ L2(Ω,Ft,P) and

F = EF +

∫ t

0

f 1(t, ω)dWt(ω) = EF +

∫ t

0

f 2(t, ω)dWt(ω).

Then, by Itô’s isometry,

0 = E
(∫ t

0

(f 1
s − f 2

s )dWs

)2

=

∫ t

0

E(f 1
s − f 2

s )2ds.

Hence, f 1 and f 2 disagree on at most a set of measure zero, and therefore the

martingale representation is unique. 2

The martingale representation theorem has impact in a number of areas. One

that is particularly important is that by solely developing a calculus on Wiener

processes is enough to solve almost all the problems we want with calculus of mar-

tingales. This is generally highly desirable in dealing with problems in finance. In
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the language of mathematical finance, the existence and uniqueness of the process

fs corresponds to that of replicating hedging strategies. However, in practical situ-

ations, one would like to obtain a formula for the replicating strategy fs, as opposed

to only the knowledge of its existence. To this extent, we will see in the next chapter

that fs can actually be explicitly evaluated using the Malliavin calculus.
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Chapter 3

Concepts of Malliavin Calculus

3.1 Introduction and Motivations

We aim to develop a probabilistic differential stochastic calculus over an infinite

dimensional space. The standard example of such an “infinite dimensional space”

is the classical Wiener space, (C0[0, T ],F , µ). The theory will be developed on a

more general level, along with some solid examples in more familiar spaces such as

C0[0, T ]. A particular focus will be made on illustrating how classical deterministic

calculus fails, and how the problems are fixed by the probabilistic calculus.

Let (Ω,F ,P) be a complete probability space, and L2(Ω,F ,P) or simply L2

when there is no risk of confusion, denote the set of square integrable random

variables on that space. Loosely speaking, the Malliavin calculus aims to talk about

quantities such as dF
dω

, where F ∈ L2 and ω ∈ Ω. To define such a term over a finite

dimensional subspace is relatively straight forward. Essentially the theory boils

down to classical functional calculus. However, we would like to extend this theory

to an infinite dimensional space like L2(Ω,F ,P). We will do this in four stages. The

first three stages involve looking at mainly L2 spaces, where the celebrated chaos

decomposition theorem plays a central role. The chaos decomposition is essentially

an orthogonal basis of the space L2(Ω,F ,P) in terms of multiple Itô integrals; which

makes it possible to approach Malliavin calculus from a Fourier type perspective.

Finally we will give a brief examination of Skorohod integration in Lp spaces.

Good references for the material developed in the next three chapters include

[2], [3], [4], [11], [23], [19], [31],[32], [35], [37], [41] and [43]. [2] [37] gives a friendly

introduction, while [19], [35] and [41] covers the theory to much greater detail.

[31] is Malliavin’s original paper in 1976, [32] is also written by Malliavin, but it is

written for advanced audiences. [4] and [11] provides very interesting alternative ap-

proaches to the development of Malliavin calculus. [3], [23] and [43] are much more

application focused, but the theory are sufficiently well treated and they provide a

good insight to how Malliavin calculus connects with other areas of mathematics.
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3.2 Itô-Wiener Chaos Decomposition

3.2.1 Multiple Itô Integrals

We will set up the multiple Itô-integrals that are central to the Itô-Wiener chaos

decomposition. First, I would like to stress that there are some potential difficulties

with defining the iterated Itô integral. We cannot simply proceed as one does in

ordinary several variable calculus, since Itô integrals are processes that are adapted

to a filtration Ft. As a consequence, the ordering of the iteration must agree with

the ordering of time. One approach to fix this problem is

Let T > 0 be fixed, n ∈ N and Sn(T ) = {(t1, ..., tn) ∈ [0, T ]n : t1 ≤ ... ≤ tn}. Let

W be a Wiener process adapted to the filtration Ft. We would like to make sense

of an iterated Itô integral of the following form,

Jnf =

∫ T

0

(∫ tn

0

(∫ t2

0

f(t1, t2, ..., tn)dWt1

)
...dWtn−1

)
dWtn .

Let k ≥ 2 ∈ N and t > 0, for an arbitrary function g : Rk → R, let gs(u) = g(u, s)

where u ∈ Rk−1 and s ∈ R. Observe that

1Sk(t)(u, s) = 1Sk−1
(u)1[0,t](s)

for all (u, s) ∈ Sk(t). Hence, by Fubini’s theorem, for each g ∈ L2(Sk(t)), we have

gs ∈ L2(Sk−1(s)) for all s ∈ [0, t] and furthermore,∫
Sk(t)

g(v)dkv =

∫ t

0

(∫
Sk−1(s)

gs(u)d
k−1u

)
ds.

The above identity and Fubini’s theorem allow us to interchange E and
∫ t

0
for

functions in L2(Sk(t)). Then we can recursively define multiple integrals over Sk(t)

as follows: {
Y 1g(ω, s) := g(s), (deterministic);

Y kg(ω, s) :=
∫ s

0
Y k−1g(ω, u)dWu, (in L2).

where we can understand Y k : L2(Sk(t)) → L2
t (W ) as the operator that performs

the k − 1-fold integral. The next proposition will show us that these operators are

well defined.

Proposition 3.2.1. Let k, l ∈ N and t > 0. Then, Y k : L2(Sk(t)) → L2
t (W )

defines a linear isometry between the Hilbert spaces. Further, for k 6= l,

(Y kg, Y lh)L2
t (W ) = 0

for all g ∈ L2(Sk(t)) and h ∈ L2(Sl(t)).
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Proof. There is nothing to prove for k = 1. For k > 1, we proceed by induction to

show that the Y k’s are linear isometries,

||Y kg||L2(W ) = E
(∫ t

0

(Y kg)2(s)ds

)
=

∫ t

0

E((Y kg)(s)2)ds

=

∫ t

0

E
(∫ s

0

(Y k−1gs)(u)
2du

)
ds

=

∫ t

0

(∫
Sk−1(s)

g2
s(u)du

)
ds

=

∫
Sk(t)

g2(v)dkv

= ||g||2L2(Sk(t)) <∞,

where the third to fourth line was obtained by using the inductive hypothesis. Now,

we prove the orthogonality relations as follows. For each fixed m ∈ N, suffice to

show that (Y kg, Y k+mh)L2
t (W ) = 0 for all k ∈ N . First, consider the case k = 1. We

have,

(Y 1g, Y 1+mh)L2
t (W ) = E

(∫ t

0

g(s)(Y 1+mh)(s)ds

)
=

∫ t

0

g(s)E((Y 1+mh)(s))ds = 0,

since g(s) is deterministic and Y mh is a martingale that starts at 0. For the inductive

step, observe that

E((Y kg)(s)(Y k+mh)(s)) = (Y kg, Y k+mh)L2(Ω,Fs,P) = (Y k−1gs, Y
k+m−1hs)L2

s(W ) = 0

for all s ∈ [0, t], by the induction hypothesis. Integrating both sides over [0, t] gives

the desired result. 2

Definition 3.2.2. For arbitrary T > 0 and f ∈ L2(Sn(T )), we now define the

iterated Itô integrals recursively as follows. Let,

J0f := f

Jnf :=

∫ T

0

(Y nf)(s)dWs =

∫ T

0

(Jn−1fs)dWs.

for n > 1.

We have the following proposition.

Proposition 3.2.3. Let n ∈ N and T > 0. Then, Jn : L2(Sn(T )) → L2(Ω,Ft,P)

is a linear isometry. In particular, for n 6= m, (Jnf, Jmg)L2(Ω,Ft,P) = 0 for all

f ∈ L2(Sn(T )) and g ∈ L2(Sm(T )).
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Proof. Jn is the composition of two linear isometries, namely,

L2(Sn(T )) → L2
T (W ) → L2(Ω,FT ,P) and

f → Y nf →
∫ t

0

(Y nf)(s)dWs.

2

Let L̂2[0, T ]n denote the closed subspace of L2[0, T ]n consisting of symmetric

functions, i.e. functions satisfying

f(t1, ..., tn) = f(tσ(1), ..., tσ(n))

for all permutations σ ∈ Sn. The following result from analysis, which we will not

prove, will shed some light as to how should the multiple Itô integrals be extended

to L̂2[0, T ]n

Theorem 3.2.4. Let n ∈ N and T > 0. Then,

||f ||2L2([0,T ]n) = n!||f |Sn(T )||2L2(Sn(T ))

for all f ∈ L̂2([0, T ]).

With this result in mind, it is reasonable to have the following definition.

Definition 3.2.5. Let f ∈ L̂2([0, T ]n), we define the multiple Itô integral of f

by

Inf = n!Jn(f |Sn(T )).

Since In is merely a scalar multiple of Jn, it follows from our previous consider-

ations that In is a continuous linear operator and

E(Inf)2 = ||Inf ||2L2(Ω,FT ,P) = n!||f ||2L2([0,T ]n).

3.2.2 Hermite Polynomials and Chaos Decomposition

We have developed a machinery that allows us to talk about multiple Itô-integrals

of symmetric functions. In particular, we will consider functions in L̂2([0, T ]n) of

the form,

g⊗n(x1, ..., xn) =
n∏

i=1

g(xi)

where g ∈ L2([0, T ]).
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Definition 3.2.6. The n-th Hermite polynomial is defined by,

hn(x) = (−1)ne(
x2

2
) d

n

dxn
e−

x2

2 .

One can also obtain these via the Gram-Schmidt process. The first of these

polynomials are, h0(x) = 1, h1(x) = x, h2(x) = x2 − 1 and h3(x) = x3 − 3x. [37]

provides a very thorough discussion on the construction and properties of Hermite

polynomials, we will assume them well known.

Given a > 0, we define

Hn(x, a) =
√
anhn

( x√
a

)
.

We have the following lemma,

Lemma 3.2.7. Let x, t ∈ R and a > 0, then

etx−at2

2 =
∞∑

n=0

tn

n!
Hn(x, a).

Proof. Let x ∈ R be fixed, s = t
√
a, y = x√

a
, then

etx−at2

2 = esy− s2

2 .

Therefore, without loss of generality, we may assume that a = 1. Let τx(t) = x− t

and g(x) = e−
x2

2 , so that etx− t2

2 = e
x2

2 (g ◦ τx)(t). Apply Taylor’s formula to g ◦ τx
gives

etx− t2

2 = e
x2

2

∞∑
k=0

(g ◦ τx)(k)(0)

k!
tk

= e
x2

2

∞∑
k=0

(−1)k (g(k) ◦ τx)(0)
k!

tk

=
∞∑

k=0

(−1)ke
x2

2
dn

dxk
e−

x2

2
tk

k!

=
∞∑

k=0

tk

k!
hk(x).

2
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It can be further checked by elementary calculus that

∂

∂x
Hn(x, a) = nHn−1(x, a) and

(1

2

∂2

∂x2
+

∂

∂a

)
Hn(x, a) = 0.

This allows us to prove the following theorem.

Proposition 3.2.8. Let T > 0 and g ∈ L2([0, T ]). Then, g⊗n ∈ L̄2([0, T ]n) for all

n ∈ N and,

In(g⊗n) = Hn(XT , 〈X,X〉T )

where Xt :=
∫ t

0
g(s)dWs.

Proof. We shall prove this by induction on n. Since h1(x) = x, basic algebra shows

that H1(x, a) = x also. Therefore, the statement we are proving reduces to

I1(g) = XT =

∫ T

0

g(s)dWs,

which is true by definition. Now assume the statement is true for some n, and let

φn+1 := g⊗n+1|Sn+1(T ). Then, for all fixed s ∈ [0, T ], φn+1(u, s) = (g|[0,s])
⊗ng(s),

where u ∈ Sn(s). From the definition of In+1, we have

In+1g
⊗n+1 = (n+ 1)!Jn+1(φn+1)

= (n+ 1)!

∫ T

0

Y (n+1)(φn+1)sdWs

= (n+ 1)!

∫ T

0

∫ s

0

Y (n)(φn+1)(u, r)dWrdWs

= (n+ 1)!

∫ T

0

∫ s

0

g(s)Y (n)(g|[0,s]⊗n)dWrdWs

= (n+ 1)

∫ T

0

g(s)In(g|[0,s]⊗ndWs

= (n+ 1)

∫ T

0

g(s)Hn(Xs, 〈X,X〉s)dWs

where the final step follows by the induction hypothesis. On the other hand, using

the previous remark, together with Itô’s lemma applied to Hn+1(XT , 〈X,X〉T ), we

have

Hn+1(XT , 〈X,X〉T ) = (n+ 1)

∫ T

0

Hn(Xs, 〈X,X〉s)dXs

= (n+ 1)

∫ T

0

Hn(Xs, 〈X,X〉s)g(s)dWs.
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Thus we have established that

In+1(g
⊗n+1) = Hn+1(XT , 〈X,X〉T ).

2

Remark 3.2.9. The set of random variables,{
XT : XT =

∫ T

0

g(s)dWt

}
for some g ∈ L2 is called the Cameron-Martin subspace of (Ω,FT ,P). In the case

of Ω = C0[0, T ], the set of allowed g is typically the set of functions with square

integrable derivatives, and the forms a dense subset of C0[0, T ]. 2

We are now in position to complete the proof of the theorem.

Theorem 3.2.10. (Itô-Wiener Chaos Decomposition) Let T > 0 and F ∈
L2(Ω,FT ,P). Then there exists a unique sequence fn ∈ L̂2([0, T ]n), such that

F = EF +
∞∑

n=1

In(fn)

and

||F ||2L2(Ω) = EF 2 +
∞∑

n=1

n!||fn||2L2([0,T ]).

Proof. Let XT =
∫ T

0
g(s)dWs, and define the stochastic exponential of X as follows,

E(X)T =
∞∑

n=0

1

n!
Hn(XT , 〈X,X〉T ) =

∞∑
n=1

1

n!
In(g⊗n).

where the second equality comes from applying the previous proposition. Since the

Hn’s are bounded by a polynomial, this infinite series converges pointwise on Ω.

Moreover, using elementary calculus shows that

eXT = E(X)T e
1
2
||g||2

L2([0,T ]) .

Recall that Lemma 2.3.6 states that,

1. e
∫ T
0 g(s)dWs ∈ L2(Ω,FT ,P), for all g ∈ L2([0, T ]).

2. {e
∫ T
0 g(s)dWs : g ∈ L2([0, T ])} is a dense subset of L2(Ω,FT ,P),

and thus, E(X)T = Z ∈ L2(Ω) as well.
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Let F ∈ L2(Ω,FT ,P) be given. By lemma 2.3.6, there exists a sequence ζn

belonging to the linear span of the set {e
∫ T
0 g(s)dWs : g ∈ L2([0, T ])}, so that ||F −

ζn||2L2(Ω) → 0. Each ζn can be written as a finite sum of the type

ζn =
ln∑

k=1

αke
Xk

=
ln∑

k=1

αkE(Xk)T e
1
2
||g||2

L2([0,T ])

with αk ∈ R, gk ∈ L2([0, T ]) and Xk
T =

∫ T

0
g(s)dWs. By theorem 2.3.6, and previous

considerations, each stochastic exponential E(Xk)T can be written as

E(Xk)T =
∞∑

m=0

1

m!
Im(g⊗m

k ),

so that ζn =
∑∞

m=0 Jm(φn
m) with {φn

m : n ∈ N} ⊆ L2(Sm(T )). Orthogonality

and Itô’s isometry now lead to ||Zi − Zj||2L2(Ω) =
∑∞

m=0 ||φi
m − φj

m||2L2(Sm(T )) for all

i, j ∈ N. Thus, (φi
m)i∈N is a Cauchy sequence in L2(Sm(T )) for every m ∈ N. By

completeness, there exists a limit φm ∈ L2(Sm(T )) with ||φm−φi
m||2L2(Sm(T )) → 0 as

i → ∞, and thus we see that
∑∞

m=0 ||φm − φi
m||2L2(Sm(T )) → 0 for i → ∞. Now, by

orthogonality and Itô’s isometry again, we see that (ζn)n∈N is a Cauchy sequence

in L2(Ω), and so there exists ζ :=
∑∞

m=0 Jm(φm) ∈ L2(Ω). Uniqueness of the limit

now implies that

F = ζ =
∞∑

m=0

Jm(φm).

To finish the proof, we may extend each φm trivially to a function ψm ∈ L2([0, T ]m)

and consider then the symmetrization ψ̂m of ψm,

ψ̂m :=
1

m!

∑
σ∈S

ψm ◦ Aσ ∈ L̂2([0, T ]m),

where Aσ(t1, ..., tm) := (tσ(1), ..., tσ(m)) for all (t1, ..., tm) ∈ [0, T ]m. Since Aσ(Sm(T ))

has no common points with Sm(T ) for all σ 6= 1, the definition of ψm implies that

(ψm ◦ Aσ)|Sm(T ) = 0 for all σ 6= 1. Therefore, ψ̂m|Sm(T ) = 1
m!
φm, and we obtain

F =
∞∑

m=0

Jm(φm) = EF +
∞∑

m=1

Im(ψ̂).

Moreover, theorem 3.2.4 implies that

||F ||2L2(Ω) =
∞∑

m=0

||φm||2L2(Sm(T )) =
∞∑

m=0

m!||ψ̂m||2L2([0,T ])m .

Thus, we have established the chaos decomposition theorem. 2
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Remark 3.2.11.

1. The approach I took to establish this theorem is somewhat non-standard. The

more popular approach, as taken by [35] and [37] for example, is to establish

that

L2(Ω,FT ,P) =
∞⊕

n=0

Hn

where Hn is the space spanned by the set hn(Wti). One then show, that each

of the Hn’s can be related to the limit of a discretisation of the multiple Itô

integral. The advantage of that approach is that no prior exposure of Itô’s

isometry is required, but this makes the proofs are somewhat longwinded. For

this reason, I have chosen a more geometric type of argument which relies on

to a very large extent of Itô’s isometry.

2. The decomposition L2(Ω,FT ,P) =
⊕∞

n=0Hn was first known by Wiener before

any stochastic integration theory had appeared. The elements in Hn were

traditionally known as Wiener chaos. In 1951, Itô showed in [22], that these

Wiener chaos can in fact be recognised as multiple Itô integrals.

2

3.3 The Malliavin Derivative

This section is devoted to the development of a differential calculus on an infinite

dimensional measure space like Lp(Ω,F ,P). Before we begin, let us recall some

ideas from functional analysis. I will first demonstrate how far these ideas can

be pushed until the approach becomes problematic. I then introduce some new

probabilistic concepts to fix these problems.

Definition 3.3.1. (Fréchet Derivative) Let X and Y be Banach spaces and let

U be an non-empty open subset of X. A mapping f : U → Y has a directional

derivative at x ∈ U in the direction of v ∈ X, ||v||X = 1 if

Dvf(x) = lim
ε→0

f(x+ εv)− f(x)

ε
=

d

dε
f(x+ εv)|ε=0

exists. If Dvf(x) indeed exists, then we call it the directional derivative of f (at

x in direction of v). Moreover, we say that f is Fréchet differentiable at x ∈ U

if there exists a linear operator A : X → Y such that

lim
h→0

||f(x+ h)− f(x)− Ah||Y
||h||X

= 0.

If this is the case, we call A the Fréchet derivative of f at x.

We now try to apply the definition of a Fréchet derivative to classical Wiener

space (Ω,F , µ), where Ω = C0[0, T ] and µ is the Wiener measure. Observe that
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under the sup-norm, C0[0, T ] is a Banach space, which has a densely embedded

Hilbert subspace H1, defined by,

H1 = {h ∈ C0[0, T ] : h′ ∈ L2[0, T ]}.

We call H1, the space of all continuous functions with square integrable derivatives,

the Cameron-Martin subspace. We equip H1 with an inner product defined by

(g, h)H1 =

∫ T

0

h′(t)g′(t)dt

The fact that this is dense in C0[0, T ] is a consequence of the Stone-Weierstrass

theorem. It turns out that to obtain a theory involving derivatives in all directions

is still an open problem (see chapter 4 of [37] for details). Thus, we will first

restrict ourselves to defining a directional derivative of a random variable F only in

the directions in the Cameron-Martin subspace. We will later see that this theory

generalises quite easily to allow derivatives in directions of the so-called isonormal

Gaussian processes.

Definition 3.3.2. Let F : Ω → R be a random variable. We say F has a derivative

in the direction of γ, where

γ(t) =

∫ t

0

g(s)ds, g ∈ L2([0, T ]),

in the strong sense at ω if

DγF (ω) =
d

dε
F (ω + εγ)|ε=0 = lim

ε→0

F (ω + εγ)− F (ω)

ε

exists in L2(Ω). If in addition there exists ψ(t, ω) ∈ L2([0, T ]× Ω), such that

DγF (ω) =

∫ T

0

ψ(t, ω)g(t)dt

then we say F is Fréchet differentiable at ω, with Fréchet derivative defined

by

DtF (ω) = ψ(t, ω)

and we thus Dγ(F ) = (DtF, γ). The set of all Fréchet differentiable random vari-

ables will be denoted by D1,2.

Remark 3.3.3. We can understand∫ T

0

ψ(t, ω)g(t)dt

as a matrix multiplication in continuous dimensions. 2
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Example 3.3.4. Let Ω = C0[0, T ] be a Banach space, H = L2([0, T ]) and h ∈ H.

Suppose that

F (ω) :=

(∫ T

0

h(s)dWs

)
(ω) =

∫ T

0

h(s)dω(s).

If γ(t) =
∫ t

0
g(s)dWs for some g ∈ H and t < T . , then

F (h+ εγ) =

∫ T

0

f(s)d(ω(s) + εγ(s))

=

∫ T

0

f(s)dω(s) + ε

∫ T

0

f(s)g(s)ds.

Hence,
F (ω + εγ)− F (γ)

ε
=

∫ T

0

f(s)g(s)ds

for all ε > 0. Therefore, DtF (ω) = ψ(t, ω) = h(t) for all t ∈ [0, T ] and ω ∈ Ω. 2

Following a standard procedure in analysis, we introduce a type of Sobolev norm.

Definition 3.3.5. Let D1,2 denote the set of Fréchet differentiable random vari-

ables F with the Sobolev norm,

||F ||1,2 =
√
||F ||2L2 + ||DF ||2L2([0,T ]×Ω) <∞.

At this stage, we would like to do the following two things:

1. Generalise the concept of a derivative to more general measure spaces.

2. Hope that D1,2 is a Sobolev space under the norm ||.||1,2.

Unfortunately, a derivative in the sense of Fréchet will not allows us for any of

these. The reason is that in general, we will be interested in random variables F that

are defined P-almost surely, while the Fréchet derivative is implicitly dependant on

the continuity of F with respect to some topology. For this reason, it is necessary

that our notion of derivative should not depend on any topological structure of Ω,

that is, we need a derivative which acts in the weak sense.

To address the second problem, if we are working in the classical Wiener space, it

is evident that the existence of a Fréchet derivative of a random variable F depends

on the existence of a continuous version of F . The following example (taken from

an exercise in section 1.2 of [35]) demonstrates the existence of a random variable,

F that do not possess a continuous version. Moreover, there exists a sequence of

Fréchet differentiable random variables Fn → F pointwise. This demonstrates that

D1,2 is not complete, and hence cannot be made into a Sobolev space as we hope it

would be.
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Example 3.3.6. Let W = {Wt : t ∈ [0, T ]} be a one dimensional Wiener process

defined on a complete probability space (Ω,F ,P) with natural filtration Ft, and

h ∈ L2[0, T ]. Consider the random variable

F =

∫ T

0

h(t)dWt.

We claim that F will not have a continuous version if there does not exist a cor-

responding signed measure µ on [0, T ] such that h(t) = µ((t, 1]), for all t ∈ [0, 1],

Lebesgue-almost everywhere. 2

Proof. Suppose F has a continuous modification, that is, there exists G ∈ C0[0, T ]

such that G = F , P-almost surely. Moreover, linearity of the Itô-integral implies

that G : C0[0, T ] → R is a continuous linear functional. By Riez representation

theorem, for each ω ∈ Ω, there exists gω ∈ C0[0, T ] such that,

G(ω) :=

(∫ T

0

h(t)dWt

)
(ω) =

∫ T

0

gω(t)ω(t)dt.

Application of integration by parts (corollary 2.3.4) shows that∫ T

0

gω(t)ω(t)dt =

(∫ T

0

h(t)dWt

)
(ω) = −

∫ T

0

ω(t)dh(t) +K

for some constant K. The expression on the far left is an honest Lebesgue integral,

thus forces −
∫ T

0
ω(t)dh(t) to be also a well defined integral. Hence there exists

a signed measure µ such that h(t) = µ((t, T ]). Consequently if h(t) does not

admit a corresponding µ, then the random variable F will not have a continuous

modification.

On the other hand, we know that dh(t) can be made into a signed measure if and

only if h(t) has bounded variation on [0, T ]. Let h(t) to be any continuous function

of unbounded variation so that F 6∈ D1,2. For such an h, we choose a sequence of

differentiable functions hn, such that hn(t) → h(t) uniformly on [0,T]. Let

Fn =

∫ T

0

hn(t)dWt.

Then clearly Fn ∈ D1,2 for all n, and by example 3.3.6, we have DtFn = hn(t).

Hence, Fn is a Cauchy sequence under the ||.||1,2 norm. But, Fn
L2

−→ F , and F 6∈ D1,2.

i.e. the space D1,2 is not complete. 2

In conclusion, we see that anything remotely depends on the topology of Ω will

be doomed to failure, and the Fréchet derivative is not sufficient in order to extend

the theory to a more general setting. To remedy this, we introduce the Malliavin

derivative, a generalisation of the Fréchet derivative defined in the weak sense. The
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Malliavin derivative give the solution to both of the two problems that we have

encountered.

Remark 3.3.7. A close analogy of the relationship between Fréchet and Malli-

avin derivative for random variables F , is the relationship between Riemann and

Lebesgue integration for some function f . The definitions of both Riemann and

Fréchet sets up the theoretical foundation at an intuitive level, yet both approaches

had a common problem of the domain being an incomplete space. One of the main

purposes of the work of Lebesgue and Malliavin serves is to solve this problem. 2

The set of directions in whom Malliavin differentiation is defined is the normal

generalisation of the concept of a Cameron-Martin subspace, the space of so-called

isonormal Gaussian processes.

Definition 3.3.8. A stochastic process W = {W (h), h ∈ H} defined in a complete

probability space (Ω,F ,P) is an isonormal Gaussian process (on H), if W is a

centered Gaussian family of random variables, such that

(W (h),W (g))Ω = (h, g)H

for all h, g ∈ H.

Example 3.3.9. Let Ω = L2[0, T ] and h ∈ Ω, and if for all T > 0,

WT (h) =

∫ T

0

h(s)dWs,

then observe that for each g ∈ Ω,

(WT (h),WT (g))Ω = E
(∫ T

0

h(s)dWs,

∫ T

0

g(s)dWs

)
=

∫ T

0

f(s)g(s)ds

where the last equality was obtained by Itô’s isometry. Hence, {W (h) : h ∈ L2[0, T ]}
is an isonormal Gaussian process. 2

Remark 3.3.10.

1. Suppose H be a Hilbert space and for h ∈ H, let W (h) be an isonormal

Gaussian process. Then the map h → W (h) is a linear map. For any λ and

µ ∈ R, and g, h ∈ H, we have

E(W (λh+ µg)− λW (h)− µW (g))2

= ||λh+ µg||2H + λ2||h||2H + µ2||g||2H
− 2λ(λh+ µg, h)H − 2µ(λh+ µg, g)H + 2λµ(h, g)H

= λ2||h||2H + µ2||g||2H − λ(λh+ µg, h)H − µ(λh+ µg, g)H + 2λµ(h, g)H

= 0
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The mapping h → W (h) provides a linear isometry of H onto a closed sub-

space of L2(Ω,F ,P), consisting of zero-mean Gaussian random variables.

2. One can always associate an abstract Wiener space to a Hilbert spaceH. That

is, a Gaussian measure µ on a Banach space Ω, such that H is continuously

injected onto Ω, with the following inclusions, Ω∗ ⊂ H∗ ' H ⊂ Ω, dense,

then ∫
Ω

eit(x∗y)µ(dy) =
1

2
||x||2H

for any x ∈ Ω∗. Readers are referred to section 1.4 of [19] and [30] for a

detailed construction of Gaussian measures on general Banach spaces.

This is in fact a very popular way of generalising the notion of differentia-

tion from classical Wiener spaces, it is pursued by [4],[11], [19] and [23]. In

such cases, the probability space Ω is again endowed with a reasonably nice

topology, however such topological structures are redundant as the concepts

we introduce from this point are aimed to hold on general measure spaces.

2

Let C∞
p (Rn) denote the set of infinitely differentiable functions f : Rn → R,

such that f and its partial derivatives of all orders have polynomial growth. Let S
be the set of all smooth random variables, such that if F ∈ S, then there exists

h1, ..., hn ∈ H such that

F = f(W (h1), ...,W (hn)),

where f ∈ C∞
p (Rn). Let P , Sb and S0 be the set of smooth random variables of the

above form such that f ∈ R[x1, ..., xn], f ∈ C∞
b (Rn) (f and its partial derivatives

of all orders are bounded) and C∞
0 (Rn) (f has compact support) respectively. Note

that P ⊂ S,S0 ⊂ Sb ⊂ S, and that both P and S0 are dense in L2(Ω) (see section

1.2 of [35] for detailed proof).

Definition 3.3.11. The Malliavin derivative of a smooth random variable F

of the above form is the stochastic process {DtF, t ∈ T} given by

DtF =
n∑

i=1

∂f

∂xi

(W (h1), ...,W (hn))hi(t).

We will drop the subscript t where there is no risk of confusion.

Example 3.3.12. Consider the case when f(x) = x, so F = W (h). Then,

trivially we obtain DtW (h) = h(t). This agrees with what we obtained for the

Fréchet derivative. 2

In fact, we have a much stronger result.

Proposition 3.3.13. Let F be a smooth random variable over C0[0, T ] and H1

be its canonical Cameron-Martin subspace. Then if F ∈ D1,2 and DγF = DγF , for

all H1.
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Proof. Let h, h1, h2, ..., hn ∈ H1. Since sups∈[0,T ] E|Ws(g)|N < ∞ for all n ∈ N and

g ∈ H1, we see that

(DF, h)H = lim
ε→0

1

ε
[f(W (h1) + ε(h1, h)H , ...,W (hn) + ε(hn, h)H)− f(W (h1), ...,W (hn))]

→
n∑

i=1

∂f

∂xi

(W (h1), ...,W (hn))DiW (h)

=
n∑

i=1

∂f

∂xi

(W (h1), ...,W (hn))hi(t)

= (DF, h)H ,

where the chain rule (c.f. chapter 7 of [9]) for Fréchet derivative was used to obtain

the second line. 2

Remark 3.3.14.

1. Since S is dense in Lp(Ω), intuitively we would like to define the Malliavin

derivative of a general F ∈ Lp(Ω) by means of taking limits. However, there is

still one potential problem. Suppose {Fn} and {Gn} are two sequences both

approaching F under the Lp norm. There is no guarantee at this stage, why

should DFn and DGn should also approach the same limit. This problem

will be solved in the forthcoming theorem, where we establish the so called

closability property.

2. When working with a general measure space (Ω,F ,P) that may not necessarily

be endowed with a topology, perhaps the closest analogy to “continuous maps”

would be the closure of the set of smooth maps. For this reason, we first

defined the Malliavin derivative over the set of smooth random variables, and

we will prove that such a derivative is stable under taking limits, and hence

obtain its closure.

2

We would like to prove that D is closable as an operator from Lp(Ω) to Lp(Ω, H),

and thus hope to define the Malliavin derivative of a general object F by means of

a limit. Before this is possible, we need to introduce the idea of the product rule

for differentiation and also the integration by parts formula.

Lemma 3.3.15. Let F,G ∈ S, then D(FG) = G.DF + F.DG.

The proof of this lemma is a direct consequence of the definition of the Malliavin

derivative, and also the product rule for ordinary calculus.

Lemma 3.3.16. If F ∈ S and h ∈ H, we have

E(DF, h)H = E(FW (h)).
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Proof. Let {en}n∈N be a complete orthogonal system of H. Without loss of gener-

ality, we may assume that h = e1, and that F is of the form

F = f(W (e1), ...,W (en)),

where f ∈ C∞
p (Rn). Let µn denote the n-fold Wiener measure, then

E(DF, h)H =

∫
Rn

∂f

∂x1

(x)dµn(x)

=

∫
Rn

f(x)x1dµn(x)

= E(FW (h)),

and hence the lemma follows. 2

Lemma 3.3.17. Let F,G ∈ S, and h ∈ H. Then,

E(G(DF, h)H) = E(−F (DG, h)H + FGW (h)).

Proof. Apply the integration by parts formula to FG to obtain,

EFGW (h)) = E(G(DF, h)H) + E(F (DG, h)H)

and the lemma follows. 2

Theorem 3.3.18. The Malliavin derivative D : Lp(Ω) → Lp([0, T ]×Ω) is closable

as an operator.

Proof. It suffices to prove that if a sequence of smooth random variables {Fk}
Lp(Ω)−−−→

0, and DFk
Lp(L2[0,T ],Ω)−−−−−−−−→ ξ, then ξ = 0 in the sense of Lp(L2[0, T ],Ω), since S is dense

in Lp(Ω). Let G ∈ Sb and h ∈ H. Then by the previous lemma, we have for each

k ∈ N,

E((ξ, h)HG) = lim
k→∞

E(G(DFk, h)H)

= lim
k→∞

E(−Fk(DG, h)H + FkGW (h))

= 0.

The last equality holds since Fk converges to zero in Lp, and both G and DG were

assumed to be bounded. Since the choice of G was arbitrary in Sb, and that Sb is

dense, this implies that ξ = 0. 2
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Definition 3.3.19. (Malliavin Derivative) Let F ∈ Lp(Ω) and {Fn} a sequence

of smooth random variables converging to F in Lp. We define, the Malliavin deriva-

tive of F to be

DF = lim
n→∞

DFn.

Remark 3.3.20. To see the above definition is well defined, we would like to verify

that if Fn → F and Gn → F , it follows that limn→∞DFn = limn→∞DGn. To see

this, consider Hn = Fn −Gn, so that Hn → 0. The preceding theorem implies that

DHn → 0, and hence DF is well defined. 2

Definition 3.3.21. We will denote the domain of D in Lp(Ω) by D1,p, and we

equip this space with the norm

||F ||1,p =
(
||F ||pL2(Ω) + ||DF ||pLp(L2[0,T ]×Ω)

) 1
p
.

for every F ∈ D1,p.

We have apparently two different derivatives at this stage, and we wish to inves-

tigate the relations between them. By lemma 3.3.13, we know that if F ∈ S, then

DF = DF . Combining definition 3.3.19 and theorem 3.3.18, we have DF = DF

for all F ∈ D1,2 ∩ D1,2.

Example 3.3.6 showed that D1,2 \ D1,2 6= ∅. On the other hand, it is well known

that D1,2 \ D1,2 6= ∅ (c.f. [37]). The reason is that the Fréchet derivative is defined

by a local property. But to prove the closability criteria for Malliavin derivatives,

we had to assume that F ∈ Lp(Ω), which is a global condition. Therefore, it is no

surprise that D1,2 \D1,2 6= ∅, as F can be locally smooth to accommodate for taking

Fréchet derivatives, yet globally not integrable.

Definition 3.3.22. We can further make D1,2 into a Hilbert space by equipping

it with the inner product

(F,G)1,2 = E(FG) + E((DF,DG)H).

for F,G ∈ D1,2.

Furthermore, we shall define the iterated derivatives of k-times weakly differen-

tiable random variables.

Definition 3.3.23. Let F be a smooth random variable and k a positive integer.

We define

Dk
t1,...,tk

F = Dt1Dt2 ...DtkF.
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Let Dk,p denote the set of all k-times differentiable random variables, subject to

||F ||k,p =

(
||F ||pLp(Ω) +

k∑
j=1

||DjF ||pLp(L2[0,T ]×[0,Tj ])

)
<∞.

In particular, we define,

Dk,∞ :=
⋂

1<p<∞

Dk,p

and

D∞ :=
⋂
k∈N

Dk,∞.

Remark 3.3.24. Note that the derivative DkF is considered as a measurable

function on the product space [0, T ]k × Ω. 2

For higher order derivative operators Dk, we also have a closable condition

analogous to that of D. See section 1.5 of [35] for proof.

Proposition 3.3.25. Let {Fn, n ≥ 1} be a sequence of random variables in Dk,p,

with k ≥ 1, and p > 1. Assume that Fn
Lp(Ω)−−−→ F and supn ||Fn||k,p < ∞, then

F ∈ Dk,p.

So far, we have given a rigorous but not so instructive definition of the Malliavin

derivative. The following theorem will tell us how the D operator behaves in the

L2 setting, with respect to the orthogonal basis we constructed from the Wiener

chaos decomposition.

Theorem 3.3.26. Let F ∈ L2(Ω), with chaos decomposition,

F =
∞∑

m=0

Im(fm),

where fm ∈ L2(S(T )m). Then F ∈ D1,2 if and only if

∞∑
m=1

mm!||fm||2L2([0,T ]m) <∞.

In case when the above hold, we have

DF =
∞∑

m=1

mIm−1(fm)

and that

||DF ||2L2([0,T ]×Ω) =
∞∑

m=1

mm!||fm||2L2([0,T ]m).
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Heuristically, this theorem tells us that the Malliavin derivative essentially re-

moves the iterates of multiple Itô integrals as ordinary operators of differentiation

do to polynomials. This intuition can be made rigorous via the so called “Wick

product”, where Itô integrals can be recognised as algebras of Wick polynomials.

Its applications span from quantum field theory to fractional Brownian motion and

stochastic PDEs. Readers are advised to read [37] for an introductory treatment,

and [18] for a more detailed study.

Proof. Let fm be a sequence of square integrable functions over [0, T ]m, W (g) an

isonormal stochastic process for some g in a Hilbert space H, and let

FN =
N∑

m=0

Im(fm).

By proposition 3.2.8, and using the fact 〈W,W 〉T = T , we have

DtF
N =

N∑
m=1

h′m(W (g))g(t) =
N∑

m=1

hm−1(W (g))g(t) =
N∑

m=1

mIm−1(fm(u, t)).

for some u ∈ [0, T ]m−1. By Itô’s isometry, the Im−1 terms belongs to L2(Ω), and

hence DFN ∈ L2([0, T ] × Ω) and FN ∈ D1,2 for every N ∈ N. Thus it remains to

find conditions in order that DFN is stable as N →∞. Let l be a square integrable

symmetric function in n variables, and L = In(l). Then, both FN and L are smooth

random variables, so we can apply lemma 3.3.15 to obtain,

lim
N→∞

E[(DFN , h)HL] = lim
N→∞

E[−FN(DL, h)H + FNLW (g)]

= E[−F (DL, h)H + FLW (g)]

= E[(DF, h)HL],

where the second line is obtained by the dominated convergence theorem and where

FN L2

−→ F .

Now it remains to show that the derivative is convergent in the D1,2 norm. For

N > n, we have

E[(DFN , h)HL] = E
[
(n+ 1)In

(∫ T

0

fn+1(., t)h(t)dt

)
L

]
,

which means the projection of (DF, h)H onto the n-th Wiener chaos is

In

(∫ T

0

fn+1(., t)h(t)dt

)
.
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Hence, if {ei} is an orthonormal basis of H, we obtain that,

∞∑
m=1

mm!||fm||2L2([0,T ]m) = E

[
∞∑
i=1

∞∑
m=0

(∫ T

0

fm(., t)ei(t)dt

)2
]

=
∞∑
i=1

E[(DF, ei)
2
H ]

= ||DF ||2L2([0,T ]×Ω)

<∞,

which completes the proof. 2

We still need a final ingredient, a chain rule to govern the differential operator

under composition of maps; and Leibnitz rule to govern differentiation of products.

Theorem 3.3.27. (Chain rule) Let φ : Rm → R be a continuously differentiable

function with bounded partial derivatives. Suppose that F = (F 1, ..., Fm) is a

random vector, with F i ∈ D1,p for i = 1, 2, ...,m. Then, φ(F ) ∈ D1,p and,

D(φ(F )) =
m∑

i=1

∂φ

∂xi

(F )DF i.

Theorem 3.3.28. (Leibnitz Rule) Let I be a subset of {t1, ..., tk}, and |I| denote

the cardinality of I. Then, we have

Dk
t1,...,tk

(FG) =
∑

I⊂t1,...,tk

D
|I|
I (F )D

k−|I|
Ic (G).

The following corollary is a consequence of the chain rule and Leibnitz rule

applied simultaneously.

Corollary 3.3.29. Let φ ∈ C∞
p , and F ∈ D∞. Then, φ(F ) ∈ D∞.

The proof of the preceding theorems are identical to the case of ordinary calculus,

as the Malliavin derivative for smooth random variables are defined via formal

differentiation, and the closable property allows us to approximate the Malliavin

derivative of an arbitrary Lp random variable by that of smooth random variables.

3.4 The Skorohod Integral

In this section we consider the dual operator of the Malliavin derivative D∗, and we

will primarily focus on the case for D∗ acting on L2(Ω). An interesting property of

the dual is that it actually coincides with the Itô integral in the sense that D∗
tX =∫ t

0
XsdWs, for Itô integrable processes X. Moreover, the Itô integrable processes
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forms a proper subset of the domain of D∗. One could view D∗ as a generalisation of

the Itô integral, and hence it has been given the name the Skorodhod integral. The

Skorodhod integral and the Malliavin derivative are related by the integration by

parts relation, essentially a generalised statement of lemma 3.3.15. The integration

by parts formulae have some quite significant impacts in many areas of applications

that will be described throughout chapters 4, 5 and 6.

Let p, q > 1 be such that p−1 + q−1 = 1. The Malliavin derivative D is closed

and has domain on a dense subset of Lp(Ω), so its dual D∗ should also be closed

but with domain contained in Lq(Ω). In this section, we give a detailed treatment

of the case p = q = 2 via the Itô-Wiener chaos expansions. In particular, we will

show how D∗ coincides with the Itô integral defined in chapter 2 for processes that

are adapted to the Wiener filtration. We leave the case of a general p until the next

section.

Definition 3.4.1. (Skorohod Integral) We denote the adjoint of the operator D

as D∗, so D∗ is an unbounded operator on L2(T × Ω) with values in L2(Ω), such

that,

1. The domain of D∗, denoted by D∗ is the set of processes ξ ∈ L2(T × Ω) such

that ∣∣∣∣ ∫
[0,T ]

DtFξtdt

∣∣∣∣ = |E(DtF, ξ)L2[0,T ]| ≤ c||F ||2,

for all F ∈ D1,2, and c is a constant independent of ξ.

2. If ξ ∈ D∗, then D∗(ξ) ∈ L2(Ω) and satisfies

E[(Dtφ, F )L2[0,T ]] = E(φ, (D∗F )t).

for any F ∈ D1,2.

Remark 3.4.2.

1. The operator D∗ transforms square integrable processes back to random vari-

ables. Hence, D∗ is the dual of D just in the T -direction.

2. The second equality mentioned above is called the integration by parts

relation. It is the key to many applications in Malliavin calculus.

2

We now turn to the chaos expansion of L2 random variables to study some

properties of D∗.

Theorem 3.4.3. Let ξ ∈ L2(T × Ω) with expansion as in theorem 3.2.10. Then,

D∗ξ =
∞∑

m=0

Im+1(f̂m)
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converges in L2(Ω), and f̂m is the symmetrisation of fm in (m + 1)-dimensions,

defined by

f̂m(t1, ..., tm, t) =
1

m+ 1

(
fm(t1, ..., tm, t) +

m∑
i=1

fm(t1, ..., ti−1, t, ti+1, ..., tm, ti)

)
.

Remark 3.4.4. Intuitively, D∗ increases the level of Wiener chaos by one degree

at a time. Hence, we need to replace fm with f̂m so f̂ ∈ Dom(Im+1). 2

Proof. We have the following lemma.

Lemma 3.4.5. Let ξ ∈ L2(T × Ω), by virtue of the chaos expansion theorem,

there exists a family of deterministic functions fm(t1, ..., tm, t) ∈ L2([0, T ]m+1) such

that every fm is symmetric in the first m variables and

ξt =
∞∑

m=0

Im(fm(., t)),

where convergence is taken place in L2(T × Ω) and

E(||ξ||2L2[0,T ]) = E
(∫

[0,T ]

ξ(t)2dt

)
=

∞∑
m=0

m!||fm||2L2([0,T ]m+1).

Proof. The is an immediate consequence of the chaos decomposition theorem (the-

orem 3.2.10). 2

Now we prove the theorem. First consider G = In(g) for some symmetric

function g and n ≥ 1. Applying Fubini’s theorem and then Itô’s isometry, we have
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that

E(ξt, DtG)L2[0,T ] =
∞∑

m=0

E(Im(fm(., t)), nIn−1(g(., t))L2[0,T ]

= E(In−1(fn−1(., t)), nIn−1(g(., t))L2[0,T ]

= E
(
n

∫
[0,T ]

In−1(fn−1(., t))In−1(g(., t))dt

)
=

∫
[0,T ]

nE[In−1(fn−1(., t))In−1(g(., t))]dt

= n(n− 1)!

∫
[0,T ]

(fn−1(., t), g(., t))L2[0,T ]n−1dt

= n!(f̂n−1, g)L2[0,T ]n

= E(In(f̂n−1)In(g))

= E(In(f̂n−1), G)L2[0,T ].

Hence, for every ξ ∈ DomD∗, the above computation shows that

E(D∗(ξ)G) = E(In(f̂n−1)(G)

for every G of the form G = In(g). Thus, In(f̂n−1) coincides with the projection of

D∗(ξ) onto the n-th Wiener chaos. Consequently, we have

∞∑
m=0

Im+1(f̂m)
L2(Ω)−−−→ D∗ξ.

Conversely, if the above series converges and we denote its limit by S. The preceding

computation gives

E
(∫

[0,T ]

ξtDt

( N∑
n=0

In(gn)

)
dt

)
= E

(
V

N∑
n=0

In(gn)

)
,

for all N ≥ 0, and hence∣∣∣∣E∫
[0,T ]

ξtDtFdt

∣∣∣∣ ≤ ||V ||L2(Ω)||F ||L2(Ω),

for any random variable F with a finite chaos decomposition. But such a set is

dense in L2(Ω) ⊃ D1,2, and hence we conclude that ξ ∈ DomD∗. 2
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Corollary 3.4.6. The domain of D∗ coincides with the subspace of L2([0, T ]×Ω)

formed by processes that satisfies

∞∑
m=0

(m+ 1)!||f̂m||2L2[0,T ]m+1 <∞.

Corollary 3.4.7. Let F ∈ L2(Ω) (so F is constant in time), then

D∗F =

∫ T

0

FdWt = FWT ,

and consequently,

D∗F1a,b = F (Wb −Wa)

for a < b ∈ R.

An immediate consequence of theorem 3.5.3 is that, if ξ(t) a deterministic func-

tion, then D∗ξ(t) will coincide with
∫ T

0
ξ(t)dWt. The following theorem generalises

this idea in the sense that the relation holds true for all square integrable adapted

processes.

Theorem 3.4.8. Let Wt be a Wiener process and ξt a square integrable process

adapted to the Wiener filtration. Then, for all t ≤ T ,

(D∗ξ)t =

∫ t

0

ξsdWs.

From this point, we write the Skorodhod integral as D∗ or
∫
dWt interchangably.

Proof. Suppose first that ξ is an simple process of the form,

ξt =
n∑

j=1

ξj1(tj ,tj+1](t)

where ξj are square integrable random variables, and 0 ≤ t1 < ... < tn+1 ≤ t. Since

ξj1(tj ,tj+1] are piecewise constant with respect to t, by corollary 3.4.7, we have

D∗ξt =
n∑

j=1

ξj(Wtj+1
−Wtj).

Moreover, for a general square integrable adapted processes ξ, we can approximate

it by simple processes ξn. Now, Since since D∗ is closable, it follows that D∗ξn
t

L2

−→
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D∗ξ. On the other hand we have

D∗ξn
t =

n∑
j=1

ξj(Wtj+1
−Wtj)(t)

L2

−→
∫ T

0

ξtdWt.

By completeness of L2(Ω), we conclude that

D∗ξt =

∫ T

0

ξtdWt.

2

We now state the Clark-Ocone representation theorem, which can be viewed

as some mixture of Itô’s representation theorem and the stochastic fundamental

theorem of calculus.

Theorem 3.4.9. Let Wt be a one-dimensional Wiener process with natural filtra-

tion Ft, and F ∈ D1,2. Then,

F = EF +

∫ 1

0

E(DtF |Ft)dWt.

Remark 3.4.10. Recall that Itô’s martingale representation theorem states under

certain conditions that for a square integrable F , there exists an adapted process f

such that

F = EF +

∫ 1

0

ftdWt.

The Clark-Ocone representation tells us exactly what Itô’s mysterious f should be.

It is the simply the projective image of DtF under some optional stopping times.

Indeed, we would have no hope of identifying f without the Malliavin-type of

machineries which we have developed. This result is very useful in applications,

since it replaces many purely existential arguments which are based on Itô’s repre-

sentation theorem, by constructive proofs. 2

Proof. We may assume that F ∈ D1,2 has the form F =
∑

m Im(fm). Then,

E(DtF |Ft) =
∞∑

m=1

mE(Im−1(fm(., t))|Ft)

=
∞∑

m=1

mE[Im−1(fm(t1, ..., tm−1, t)(1{t1∨...∨tm−1≤t} + 1{t1∨...∨tm−1≥t}))|Ft].
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Now, Im−1(fm(t1, ..., tm−1, t)1{t1∨...∨tm−1≤t}) is Ft-measurable, while by Itô’s isome-

try,

E[Im−1fm(t1, ..., tm−1, t)1{t1∨...∨tm−1≥t}|Ft] = 0.

Hence, we have

E(DtF |Ft) =
∞∑

m=1

mIm−1(fm(t1, ..., tm−1, t)1{t1∨...∨tm−1≤t})

Letting ft = E(DtF |Ft), we calculate D∗f using the above expression and theorem

3.5.3. We obtain

D∗f =
∞∑

m=1

Im(fm) = F − EF.

But now D∗f coincides with the Itô integral of f , and hence the proof is finished.

2

We conclude this section by a final remark that summarises some further prop-

erties of D∗. The proofs are routine in the sense that you first check the results

on the Wiener chaos, and conclude for a general L2 random variable by a limiting

argument. Precise details of these can be found in section 1.3 of [35].

Remark 3.4.11.

1. Suppose u is a Skorohod integrable process. Let F ∈ D1,2 such that

E
(
F 2

∫ T

0

u2
tdt

)
<∞.

Then we have, ∫ T

0

(Fut)dWt = F

∫ T

0

utdWt −
∫ T

0

(DfF )utdt.

In particular, this tells us that Fut is Skorohod integrable if and only if the

right hand side belongs to L2(Ω).

2. Heisenberg’s commutation relation: If F ∈ D2,2([0, T ] × Ω), then D∗F ∈
D1,2(Ω) and ∀0 ≤ t ≤ T , we have

Dt(D
∗F ) = Ft +

∫ T

0

DtFsdWs.

It resembles the Heisenberg’s relation in the sense that DD∗ −D∗D = 1.

2
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3.5 Quick Remark on Ornstein-Uhlenbeck Semigroups

Another well know operator in stochastic analysis is the Ornstein-Uhlenbeck oper-

ator. We will quickly go through its properties and state its relation with Malliavin

calculus. Its action on L2(Ω) is defined by

Tt(F ) =
∞∑

n=0

e−nt

n!
In(F ),

where F ∈ L2(Ω), and it is assumed to have Wiener chaos expansion,

F =
∞∑

n=0

In(fn).

It can be shown that (c.f. [35]),

1. The set {Tt, t ∈ R+} form a Markov semigroup. In particular, we have TtTs =

Tt+s for all s, t ∈ R.

2. We define its generator L to be such that

LF = lim
t→0

TtF − F

t

in the sense of L2. A remarkable fact about L is that LF = −D∗DF .

3. Some authors such as [4] uses the Ornstein-Uhlenbeck generator to define the

Malliavin derivative.

4. There are many other nice connections between the Ornstein-Uhlenbeck gen-

erator and the Malliavin calculus. However, we will pursue in a different

direction, and turn to the integration by parts relation for the rest of this

thesis.
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Chapter 4

Existence and Smoothness of the Density

One of the most important applications of Malliavin calculus lies in the investi-

gation of existence, smoothness as well as many other properties of densities of

random variables that can be written as Brownian functionals via the integration

by parts relation introduced towards the end of the last chapter. This was in fact

the motivation for P. Malliavin to have developed such a machinery when it was first

introduced in 1976 (see [31]). Malliavin’s initial paper, was followed by a number

of alternative developments on this theory. Interested readers may consult, [4], [3],

[35] and [19]. We will take the approach that makes use of the integration by parts

relation. This approach was originally introduced by Bismut and Michel in 1982,

and it is one of the most popular approaches today (c.f. [1], [3], [35] and [41]).

4.1 Sufficient Conditions for Existence of Density

This chapter will be devoted to establishing various properties of the density based

on the Malliavin matrix. As before, we let W = {W (h), h ∈ H} be an isonormal

Gaussian process associated to the Hilbert space H = L2([0, T ],B, µ).

Definition 4.1.1. (The Malliavin Matrix) Let F = (F 1, ..., Fm) ∈ D1,2. Define,

σij = (DFi, DFj)H , 1 ≤ i, j ≤ m,

the matrix

ΣF (ω) =


σ11

F (ω) σ12
F (ω) . . . σ1m

F (ω)

σ21
F (ω) σ22

F (ω) . . . σ2m
F (ω)

...
...

. . .
...

σm1
F (ω) σm2

F (ω) . . . σmm
F (ω)


is called the Malliavin matrix. If det Σ(ω) > 0, a.s., and det Σ(ω)−1 ∈ Lp for

some p <∞, then Σ (and F itself) is called non-degenerate.

We begin with the following proposition, which is essentially a one-dimensional

setting of the general case.
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Proposition 4.1.2. Let F ∈ D1,2, and suppose that DF
||DF ||2 ∈ D∗

1,2. Then the law

of F has a continuous and bounded density given by

f(x) = E
(

1F>xD
∗
(

DF

||DF ||2H

))
.

Proof. Let a < b, and consider the functions ψ(y) = 1[a,b](y) and ϕ(y) =
∫ y

−∞ ψ(z)dz.

Clearly, ϕ(F ) ∈ D1,2, and by the chain rule, we have

(D(ϕ(F )), DF )H = ψ(F )(DF,DF )H = ψ(F )||DF ||2H .

Now, using the integration by parts relation,

E(ψ(F )) = E
[(
D(ϕ(F )),

DF

||DF ||2H

)
H

]
= E

[
ϕ(F )D∗

(
DF

||DF ||2H

)]
.

Hence applying Fubini’s theorem, we obtain

P(a ≤ F ≤ b) = E
[∫ F

−∞
ψ(x)dxD∗

(
DF

||DF ||2H

)]
=

∫ b

a

E
[
1F>xD

∗
(

DF

||DF ||2H

)]
ds,

which gives the desired result. 2

Remark 4.1.3. The sufficient conditions for DF
||DF ||2 ∈ D∗

1,2 are that

1. F ∈ D2,4, and

2. E(||DF ||−8) <∞.

2

To generalise the above proposition to higher dimensions, we need the following

result from harmonic analysis.

Proposition 4.1.4. Let µ be a probability measure on Rm. Assume that for all

ϕ ∈ C∞
b (Rm), the following inequality holds,∣∣∣∣ ∫

Rm

∂jϕdµ

∣∣∣∣ ≤ cj||ϕ||∞, 1 ≤ i ≤ m,

where the cj’s are constants that do not depend on ϕ. Then, µ is absolutely con-

tinuous with respect to the Lebesgue measure.
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The most popular method of proving this involves taking Fourier transforms,

and hence it is considered a result of harmonic analysis. Readers are advised to see

[31] for details.

Theorem 4.1.5. Let F = (F 1, ..., Fm) be a random vector satisfying the assump-

tions,

1. F i ∈ D2,4 for all i, j = 1, ...,m.

2. The matrix ΣF is invertible a.s.

Then, the law of F is absolutely continuous with respect to the Lebesgue measure

on Rm.

Proof. Let ϕ ∈ C∞
b (Rm) be a fixed test function. By the chain rule, we know that

ϕ(F ) ∈ D1,4, and that

D(ϕ(F )) =
m∑

i=1

∂iϕ(F )DF i.

Hence,

(D(ϕ(F )), DF j)H =
m∑

i=1

∂iϕ(F )Σij
F

i.e.
∂1ϕ(F )

∂2ϕ(F )
...

∂mϕ(F )

 =


σ11

F (ω) σ12
F (ω) . . . σ1m

F (ω)

σ21
F (ω) σ22

F (ω) . . . σ2m
F (ω)

...
...

. . .
...

σm1
F (ω) σm2

F (ω) . . . σmm
F (ω)


−1

(D(ϕ(F )), DF 1)H

(D(ϕ(F )), DF 2)H

...

(D(ϕ(F )), DFm)H

 .

In order to apply proposition 4.1.4, we need to deal with a potential integrability

problem of Σ−1
F . To this end, we use a localising argument.

For any integer N > 1, we consider a function ΨN ∈ C∞
0 (Rm ⊗ Rm) such that

ΨN(Ξ) =

{
1, if Ξ ∈ KN ;

0, if Ξ 6∈ KN+1.

where,

KN =

{
Ξ ∈ Rm ⊗ Rm : |Ξij| ≤ N∀i, j, and | det Ξ| ≥ 1

N

}
.

Note that KN is a compact subset of GLm ⊂ Rm ⊗ Rm ' End(Rm,Rm). Now,

multiplying ΨN to the previous matrix equation we get for each i,

|E(ΨN(ΣF )∂iϕ(F ))| =
m∑

j=1

E
(
ΨN(ΣF )(D(ϕ(F )), DF j)H(Σ−1

F )ji
)
.

Now, the second assumption gives us the invertibility of ΣF , which implies that

G = ΨN(ΣF )(Σ−1
F )ji ∈ D1,2. Moreover, G is bounded and the first assumption gives
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us (DG,DF j)H ∈ L2([0, T ]). By property 1 of remark 3.4.11, this implies that

ΨN(ΣF )(Σ−1
F )jiDF j ∈ D∗, and hence we may apply integration by parts to get,∣∣∣∣E(ΨN(ΣF )∂iϕ(F ))| = |E

(
ϕ(F )

m∑
j=1

D∗(ΨN(ΣF )(Σ−1
F )jiDF j)

)∣∣∣∣
≤ E

(∣∣∣∣ m∑
j=1

∣∣∣∣D∗(ΨN(ΣF )(Σ−1
F )jiDF j)

∣∣∣∣
)
||φ||∞ <∞.

Therefore, by proposition 4.1.4, the measure (ΨN(γF ).P )◦F−1 is absolutely contin-

uous with respect to the Lebesgue measure on Rm. Thus for any Borel set A ∈ Rm

with Lebesgue measure zero, we have∫
F−1(A)

ΨN(ΣF )dP = 0.

LettingN →∞ and using the second assumption, we can establish that P(F−1(A)) =

0, and thereby proving that P ◦ F−1 is absolutely continuous with respect to the

Lebesgue measure. 2

4.2 Sufficient Conditions for Smoothness of Density

We extend the argument given in the previous section to deduce a sufficient condi-

tion for smoothness of density of a Rm valued random variable. More specifically,

we will prove the following theorem.

Theorem 4.2.1. Let F = (F 1, ..., Fm), such that F i ∈ D1,2, and satisfying the

following assumptions,

1. F i ∈ D∞ for all i = 1, ...,m.

2. The Malliavin matrix ΣF satisfies

(det ΣF )−1 ∈
⋂
p>1

Lp(Ω).

Then, F has an infinitely differentiable density.

Before we begin the proof, we need to first state a lemma. It is a generalisation

to proposition 4.1.4, a standard result in harmonic analysis that we will not prove.

Interested readers are directed to see [31] for details.

Lemma 4.2.2. Let µ be a probability measure in Rm, and fix an open set A ⊂ Rm.

If for all ϕ ∈ C∞
A (Rm), and multi-index α = (α1, ..., αk), there exists a constant Cα

independent of ϕ such that, ∣∣∣∣ ∫
Rm

∂αϕdµ

∣∣∣∣ ≤ Cα||ϕ||∞,
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where C∞
A is the set of smooth functions compactly supported on a set K ⊂ A.

Proof. We first prove that det Σ−1
F ∈ D∞. Let,

Yn =

(
det Σ−1 +

1

n

)−1

for n = 1, 2, .... We have assumed that (det ΣF )−1 ∈
⋂

p>1 L
p(Ω), and hence Yn →

det Σ−1
F in Lp(Ω). Clearly, det ΣF ∈ D∞. Observe that the functions ζn(x) =(

x+ 1
n

)−1 ∈ C∞
p for x > 0. Then by corollary 3.3.30, we conclude that ζn(det ΣF ) =

Yn ∈ D∞ for all n. On the other hand, the sequence Yn converges to a limit in Lp,

and the operator Dk is closed for all k. Hence, DkYn → Dk det Σ−1 for all k, and

therefore det Σ−1 ∈ D∞.

Now we prove the theorem. The main direction of the proof is to construct an

upper bound for ∣∣∣∣E( ∂k

∂xα1 ...∂xαk

(F )

) ∣∣∣∣
so that lemma 4.2.1 can be applied.

Let ϕ ∈ C∞(Rm) with compact support contained in A. By the chain rule, we

obtain

(D(ϕ(F )), DF j)H =
m∑

i=1

∂iϕ(F )(DF i, DF j)H =
m∑

i=1

∂iϕ(F )Σij
A.

Treat the above as a system of linear equations in the ∂iϕ(F )’s. Solving the system

we obtain,

∂iϕ(F ) =
m∑

j=1

(D(ϕ(F )), DF j)H(Σ−1
A )ji.

Let R be a fixed element in D∞, and using integration by parts relation we get,

E(R(∂iϕ)(F )) =
m∑

j=1

E[R(D(ϕ(F )), (Σ−1
A )jiDF j)H ]

= E[ϕ(F )Φi(R)]

where

Φi(R) =
m∑

j=1

D∗ (Ruj
A(Σ−1

A )ji
)
.

We have shown in the beginning of the proof that, (Σ−1
A )ji ∈ D∞. Consequently,

since R and DF j are assumed to be in D∞, it follows that Φi(R) ∈ D∞, and
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consequently Φ is a linear functional of R. Define the multi-index α = (α1, ..., αk),

where αp ∈ {1, ...,m} for all p = 1, ..., k. Recursively applying the relationship

E(R(∂iϕ)(F )) = E(ϕ(F )Φi(R))

to

R = {1,Φα1(1),Φα2(Φα1(1)), ...,Φαk−1
(Φαk−2

(...(1)...))},

we obtain ∣∣∣∣E( ∂k

∂xα1 ...∂xαk

(F )

) ∣∣∣∣ = |E(ϕ(F )Φαk−1
(Φαk−2

(...(1)...)))|

≤ ||φ||∞|E[ϕ(F )Φαk−1
(Φαk−2

(...(1)...))]|
≤ ||φ||∞Cα,

where we know |E[ϕ(F )Φαk−1
(Φαk−2

(...(1)...))]| <∞ as Φ was shown to be a linear

functional. Finally, the theorem holds upon applying lemma 4.2.1. 2

Remark 4.2.3.

1. In the finite-dimensional setting, one could formally express the density of

F by f(x) = E(δx ◦ F ). S.Watanabe gave a rigorous interpretation of the

above statement in an infinite dimensional setting (via Malliavin derivatives),

and he was able to deduce an identical result as the preceding theorem. This

approach was illustrated in detail in section 2.4 of [19].

2. As we shall see in the next chapter, a particular interest of studying stochas-

tic differential equations is to determine the behaviour of the density of the

underlying solution. The results developed in this chapter serves as powerful

tools in dealing with such classes of problems.

2

62



Chapter 5

Stochastic Differential Equations and Stochastic Flows

5.1 Introduction

5.1.1 Formal Definitions

Stochastic differential equations (SDEs) arise naturally in many problems of prac-

tice ranging from quantum mechanics to mathematical finance. Philosophically

speaking, whenever we have imperfect information we can expect randomness of

some degree that perturbs our observations. To include such random behaviour in

our model, intuitively, the differential equation that governs the motion of these

things would take the form

dXt

dt
= µ(t,Xt) + σ(t,Xt)

dWt

dt
.

But of course, dWt

dt
is undefined with probability one. An alternative approach would

be to re-write the above equation in an integral form, where

Xt = X0 +

∫ t

0

µ(s,Xs)ds+

∫ t

0

σ(s,Xs)dWs

where the latter integral is in the sense of Itô.

Definition 5.1.1. Let µ and σ be Borel-measurable functions, with values in

Rm and Rm ⊗Rd respectively. A solution to the stochastic differential equa-

tion is a pair (X,W ) of adapted processes defined on a filtered probability space

(Ω,F ,Ft,P), such that

1. W is a standard Ft-Wiener process in Rd.

2. Xt satisfies{
Xt = X0 +

∫ t

0
µ(s,Xs)dWs +

∫ t

0
σ(s,Xs)ds (SDE)

X0 = x,

The above equation is sometimes written in the differential form:

dXt = µ(s,Xs)dWs + σ(s,Xs)ds.
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We say that the function µ is the drift coefficient and σ the diffusion coef-

ficient, for historical reasons that the original motivation of studying SDEs was to

model physical diffusions. The process X is sometimes also termed as a diffusion

driven by W . When there is no risk of confusion, we simply say X is the solution

to (SDE) instead of the pair (X,W ).

Definition 5.1.2. A solution X of (SDE) on (Ω,F ,Ft,P) is said to be a strong

solution if X is adapted to the filtration FW
t . A solution which is not strong will

be termed a weak solution.

Example 5.1.3. (Ornstein-Uhlenbeck process) The Ornstein-Uhlenbeck process Xt

is defined by the following SDE:

dXt = aXtdt+ σdWt

X0 = x.

We wish to find an explicit formula for Xt that depends only on W and t. The first

equation can be written as

dXt − aXtdt = σdWt.

We multiply through by the integrating factor e−at to get

e−atσdWt = e−at(dXt − aXtdt)

= d(e−atXt)

Therefore,

e−atXt = X0 +

∫ t

0

easσdWs

and so

Xt = eatx+

∫ t

0

ea(t−s)σdWs.

This gives the martingale representation of the Ornstein-Uhlenbeck process. 2

Remark 5.1.4. Most SDEs we encounter are unlikely to have closed form solutions

like the Ornstein-Uhlenbeck process. In fact, most often diffusion processes are

defined by the SDE which it satisfies, rather than an explicit formula. For interest

of the reader, Section 6.1 of [36] has a section discussing various types of SDEs with

explicit form solutions. 2

Theorem 5.1.5. (Existence and Uniqueness of Solution) If µ and σ satisfies

the Lipschitz condition, that is if

||µ(x1, y1)− µ(x2, y2)||+ ||σ(x1, y1)− σ(x2, y2)|| ≤ C(||x1 − x2||+ ||y1 − y2||),

64



∀x1, y1 ∈ R and ∀x2, y2 ∈ Rm. Then, (SDE) has a unique solution Xt adapted to

the filtration Ft = σ(Wt), where uniqueness is in the sense of L2.

Proof. Let E be the set of square integrable adapted processes, such that

||X||E = E
(∣∣∣∣ ∫ t

0

Xsds

∣∣∣∣)+

[
E
(∫ t

0

XsdWs

)2] 1
2

<∞.

Then, it is easily verified that ||.||E is a well defined norm, and hence (E, ||.||E) is

a normed linear space. Let X0
t = x, and for each n ∈ N, we carry out the Picard

iterations as follows. Define,

C(Xn
t ) = Xn

0 +

∫ t

0

µ(s,Xn
s )ds+

∫ t

0

σ(s,Xn
s )ds

and Xn+1 = C(Xn). Then it can be shown that under Lipschitz conditions, C is a

contraction mapping. The proof can be found in many texts such as [10], [38] and

[40]. Hence, by the contraction mapping theorem, there exists a unique point X,

such that Xn → X in the norm ||.||E. 2

Corollary 5.1.6. (Markov Property) Let Xt be a solution of (SDE) with µ and

σ being Ft adapted Lipchitz functions. Then, Xt satisfies the Markov property,

that

E(φ(Xt)|Fs) = E(φ(Xt)|σ(Ws)).

for all functions φ such that the above expectation is well defined. This is an easy

consequence of uniqueness of solutions.

Remark 5.1.7. The Lipchitz condition is sometimes considered to be too restric-

tive. Some very innocent looking SDE’s like

dXt = X2
t dt+X3

t dWt

has solution

Xt =
1

1−Wt

which means the behaviour of X will become unstable in finite time with probability

one, as P(Wt = 1 in finite time ) = 1. 2

5.1.2 Connections with Partial Differential Equations

In this section, I shall introduce a surprising connection between SDEs and PDEs.

Quite often the stochastic method actually provides an easier route than solving

the PDE directly.
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Consider the time-homogeneous m-dimensional SDE, driven by a d-dimensional

Wiener process defined as follows,{
dXt = µ(Xt)dt+ σ(Xt)dWt, (SDE1)

X0 = x,

where σ = (σij) is a m×d matrix. Applying Itô’s lemma to f(Xt), for some f ∈ C2

to get

f(Xt)− f(x) =

∫ t

0

m∑
j=1

µj(Xs)
∂f

∂xj
(Xs)dXs +

1

2

∫ t

0

m∑
i=1

m∑
j=1

∂2f

∂xi∂xj
(Xs)d〈X i, Xj〉s

=

∫ t

0

( m∑
j=1

µj(Xs)
∂f

∂xj
(Xs) +

1

2

m∑
i=1

m∑
j=1

d∑
k=1

σikσkj
∂2f

∂xi∂xj
(Xs)

)
d〈W,W 〉s

+

∫ t

0

m∑
j=1

σij(Xs)
∂f

∂xj
(Xs)dWs

=

∫ t

0

Af(Xs)ds+

∫ t

0

m∑
j=1

σij(Xs)
∂f

∂xj
(Xs)dWs

whereA is called the infinitesimal generator associated with the SDE e(µ(Xt), σ(Xt))

defined by,

A =
m∑

j=1

µj(Xs)
∂

∂xj
(Xs) +

1

2

m∑
i=1

m∑
j=1

aij
∂2

∂xi∂xj
(Xs)

where

aij =
d∑

k=1

σikσkj.

Now, taking expectations on both sides and differentiate with respect to t, we get

∂

∂t
Ef(Xt) = AEf(Xt).

Hence we deduce that if we let u(x, t) = E(f(Xt)|X0 = x), then u satisfies the

Cauchy problem, {
∂u
∂t

= Au

u(x, 0) = f(x).

The above approach can be generalised to solve the Schröndinger’s equation, a

wave equation that governs quantum mechanical motion:

− ~
2m

∇2ψ(x, t) + V (x)ψ(x, t) = i~
∂

∂t
ψ(x, t),

where x = (x1, x2, x3) ∈ R3, h̄ is the normalised Plank’s constant and m is the mass

of the particle. In 1947, Richard Feynman introduced a path integral approach to
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express solutions to the above problem at an intuitive level, it was not until 1965

when Kac had made this mathematically rigorous. We can assure that physical

measurements are made to that the constants are all one, and so I shall ignore all

constants that appear in the equation. We will be solving the problem,{
∂u
∂t

= Lu, on Rd;

u(0, x) = f(x), on ∂Rd.

where

L = A+ v(Xt) =
1

2
∇2 + v(Xt).

Theorem 5.1.8. (Feynman-Kac Representation) Let u ∈ C1,2(R×Rd) be a solution

of the above initial value problem, and W x
t be a translated Wiener process on Rd,

so that W x
0 = x. Then,

u(t, x) = Ex

(
f(Xt) exp

(∫ t

0

v(Ws)ds
))

.

where X satisfies the SDE dXt = µ(Xt)dt+ σ(Xt)dWt.

The proof of this resembles very similar ideas to the case of the Cauchy problem.

Readers are referred to chapter 7 of [38] for a detailed argument.

5.2 Stochastic Flows and Malliavin Calculus

Let us remind ourselves of SDE1 defined in section 5.1.1,{
Xt = x+

∫ t

0
µ(Xs)ds+

∫ t

0
σ(Xs)dWs, (SDE1)

X0 = x,

where σ(Xs) is an m× d matrix, Xt and µ(Xs) are m dimensional vectors, and Ws

is a d-dimensional Wiener process. The study of stochastic flows is about studying

the map φ : (x, t, ω) → Rm, where φ(x, t, ω) = Xt(ω), where X is the process that

solves the above SDE. In particular, we are interested in looking at how φ behaves

under differentiation. Obviously,

∂

∂t
φ(x, t, ω) =

d

dt
Xt

is undefined P a.s., one of the first properties that was known about solutions to

SDE’s. However, it turns out that both ∂
∂x

and ∂
∂ω

turns out to be well defined

quantities. If we assume both µ and σ are C∞ functions, with bounded first partial

derivatives, it can be shown that the map φ(., t, ω) : Rm → Rm is a diffeomorphism

for every fixed t and ω. On the other hand, ∂
∂ω

corresponds to, in the weak sense,

of the Malliavin derivative DsXt. If we assume again that µ, σ ∈ C∞, then it can

be shown the solution to the SDE, X ∈ D∞, confirming the existence of DsXt.
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We shall devote this section in proving these results under the assumption that

µ, σ ∈ C∞. [35] give a more general treatment to higher order derivatives, [39] and

[29] illustrates analogous results for the case when µ and σ are only assumed to be

Lipschitz.

Theorem 5.2.1. Let φ : (x, t, ω) → Xt(ω) where X is a process satisfying

(SDE1) with X0 = x. Then, for almost every (t, ω), the function φ(., t, ω) is a

C∞-homeomorphism from Rm to Rm.

Theorem 5.2.2. Let X satisfies (SDE1), and φ = φ(x, t, ω) as before. For

p ≥ 2, T > 0, k ∈ N and R > 0, ∃C = C(p, T, k, R) such that

sup
|x|≤R

E
(

sup
0≤t≤T

|∂αφ(x, t, ω)|p
)
≤ C,

where α = (α1, ..., αm), |α| =
∑m

1 αm, ∂α = ∂α1
1 ...∂αm

n are partial derivatives with

respect to x. Moreover, for t ≥ 0, let

Jt := J(x, t, ω) = (∂jX
i(x, t, ω))1≤i,j,≤m

be the Jacobian of X with respect to x. Then, Jt and J−1
t respectively satisfies the

following SDE’s,

Jt = I +

∫ t

0

A
(1)
0 (Xs)Jsds+

m∑
k=1

∫ t

0

A
(1)
k (Xs)JsdW

k
s ,

J−1
t = I −

∫ t

0

J−1
s

(
A

(1)
0 (Xs)−

m∑
k=1

(A
(1)
k (Xs))

2

)
ds−

d∑
k=1

∫ t

0

J−1
s A

(1)
k (Xs)dW

k
s

where I is the m × m identity matrix, A
(1)
0 := (∂jb

i(x))1≤i,j≤m and A
(1)
k (x) =

(∂jσ
i
k(x))1≤i,j≤m, k = 1, 2, ...,m.

The preceding two theorems are regarded as well known and their proofs are

available in [21], [29] (chapter 4) and [39] (chapter 7). Now we consider the deriva-

tive of X with respect to the “sample paths”, ω; this correspond to the weak

derivatives in the sense of Malliavin.

Theorem 5.2.3. If µ, σ ∈ C∞ in (SDE1), with bounded partial derivatives of all

orders, then its unique solution X = X(x, t, ω) ∈ D∞(Rm),∀x ∈ Rm, t > 0, and its

Malliavin matrix Σt := Σ(x, t, ω) is given by

Σt = Jt

[∫ t

0

J−1
s a(Xs)(J

−1
s )∗ds

]
J∗t

where a = σσ∗, and Jt is the Jacobian of Xt with respect to the initial value x.
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Proof. By the Heisenberg’s commutation relation,

DsXt =

∫ t

s

Dsb(Xr)dr + σ(Xs) +

∫ d

k=1

∫ t

s

Dsσk(Xr)dW
k
r

=

∫ t

s

A
(1)
0 (Xr)DsXrdr + σ(Xs) +

d∑
k=1

∫ t

s

A
(1)
k (Xr)DsXrdW

k
r ,

where σk is the k-th column of the matrix σ, for k = 1, ..., d. On the other hand,

by theorem 5.3.1 and orthogonality of stochastic integrals, we get

JtJ
−1
s = I +

∫ t

s

A
(1)
0 (Xr)JtJ

−1
s dr + σ(Xs) +

d∑
k=1

∫ t

s

A
(1)
k (Xr)JtJ

−1
s dW k

r ,

and hence, multiplying through by σ(Xs), we get

JtJ
−1
s σ(Xs) = σ(Xs)+

∫ t

s

A
(1)
0 (Xr)JtJ

−1
s σ(Xs)dr+σ(Xs)+

d∑
k=1

∫ t

s

A
(1)
k (Xr)JtJ

−1
s σ(Xs)dW

k
r .

Observe that JtJ
−1
s σ(Xs) and DsXt are satisfied by the same SDE and initial con-

ditions. Hence, by uniqueness of solution, we conclude that

DsXt = JtJ
−1
s σ(Xs)1[0,t](s), a.s.

Therefore,

Σt =

∫ t

0

(DsXt)(DsXt)
∗ds

= Jt

[∫ t

0

J−1
s a(Xs)(J

−1
s )∗ds

]
J∗t .

Moreover, ||DsXt||2Ω×Rm = TrΣt ∈ Lp for some p < ∞. Recursively repeating this

procedure, we can obtain higher order derivatives and show that ∀k ∈ N, 0 ≤ t ≤
T, ||DkXt|| ∈ Lp for some p <∞, and consequently, Xt ∈ D∞(Rm). 2

Remark 5.2.4. In the proof of the preceding theorem, we have deduced that

DsXt = JtJ
−1
s σ(Xs)1[0,t](s), a.s.

This formula is especially useful since it tells us in general how a diffusion driven

by an SDE behaves under the Malliavin derivative operator. 2
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5.3 Hypoellipticity and the Hörmander’s Theorem

In this section, I intend to discuss the first significant application of Malliavin

calculus, a probabilistic proof of the Hörmander theorem. Let,

L =
1

2

m∑
i,j=1

aij(.)∂i∂j +
m∑

i=1

bi(.)∂i

and consider the Cauchy problem for heat equation,{
∂tu(t, x) = Lu(t, x), t > 0, x ∈ Rm; (PDE)

u(0, x) = f(x), .

A question of particular interest in PDE theory is to obtain the fundamental solution

of a given problem, that is a smooth function p(t, .) on R2m so that the solution to

(PDE) is given by,

u(t, x) =

∫
Rm

p(t, x, y)f(y)dy = E[f(φ(x, t, .))]

is the solution to (PDE), where φ(x, t, .) = Xt(.) and Xt is the solution to a suitable

SDE with initial condition X0 = x. In this case, the fundamental solution of (PDE)

is precisely given by the transition density of the process Xt.

By theorem 4.2.1, we know that if the Malliavin matrix for Xt, Σt satisfies

(det Σt)
−1 ∈ Lp

for all p < ∞, then the transition probability density p(t, x, y) exists and it is

smooth. Theorem 5.2.3 allows us to calculate Σt for a reasonably general class of

diffusion processes. Thus, we will develop a sufficient condition for the existence of

a fundamental solution following this path.

Traditionally, it is known that if the matrix a(x) is uniformly elliptic (c.f. [3]),

then a smooth fundamental solution exists. In 1967, L. Hörmander obtained a much

weaker condition for hypoellipticity of differential operators, namely the well known

Hörmander’s condition. To state this condition, we write L in the form of vector

fields, and we shall adopt Einstein’s summation convention for the remainder of

this chapter. Let,

Ak(.) := σi
k(.)∂i, k = 1, ..., d,

A0(.) :=

(
bi(.)− 1

2

d∑
k=1

σj
k(.)∂jσ

i
k(.)

)
∂i.
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Observe that, A0, A1, ..., Ak are C∞ vector fields on Rm; and

d∑
k=1

A2
k = aij∂i∂j +

d∑
k=1

σj
k[∂jσ

i
k]∂i.

Hence, we have,

L =
1

2

d∑
k=1

A2
k + A0.

Furthermore, we the Lie bracket between the vector fields are given by

[Aj, Ak] = AjAk − AkAj.

Theorem 5.3.1. (Hörmander’s Theorem) If the Lie algebra generated by vec-

tor fields {Ak, [A0, Ak], k = 1, ..., d} is m dimensional at any x ∈ Rm, then the

fundamental solution to (PDE) exists and is unique.

Remark 5.3.2. The condition introduced in the preceding theorem is called

Hörmander’s condition. 2

Proof. The proof will be roughly broken into three parts. First of all, we translate

our (PDE) into the probabilistic setting. The second part, I will state to establish an

upper bound, setting up for applying theorem 4.2.1. Finally, we use theorem 5.3.3

to calculate the Malliavin matrix, and combining with the upper bound derived in

the second part to conclude that its inverse is in Lp. It is then a consequence of

theorem 4.2.1 that the fundamental solution (or the transition density) exists and it

is unique. I shall be mainly concentrating on explaining how the Lie algebras come

into play, essentially as a consequence of Itô’s lemma; and also the role of Malliavin

calculus in the proof. For a more thorough treatment, readers are advised to see

section 2.3 of [35].

For simplicity of transformation, we will work with stochastic differential equa-

tions in the sense of Itô and Statonovich interchangeably. Let

b̃ := b− 1

2

d∑
k=1

A
(1)
k σk

where A
(1)
k := (∂jσ

i
k)1≤i,j≤m, then A0(.) = b̃i(.)∂i. Observe that the Itô equation

(SDE) can be transformed to the following Stratonovich equation,

dXt = A0(Xt)dt+ Ak(Xt) ◦ dW k
t ,

where
∫
. ◦ dW k

t is the Stratonovich integral defined in section 2.2. By theorem

2.2.3, Itô’s lemma under Stratonovich integration boils down to ordinary chain
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rule. Hence, ∀f ∈ C∞
b (Rm), we have

df(Xt) = (A0f)(Xt)dt+ (Akf)(Xt) ◦ dW k
t .

In the sequel, for V ∈ C∞(Rm,Rm), V is also understood as a C∞ vector field:

V (.) = V i(.)∂i. Note also that the Itô equations that the Jacobian process and its

inverse satisfies in theorem 5.2.2, are transformed to

dJt = Ã
(1)
0 (Xt)Jtdt+ A

(1)
k (Xt)Jt ◦ dW k

t

and

dJ−1
t = −Ã(1)

0 (Xt)J
−1
t dt− J−1

t A
(1)
k (Xt) ◦ dW k

t

respectively as Stratonovich equations, where Ã
(1)
0 = (∂j b̃

i(x))1≤i,j≤m. Applying

Itô’s lemma in the Stratonovich setting (see theorem 2,¿), we have

d[J−1
t V (Xt)] = (dJ−1

t ) ◦ V (Xt) + J−1
t ◦ dV (Xt)

= −J−1
t Ã

(1)
0 (Xt)V (Xt)dt− J−1

t A
(1)
k (Xt)V (Xt) ◦ dW k

t

+ J−1
t (A0V )(Xt)dt+ J−1

t (AkV )(Xt) ◦ dW k
t .

Now observe that,

[Ã
(1)
0 (x)V (x)]i = V j(x)∂j b̃

i(x) = (V b̃i)(x),

and by notations of vector fields, we have Ã
(1)
0 (x)V (x) = (V A0)(x) and similarly,

Ã
(1)
k (x)V (x) = (V Ak)(x). Hence,

d[J−1
t V (Xt)] = J−1

t (A0V − V A0)(Xt)dt+ Jt ∈ (AkV − V Ak)(Xt) ◦ dW k
t

= J−1
t [A0, V ](Xt)dt+ J−1

t [Ak, V ](Xt) ◦ dW k
t .

Now, let Rt := (Xt, Jt), so Rt is an Rm × (Rm ⊗ Rm) valued stochastic process

with R0 = (x, I). For any vector field V , define ξV : Rm × (Rm ⊗ Rm) → Rm by

ξV (r) = J−1V (x) for r = (x, J). Hence, the preceding equation takes form,{
dξV (Rt) = ξ[A0,V ](Rt)dt+ ξ[Ak,V ](Rt) ◦ dW k

t ;

ξV (R0) = V (x).

In order to use theorem 5.2.3 to compute the Malliavin matrix, we need to translate

the above back to Itô equations. Since,

ξ[Ak,V ](Rt) ◦ dW k
t = ξ[Ak,V ](Rt)dW

k
t +

1

2

d∑
k=1

ξ[Ak,[Ak,V ]](Rt)dt,
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it follows that our Stratonovich equation becomes,{
dξV (Rt) = ξ{A0,V }(Rt)dt+ ξ{Ak,V }(Rt)dW

k
t ; SDE1

ξV (R0) = V (x).

where we define the stochastic Lie brackets by,

{Ak, V } = [Ak, V ] k = 1, ..., d

{A0, V } = [A0, V ] +
1

2

d∑
k=1

[Ak, [Ak, V ]].

Let V̂n and Vn be the following sets of vector fields,

V̂0 := {A1, ..., Ad}
V̂n := {{A0, V }, {Ak, V }, V ∈ V̂n−1, k = 1, ..., d}, n ≥ 1,

Vn :=
n⋃

m=0

V̂m, n = 0, 1, 2, ...

Now, we translate Hörmander’s condition to one that accommodates us to give

a bound on | det Σt|−1. An alternative way to state Hörmander’s condition is,

∀x ∈ Rm,∃N ≥ 0 such that V1, ..., Vm ∈ VN , such that V1(x), ..., Vm(x) are linearly

independent. Yet, this condition is equivalent to

(H): ∀x ∈ Rm,∃N ≥ 0 such that

inf
l∈S

max
V ∈VN

(l, V (x))2
Rm > 0.

where S = {x ∈ Rm : |x| = 1} is the unit sphere in Rm.

The reason is that since there are only a finite number of vector fields in each

of the Vn’s, we can arrange them as a matrix. If the matrix is not full rank, then

its rows are linearly independent, and hence ∃l ∈ S such that

inf
l∈S

max
V ∈VN

(l, V (x))2
Rm = 0

. Conversely, if the matrix is full rank, then its rows are linearly independent, and

hence for any l ∈ S, inf l∈S maxV ∈VN
(l, V (x))2

Rm is strictly positive.

Let p ≥ 2, all there is left is to check that under (H), ∀t > 0, the covariance

matrix Σt satisfies (det Σt)
−1 ∈ Lp. Note that (det Jt)

−1 ∈ Lp and hence it suffices

to prove the non-degeneracy condition for

Ξt :=

∫ t

0

J−1
s a(Xs)(J

−1
s )∗ds,
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as by theorem 5.2.3, Σt = JtΞtJ
∗
t . Fix t > 0 and c > 0, define,

τc :=

∫
{s ≥ 0 : |Xs − x| ∨ ||J−1

s − I|| ≥ c−1} ∧ t.

Then τc is a stopping time, and for ε ∈ (0, t), we have

{τc ≤ ε} =

{
sup
s≤ε

|Xs − x| ∨ ||J−1
s − I|| ≥ c−1

}
.

By estimating Xt and Jt from their defining SDE’s, it can be shown that, for all

p > 1,

E
(

sup
s≤ε

|Xs − x|p ∨ ||J−1
s − I||p

)
= o(εp/2),

and therefore, τ−1
c ∈ Lp. Assuming (H) holds, and taking into account of the

continuous dependence of (SDE1) with respect to the initial value, we see that

∀l0 ∈ S,∃N ∈ N0, V ∈ VN and some neighbourhood S0 of l0, for sufficiently large c

and small δ > 0, we have ∫
l∈S0

sup
s≤τc

(l, ξV (Rs))
2
Rm ≥ δ.

Hence, ∀p > 1,

sup
l∈S0

P
(∫ τ

0

(l, ξV (Rs))
2
Rmds < ε

)
≤ P(δτ < ε) = o(εp).

Suppose that V = {Akj
, {Akj−1

, ..., {Ak1 , Ak0}...}}, where 0 ≤ j ≤ N, 1 ≤ k0 ≤
d, 0 ≤ k1, ..., kj ≤ d. For such a V , define V0 = Ak0 and Vi = {Aki

, Vi−1} for

i = 1, ..., j. We shall prove by induction that for i = j, j − 1, ..., 0, we have

sup
l∈S0

P
(∫ τ

0

(l, ξVi
(Rs))

2
Rmds < ε

)
= o(εp).

We have already shown the case when i = j, so assume that the above holds for

i, and we need to show it also holds for i − 1. To this end, we need the following

lemma, whose proof can be found on section 2.3 of [35].

Lemma 5.3.3. Let X be a one-dimensional Itô process, satisfying

Xt = x+

∫ t

0

Y 0
s ds+

d∑
k=1

∫ t

0

Y k
s dW

k
s , t ≥ 0,
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where Y 0 is also a one dimensional Itô process given by,

Y 0
t = y +

∫ t

0

Z0
sds+

d∑
k=1

∫ t

0

Zk
s dW

k
s , t ≥ 0,

where x, y ∈ R, Y = (Y 1, ..., Y d) and Z = (Z1, ..., Zd) are d-dimensional adapted

processes. If ∃K > 0 and a bounded stopping time τ > 0, such that

sup
0≤t≤τ

{|Y 0
t |+ |Z0

t |+ |Yt|+ |Yt|} ≤ K

then ∀q > 8, ν < q−8
9

, and sufficiently small ε > 0, ∃c > 0 such that

P
(∫ τ

0

X2
t dt < εq,

∫ τ

0

(|Y 0
t |2 + |Yt|2)dt ≥ ε

)
≤ ce−ε−ν

.

Observe that for l ∈ S, and any C∞ vector field V , we have

{
d(l, ξV (Rt))Rm = (l, ξ{A0,V }(Rt))Rmdt+ (l, ξ{Ak,V }(Rt))RmdW k

t ;

(l, ξV (R0))Rm = (l, V (x))Rm .

By lemma 5.3.3, for q > 8 and sufficiently small ε, we have

P

(∫ τ

0

(l, ξVi−1
(Rs))

2
Rmds < εq,

∫ τ

0

d∑
k=0

(l, ξ{Ak,Vi−1}(Rs))
2
Rmds ≥ ε

)
≤ o(εp), 1 < p <∞.

By the inductive assumption, we know that

sup
l∈S0

P

(∫ τ

0

d∑
k=0

(l, ξ{Ak,Vi−1}(Rs))
2
Rmds < ε

)
≤ o(εp).

Therefore,

sup
l∈S0

P
(∫ τ

0

(l, ξVi−1
(Rs))

2
Rmds < εq

)
≤ o(εp),

which finishes the inductive step. In particular, for i = 0, we obtain that there

exists k ∈ [1, d], so that

sup
l∈S0

P
(∫ τ

0

(l, ξAk
(Rs))

2
Rmds < ε

)
≤ o(εp).

Since S is compact, we may choose a finite number of neighbourhoods to cover S,

and hence,

P

(
inf
l∈S

∫ τ

0

d∑
k=1

(l, ξAk
(Rs))

2
Rmds < ε

)
≤ o(εp).
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Since τ ≤ t, the above inequality obviously holds when τ is replaced by t. On the

other hand,

inf
l∈S

∫ t

0

d∑
k=1

(l, ξAk
(Rs))

2
Rmds = inf

l∈S

∫ t

0

|J−1
s σ(Xs)

∗l|2ds

= inf
l∈S

(l,Ξtl)

= λmin

where λmin is the minimum eigenvalue of Ξt. It thus follows that λ−1
min ∈ Lp for all

1 < p <∞, which means that | det Ξt|−1 ∈ Lp, ∀1 < p <∞. 2

Remark 5.3.4.

1. The original probabilistic proof to Hörmander’s theorem was given by Malli-

avin in [31] in 1976. The version presented above was based on the idea of

Stroock and Norris in [35].

2. Using a very similar approach to the above, Shigekawa proved in 1980 that

if F is a L2 random variable with a finite Wiener chaos expansion, then the

density of F is absolutely continuous. However, it is still an open problem to

give an explicit form of the densities to these Wiener chaos.

2
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Chapter 6

Applications to Finance

In the final chapter of my thesis, I would like to illustrate some applications of

Malliavin calculus to the industry of mathematical finance. A basic knowledge of

mathematical finance is assumed, otherwise a good introductory reference for this

material is [42] and the first three chapters of [34]. The later chapters of [34] takes

the theory to a fairly advanced level, which might also be of interest to enthusiastic

readers. We begin this chapter by briefly examine the work of Black and Scholes

(1973), and Harrison and Pliska (1981). Then, we introduce some difficulties this

theory faces when one tries to extend it to a more general setting, and how the

Malliavin analysis of stochastic flows might give a solution to the addressed problem.

This approach was initiated by [12] and [13]. [6] provides a friendly introduction to

this area, while [5] focuses on looking specifically at Asian options.

6.1 Classical Theory

Typically in mathematical finance, we work with a market that has one risk free

assets that admits a discount rate r, and n risky assets. The price dynamics of the

risky assets is governed by the stochastic process X = {Xt : 0 ≤ t ≤ T}, which is

quite typically defined via a time homogeneous stochastic differential equation,

dXt = µ(Xt)dt+ σ(Xt)dWt

driven by a Wiener process Wt. We say the process is homogeneous in time if

the coefficients µ and σ are independent of t. Hence the filtration Ft generated

by Wt will be assumed as the default filtration in the market; or in plain English,

it is simply the public information. For simplicity, we assume in the thesis that

there will be no dividend or tax payments, traders make profits/losses only through

capital gains.

Definition 6.1.1. An process α = {αt ∈ Rn, 0 ≤ t ≤ T} is called a strategy if

1. αt is adapted to Ft.

2.
∫ T

0
|αt|dt <∞.

where |αt| = |α1
t |+ ...+ |αn

t |.

A strategy is in essence a way of allocating different proportion of wealth into

different risky assets at every point in time. The first condition is there to ensure a
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trader’s strategy cannot be dependant on future events, while the second condition

says nobody has access to infinite amount of wealth.

Given a simple strategy αt, that is an adapted process whose values changes

only a countable number of times at ti, i = 1, 2, ...; the capital gain S of the trader

is simply, ∑
i

ati(Xti+1
−Xti).

From the developments in chapter 2, we see that by letting ∆ = sup |ti+1 − ti|
tending to 0, the capital gain can be expressed as,

S(α) =

∫ T

0

atdXt =

∫ T

0

atInµ(Xt)dt+

∫ T

0

atσ(Xt)dWt

where In is the n× n identity matrix.

Definition 6.1.2. We say a strategy admits an arbitrage opportunity if

1. P(S(α) > 0) > 0, and

2. P(S(α) < 0) = 0.

We say a market price is arbitrage free if under such circumstances, there exists

no strategy α that admits to arbitrage opportunities.

In a mathematical model, any presence of arbitrage opportunities is clearly

undesirable, as it would mean that investors could be making instantaneous riskless

profits.

Definition 6.1.3. A contingent claim is simply a map φ : X → R, i.e. an

recept or payment that depends on the asset dynamics X. We make no further

restrictions of φ at this stage.

Example 6.1.4.

1. A European (call) option is a contract that gives the holder the right (but

no obligation) to purchase a certain asset at a future time T for an agreed

strike price K. In such cases we have, φ(X) = (XT −K)+, where T is the

exercising date and K the strike price.

2. An Asian option is when the payoff φ(X) = φ
(∫ T

0
Xtdt,XT

)
.

3. An American (call) option is like an European option, except the holder can

exercise the option at any time before a future time T .

2

One popular method of pricing these contingent claims is by finding a (not

necessarily, but often unique) price that do not allow arbitrage. It was first shown

in [15] that the price takes the form

P = EQ(φ(X)|X0 = x),
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where EQ here means taking expectation under the risk neutral measure Q. Read-

ers who have not exposed to risk neutral measures can regard it as an ordinary

expectation for purposes of appreciating the ideas introduced in this chapter. I will

only briefly introduce some basic definitions and state an very elementary version

of Girsanov’s theorem in my thesis. Interested readers are advised to consult [15],

[34] and [42] for an introductory reading on the transformations of measures, and

[43] provides a much deeper study.

Definition 6.1.5. Let (Ω,F) be a measurable space. We say P and Q are equiv-

alent measures if P(A) = 0 ⇐⇒ Q(A) = 0 for all A ∈ F .

Before we state Girsanov’s theorem, we first state some related facts.

1. If P and Q are equivalent measures (on (Ω,F)), and Xt is an Ft-adapted

process. Then EQ(Xt) = EP
(

dQ
dPXt

)
.

2. Let h be an adapted process on [0, T ] and consider the set of processes of the

form

Mt = exp

(∫ t

0

hsdWs −
1

2

∫ t

0

h2
sds

)
.

Then, Mt is a martingales if

E exp

(
1

2

∫ t

0

h2
sds

)
<∞.

These are called exponential martingales, and they are dense over the space

of L2 martingales (lemma 2.3.6). The condition stated above is called the

Novikov condition.

Theorem 6.1.6. (Girsanov’s Theorem) Consider Mt as above with Novikov

condition satisfied. Let Q be a measure on (Ω,F) such that for all A ∈ F . Then

Q(A) = EP(MT 1A)

defines a new probability measure on (Ω,F), and

W̃t = Wt −
∫ t

0

hsds

is a Wiener process under Q.

In 1981, Harrison and Pliska in [15] pursued this path and obtained the classical

Black and Scholes formula as a conditional expectation under Q-measure using the

so-called risk neutral martingales. The Black and Scholes formula is a closed form
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solution to the price of an European option, under the assumption that the price

dynamics was governed by
dXt

Xt

= µdt+ σdWt.

Then, the price P is given by

P = xΦ

(
log(x/K) + rT + 1

2
σ2T

σ
√
T

)
−KerT Φ

(
log(x/K) + rT − 1

2
σ2T

σ
√
T

)
,

where r is the risk free interest rate and it is assumed to be constant over [0, T ]; Φ

is the cumulative probability distribution of a N(0, 1).

The Black and Scholes option pricing formula was initially published in 1973

using an approach from PDE theory. However, the new approach taken by [15],

is believed to have many advantages. For example, one can immediately deduce

the Black and Scholes price is in fact arbitrage free (see [34] for details) using the

martingale set up in Harrison and Pliska’s method, but this property can be difficult

to prove directly in the PDE approach. Secondly, the new approach can be easily

generalised to give prices of more complicated contingent claims. [16] provides a

very thorough discussion between the two methods.

It is often of interest for investors to look at how sensitive the price of a financial

derivative is with respect to different parameters. These sensitivities coefficients are

traditionally represented by Greek letters, whose definition is summarised as follows:

Greek Sensitivity

∆ (Delta) ∂x

Γ (Gamma) ∂2
x

ρ (Rho) ∂µ

V (Vega) ∂σ.

When the underlying price has a closed form like the case for Black and Scholes,

we can calculate the Greeks analytically - it is just a matter of taking derivatives.

However we may have to resort to numerical techniques when the prices do not have

a closed form. The next section address some of the challenges we face in numerical

evaluation of Greeks, and also suggests a possible solution that uses the Malliavin

integration by parts formula.

6.2 Monte Carlo Methods in Finance

6.2.1 Some Difficulties

We saw in the previous sections that the analytical approach gave quite promising

results in terms pricing an European option, and also calculating the related sen-

sitivities. In real life however, there are many other types of financial derivatives

that are of interest which are more complicated than European option, in the sense

that the option price might depend on the entire path the underlying asset might
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take. In such cases, we need to resort to numerical methods, namely use Monte

Carlo and simulate the paths.

Let X = {Xt, 0 ≤ t ≤ T} be a stochastic process that determines the price of

a risky asset at time t and φ be a contingent claim of the form φ = φ(X). We are

interested in simulating quantities like,

u = EQ(φ(X)|X0 = x),

which gives the fair price of the contingent claim, and also its partial derivatives:

the Greeks, that tells us how sensitive this price is with respect to its parameters.

For simplicity, we will drop the Q in the expectation, and simply write E instead

for the rest of this chapter.

When using finite difference approximation for the Greeks, bumping the price

and taking the sensitivity, one makes two errors: one on the numerical computation

of the expectation via the Monte Carlo as for any simulations, and another one

on the approximation of the derivative function by means of its finite difference.

For example, when applying finite differences to the gamma, one approximates the

second order derivative of the payoff function by

u”(x) =
u(x+ ε)− 2u(x) + u(x− ε)

2ε

This is obviously very inefficient for non-smooth or discontinuous payoffs, which is

a common occurrence in pricing options. Figure 1 of [6] provides a good example

showing how finite difference can break down. To overcome this inefficiency, [8]

suggested using the likelihood ratio method. If we are interested in the sensitivity

of the option price with respect to some parameter θ, and if we know explicitly the

density function of the underlying variable, p(x; θ), we can compute the Greek by,

∂

∂θ
Eu =

∂

∂θ

∫
u(x)dp(x, θ)dx =

∫
u(x)

∂
∂θ
p(x, θ)

p(x, θ)
p(x, θ)dx = E

(
u(x)

∂

∂θ
log p(x, θ)

)
.

The interest of this approach was to avoid the differentiation of the payoff function

in the simulation process. However, this method was quite restrictive since one

needs to have knowledge of the density function explicitly. This is precisely where

Malliavin calculus comes into play, more or less in the same way in which it dealt

with densities in chapters 4 and 5.

6.2.2 Simulating Greeks via Malliavin Weights

In the finance industry, we are particularly interested in computing the sensitivity

of the price of a derivative u with respect to its parameters. We consider a financial

market in which two types of financial securities are available, a risk free bond and

81



n time homogeneous risky assets whose vector of price dynamics, Xt are described

by the SDE,

dXt = µ(Xt)dt+ σ(Xt)dWt,

where Wt is a Wiener process in Rn adapted to Ft. The coefficients of µ and σ are

assumed to be Lipchitz to ensure the above SDE to have a unique solution. Let Jt

be the Jacobian process associated to Xt, for 0 ≤ t ≤ T , defined by the stochastic

differential equation,{
dJt = µ′(Xt)Jtdt+

∑n
i=1 σ

′
i(Xt)JtdW

i
t ,

J0 = In.

where In is the n×n identity matrix, σi is the i-th column of the covariance matrix

σ.

Remark 6.2.1. In the finance literature (e.g. [6]), J is also commonly termed as

the tangent process of X. 2

It is necessary at this point to assume that the covariance matrix σ satisfies the

uniform ellipticity condition. That is, ∃ε > 0, such that

ξ∗σ∗(x)σ(x)ξ ≥ σ|ξ|2

for any ξ, x ∈ Rn. The reason for making such an assumption is that since

µ′ and σ′ are assumed to be Lipschitz and bounded, the Jacobian process Jt ∈
L2(Ω, [0, T ]), (see e.g. Theorem 2.9 of [28]); hence our assumption insures that the

process {σ−1(Xt)Jt} ∈ L2(Ω× [0, T ]). Moreover, for any bounded function γ, then

σ−1γ(Xt) ∈ L2(Ω× [0, T ]) and σ−1γ is a bounded function.

Consider a contingent claim φ(X), with φ satisfying some technical conditions

that will be described later; we wish to compute the Greeks of its price u(x) =

E(φ(X)|X0 = x). That is, we need to take derivatives of u with respect to some

parameter λ, a quantities such as drift, the initial conditions and volatility. Our

aim is to express each of them in the form of

∂u

∂λ
= E(φ(X)× weight)

for some λ. This would allow us to avoid the trouble of using finite difference

approach in our simulation procedure. The weight function appeared in the pre-

vious equation is called the Malliavin weight, as it is generally obtained from the

integration by parts relation for Malliavin calculus.

The problem can be approached by looking at perturbed processes, and the

limit as the “amount” of perturbation goes to 0. We first look at sensitivity of price
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with respect to drift. Consider a payoff function φ : C[0, T ] → R with finite second

moment. The perturbed process Xε
t defined by,

dXε
t = (µ(Xε

t ) + εγ(Xε
t ))dt+ σ(Xε

t )dWt,

with a corresponding

uε(x) = E(φ(Xε)|Xε
0 = x),

and we still denote the non-perturbed process corresponding to ε = 0, by Xt. The

following theorem gives the sensitivity of u with respect to drift.

Theorem 6.2.2. The function ε→ uε(x) is differentiable at ε = 0 for any x ∈ Rn,

and the derivative can be written as,

∂

∂ε
uε(x)

∣∣∣∣
ε=0

= E
(
φ(X)

∫ T

0

(σ−1γ(Xt), dWt)Rn

∣∣∣∣X0 = x

)

Proof. We introduce the random variable

Zε
T = exp

(
−ε
∫ T

0

(σ−1γ(Xt), dWt)Rn − ε2

2

∫ T

0

||σ−1γ(Xt)||2Rndt

)
.

The Novikov condition is trivially satisfied as σ−1γ is bounded, and hence we have

EZε
T = 1 for every ε > 0. It then follows that the probability measure Qε defined

by the Radon-Nikodym derivative

dQε

dP
= Zε

T

is equivalent to P, and

uε(x) = EQε(Ẑε(T )φ(Xε)|Xε
0 = x),

where

Ẑε
T = exp

(
−ε
∫ T

0

(σ−1γ(Xt), dW
ε
t )Rn − ε2

2

∫ T

0

||σ−1γ(Xt)||2Rndt

)
.

and {W ε
t , 0 ≤ t ≤ T} is defined as

W ε
t = Wt − ε

∫ t

0

σ−1γ(Xε
s )ds.

By Girsanov’s theorem, this is a Wiener process under Qε. By considering the

underlying stochastic differential equations, we observe that the joint distribution
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of (Xε,W ε) under Qε coincides with that of (X,W ) under P. Hence we obtain,

uε(x) = E(Zε
Tφ(X)|X0 = x).

On the other hand, by directly calculation we have

1

ε
(Zε

T − 1) =

∫ T

0

Zε
t (σ

−1γ(Xt),Wt)Rn ,

and hence
1

ε
(Zε

T − 1)
L2

−→
∫ T

0

(σ−1γ(Xt),Wt)Rn ,

by the dominated convergence theorem. Since E(φ(X)2) was assumed to be finite,

we can apply the Cauchy Schwartz inequality to get,∣∣∣∣1ε (uε(x)− u(x))− E
(
φ(X)

∫ T

0

(σ−1γ(Xt), dWt)Rn

) ∣∣∣∣
≤ E

∣∣∣∣φ(X)

∣∣∣∣∣∣∣∣1ε (Zε
T − 1)−

∫ T

0

(σ−1γ(Xt), dWt)Rn

∣∣∣∣
≤ KE

∣∣∣∣1ε (Zε
T − 1)−

∫ T

0

(σ−1γ(Xt), dWt)Rn

∣∣∣∣
for some constant K independent of ε. Therefore, letting ε→ 0 we have

∂

∂ε
uε(x)

∣∣∣∣
ε=0

= lim
ε→0

1

ε
(uε(x)− u(x)) = E

(
φ(X)

∫ T

0

(σ−1γ(Xt), dWt)Rn

∣∣∣∣X0 = x

)
.

2

We now look at sensitivities in the initial condition. Again, we hope to express

the derivative as a weighted expectation of the same functional. For this case, We

only consider square integrable payoff functions of the form φ = φ(Xt1 , ..., Xtm), i.e.

φ is only dependant on the asset price over a finite number of points in time. The

price of such a contingent claim is typically given by

u(x) = E(φ(Xt1 , ..., Xtm)|X0 = x).

We denote ∂i as the partial derivative with respect to the i-th argument, and ∇ =∑m
i=1 ∂i. Define the set

Γm =

{
a ∈ L2([0, T ])|

∫ ti

0

a(t)dt = 1,∀i = 1, ...,m

}
.

We have the following theorem that gives the sensitivity of u with respect to the

initial conditions.
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Theorem 6.2.3. Under the assumption that the diffusion matrix σ satisfies the

uniform ellipticity condition, for any x ∈ Rn and a ∈ Γm, we have,

∇u(x) = E
(
φ(Xt1 , ..., Xtm)

∫ T

0

a(t)(σ−1(Xt)Jt)
∗dWt

∣∣∣∣X0 = x

)

Proof. We assume that φ is continuously differentiable with bounded gradient, and

we need to first justify the derivative of u with respect to x can be passed through

the expectation operator. Since φ is continuously differentiable by assumption, we

have,

ψh =
1

||h||
(φ(Xx

t1
, ..., Xx

tm)− φ(Xx+h
t1

, ..., Xx+h
tm ))− 1

||h||

(
m∑

i=1

∂∗i φ(Xt1 , ..., Xtm)Jti , h

)

converging to zero almost surely as h → 0. Since φ was assumed to have bounded

gradient, it follows that the second term of the sum is uniformly integrable. More-

over, we can give an upper bound of the first term by,

1

||h||
(φ(Xx

t1
, ..., Xx

tm)− φ(Xx+h
t1

, ..., Xx+h
tm )) ≤M

k∑
j=1

||Xx
tj
−Xx+h

tj ||
||h||

where M is a uniform upper bound of the partial derivatives of φ. The uniform

integrability of this upper bound follows from general theory of stochastic flows

(see for example Theorem 37 of [39]), as the X was assumed to be governed by

a stochastic differential equation with Lipschitz coefficients. Hence by dominated

convergence, we apply the expectation operator through limits to obtain

∇∗u(x) = E

(
m∑

i=1

∂∗i φ(Xti , ..., Xtm)Jti

∣∣∣∣X0 = x

)
.

Now, since the drift and covariance coefficients has bounded continuous derivatives,

by remark 5.2.4, X ∈ D1,2. Applying the Malliavin derivative, one writes DtXti =

JtjJ
−1
t σ(t)1t≤ti for all i = 1, ...,m and t ∈ [0, T ]. Rearranging the terms and taking

a weighted average gives,

Jti =

∫ T

0

DtXtia(t)σ
−1Jtdt ∀a ∈ Γm.
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Substituting this expression in the equation for ∇∗u(x) gives,

∇∗u(x) = E

(∫ T

0

m∑
i=1

∂∗i φ(Xti , ..., Xtm)a(t)σ−1(t)Jtdt

∣∣∣∣X0 = x

)

= E
(∫ T

0

Dtφ(Xti , ..., Xtm)a(t)σ−1(t)Jtdt

∣∣∣∣X0 = x

)
,

where we have applied the chain rule for the Malliavin derivative to obtain the last

line. Finally, since a(t)σ−1(t)Jt ∈ L2(Ω × [0, T ]) and adapted, we may apply the

integration by parts formula to obtain,

∇u(x) = E
(
φ(Xt1 , ..., Xtm)D∗(a(t)(σ−1(Xt)Jt)

∗)

∣∣∣∣X0 = x

)
= E

(
φ(Xt1 , ..., Xtm)

∫ T

0

a(t)(σ−1(Xt)Jt)
∗dWt

∣∣∣∣X0 = x

)
,

as the D∗ operator coincides with the Itô integral for arguments which are adapted

processes; and thus establishing the result for φ with continuous and bounded gra-

dient.

Now consider the general case for φ ∈ L2. Since the set C∞
K of infinitely dif-

ferentiable functions with compact support is dense in L2, there exists a sequence

φn ∈ C∞
K converging to φ in L2. Let un(x) = E(φn(Xt1 , ..., Xtn)|X0 = x) and

εn(x) = E((φn(Xt1 , ..., Xtm)− φ)2(Xt1 , ..., Xtm)|X0 = x).

It is clear that un(x) → u(x) for all x ∈ Rn, we only need to verify this convergence

is indeed uniformly. Let

g(x) = E
(
φ(Xt1 , ..., Xtm)

∫ T

0

a(t)(σ−1(Xt)Jt)
∗dWt

∣∣∣∣X0 = x

)
.

Applying the theorem to the φn’s gives,

|∇un(x)− g(x)| ≤
∣∣∣∣E((φn(Xt1 , ..., Xtm)− φ(Xt1 , ..., Xtm))

∫ T

0

a(t)(σ−1(Xt)Jt)
∗dWt

∣∣∣∣X0 = x

) ∣∣∣∣
≤ εn(x)E

(∫ T

0

a(t)(σ−1(Xt)Jt)
∗dWt

∣∣∣∣X0 = x

)2

≤ εn(x)ϕ(x).

By the continuity of the expectation operator, this implies that

sup
x∈K

|∇un(x)− g(x)| ≤ εn(x̂)ϕ(x̂) for some x̂ ∈ K,
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where K is some arbitrary compact subset of Rn. This means, ∇un(x) → g(x)

uniformly on compact subsets of Rn, and hence we may conclude that u is continuous

differentiable and that ∇u = g. 2

Finally, we look at sensitivity with respect to volatility. As in the previous part,

we assume the payoff φ = φ(Xt1 , ..., Xtm) with finite second moment. Before it is

possible to state the next theorem, we need to introduce some definitions. Let,

Γ̂m =

{
a ∈ L2([0, T ])|

∫ ti

ti−1

a(t)dt = 1,∀i = 1, ...,m

}
,

and let σ̂ : Rn → Rn×n be a continuously differentiable map with bounded deriva-

tives. We assume the covariance matrix σ + εσ̂ satisfies the uniform ellipticity

condition. That is for every ε, ∃η > 0, such that

ξ∗(σ + εσ̂)∗(x)(σ + εσ̂)(x)ξ ≥ η|ξ|2

for any ξ, x ∈ Rn. In order to evaluate the functional derivative with respect to σ,

we again take the perturbed process in a similar approach we took with the case of

drift. Define the process Xε = {Xε
t : 0 ≤ t ≤ T} by,{

dXε = µ(Xε
t )dt+ (σ(Xε

t ) + εσ̂(Xε
t ))dWt,

Xε
0 = x.

We introduce the tangent process of Xε by the following SDE,{
dZε

t = µ′(Xε
t )Z

ε
t dt+ σ̂(Xε

t )dWt +
∑n

i=1(σi + εσ̂i)
′(Xε

t )Z
ε
t dW

i
t ,

Xε
0 = 0n,

where 0n is the zero vector in Rn. As before, we will denote X, J and Z for Xε, Jε,

and Zε when ε = 0. Now consider the process

βt = ZtJ
−1
t , 0 ≤ t ≤ T a.s.

Then we claim that βt ∈ D1,2 for 0 ≤ t ≤ T . This is true since we can express J−1

as the solution of the SDE,{
dJ−1

t = J−1
t (−µ′(Xt) +

∑n
i=1(σ

′
i(Xt))

2) dt− J−1
t

∑n
i=1 σ

′
i(Xt)dW

i
t ,

J−1
0 = In.

In particular, the drift and volatility coefficients of the SDE has continuous and

bounded derivatives. Hence by remark 5.2.4, the process J−1
t ∈ D1,2, and the same

argument also shows that Z ∈ D1,2. Therefore, the Cauchy Schwartz inequality

gives βt = ZtJ
−1
t ∈ D1,2.
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We are now in position to state the theorem that allows us to express the

sensitivity with respect to volatility in the desired form for purposes of Monte

Carlo simulation.

Theorem 6.2.4. For any a ∈ Γ̂m and σ + εσ̂ satisfying the uniform ellipticity

condition, we have

∂

∂ε
uε(x)

∣∣∣∣
ε=0

= E(φ(Xt1 , ..., Xtm)D∗(σ−1(X)Jβ̂a(T ))|X0 = x)

where

β̂a(t) =
m∑

i=1

a(t)(βti − βti−1
)1ti−1≤t≤ti .

Remark 6.2.5. The operator D∗ in this case cannot be written as an Itô integral,

since a part of the argument β̂a(T ) is clearly non-adaptive. 2

Proof. We consider only the case when φ has continuous and bounded derivatives,

as the general case can be extended via a dense subset argument in a similar fashion

as the previous case. We can also establish in a similar way to the previous part

the validity of differentiation inside the expectation. Namely, we have

∂

∂ε
uε(x)

∣∣∣∣
ε=0

= E

(
m∑

i=1

∂∗i φ(Xt1 , ..., Xtm)Zti

∣∣∣∣X0 = x

)
.

in the sense of L1. By remark 5.2.4, we may take the Malliavin derivative to obtain

DtXti = JtjJ
−1
t σ(t)1t≤ti for any i = 1, ...,m and t ∈ [0, T ]. Hence, we get∫ T

0

DtXtiσ
−1(t)Jtβ̂a(T )dt =

∫ ti

0

Jti β̂a(T )dt

= Jti

i∑
k=1

∫ i

k=1

∫ tk

tk−1

a(t)(βtk − βtk−1
)dt

= Jtiβti

= Zti ,

the second to last line holds as a ∈ Γ̂m. Now substitution gives,

∂

∂ε
uε(x)

∣∣∣∣
ε=0

= E

(∫ T

0

m∑
i=1

∂∗i φ(Xt1 , ..., Xtm)DtXtiσ
−1(Xt)Jtβ̂a(T )dt

∣∣∣∣X0 = x

)

= E
(∫ T

0

Dtφ(Xt1 , ..., Xtm)σ−1(Xt)Jtβ̂a(T )dt

∣∣∣∣X0 = x

)
= E(φ(Xt1 , ..., Xtm)D∗(σ−1(X)Jβ̂a(T ))|X0 = x).
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To justify the use of integration by parts in getting the last step, we note that

σ−1(Xt)Jt ∈ L2(Ω× [0, T ]) and also Ft-adapted. Moreover, we have shown already

that β̂a(T ) ∈ D1,2 and it is FT -measurable. By Cauchy Schwartz, the product

process is also in D1,2 and hence belongs to the domain of D∗. In fact, we have

D∗(σ−1(X)Jβ̂a(T )) = β̂a(T )

∫ T

0

(σ−1(X)Jβ̂a(T ))∗dWt −
∫ T

0

Dtβ̂a(T )σ−1(Xt)Jtdt.

2

Remark 6.2.6.

1. The result in theorem 5.2.1 does not require the Markov property of the

process Xt. The only requirement for the argument to flow is the adaptiveness

of b, σ and γ.

2. The same kind of argument as in the proof of preceding three theorems

generalises in an obvious way to higher order derivatives of u with respect

to ε at ε = 0 in the sense that we could also express them in the form

E(φ× weight|X0 = x).

2

We now give some concrete examples. Consider the famous Black and Scholes

model, where we only have one stock S and one risk free asset whose dynamics is

described by {
dSt

St
= rtdt+ σdWt,

S0 = x.

The tangent process J of this process is the solution to{
dJt = rtJtdt+ σJtdWt,

J0 = 1,

and so we have a.s. xJt = St. Let φ be a square integrable functional that describes

the payoff of a contingent claim. We denote price of such a contingent claim by

u(x), typically we have

u(x) = E
(
e−

∫ T
0 rtdtφ(ST )|S0 = x

)
,

and we wish to simulate values for ∂u
∂x
, ∂2u

∂x2 ,
∂u
∂r

and ∂u
∂σ

.

First we can calculate an extended ρ, the directional derivative of u for a per-

turbation r̂ on the drift r. By theorem 6.2.2, we have

ρr̂ = E
(
e−

∫ T
0 rtdtφ(ST )

∫ T

0

r̂

σSt

dWt|S0 = x

)
.
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For the delta, the derivative with respect to the initial condition x, we use theorem

6.2.3. It then boils down to calculating the integral
∫ T

0
a(t) Jt

σSt
dWt, where a(t)

satisfies
∫ T

0
a(t)dt = 1. A trivial choice for such a function is a(t) = 1

T
. Then we

obtain, ∫ T

0

a(t)
Jt

σSt

dWt =
1

T

∫ T

0

Jt

σSt

dWt

=
1

T

∫ T

0

1

xσ
dWt

=
WT

xσT
,

and hence,
∂u

∂x
(x) = E

(
e−

∫ T
0 r(t)dtφ(ST )

WT

xσT

)
.

Applying theorem 6.2.3 again to the above expression, we may obtain an expression

for the gamma,

∂2u

∂x2
(x) = E

[
e−

∫ T
0 r(t)dtφ(ST )

1

x2σT

(
W 2

T

σT
−WT −

1

σ

)]
.

Finally for vega, we need to apply theorem 6.2.4, and again with a(t) = 1
T
, we

obtain,
∂u

∂σ
= E

[
e−

∫ T
0 r(t)dtφ(ST )

(
W 2

T

σT
−WT −

1

σ

)]
.

Remark 6.2.7. Of course, the Greeks and the option price of any European

option in the Black and Scholes set up can be calculated analytically. However, the

above analysis clearly generalises to a much more general framework. Indeed, all

that’s is required is an square integrable payoff contingent on a process whose SDE

representation has Lipschitz drift and volatility. For example, readers are advised to

see [6] for the case where the asset price follows Heston’s model (which is considered

as a generalisation of Black and Scholes). 2

Another example we look at is when the payoff is of the form φ(X) = φ
(∫ T

0
Xsds

)
.

Derivatives of this form are called Asian options and its price is given by

u(x) = E
[
φ

(∫ T

0

Xsds

) ∣∣∣∣X0 = x

]
.

It was claimed in [12] that

Proposition 6.2.8. Let u be as above, and φ ∈ L2[0, T ]. Then,

u′(x) = E

[
φ

(∫ T

0

Xsds

)
D∗

(
2J2

t

σ(Xt)

(∫ T

0

Jsds

)−1
)∣∣∣∣X0 = x

]
.
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Remark 6.2.9. We note again that the term
(∫ T

0
Jsds

)−1

is not Ft adapted for

t < T , and hence the D∗ cannot be converted to an Itô integral in this case. 2

Proof. We consider only the case that φ ∈ C∞ with compact support, as the general

L2 case can be done using a dense subsets type of argument. We also assume that

there exists a process at satisfying,∫ T

0

J−1
s σ(s,Xs)1s<tasds = 1.

In such cases, by the dominated convergence theorem, we can differentiate inside

the integral. We obtain,

u′(x) =
∂

∂x
E
[
f

(∫ T

0

Xtdt

) ∣∣∣∣X0 = 0

]
= E

[
φ′
(∫ T

0

Xtdt

)∫ T

0

Jtdt

∣∣∣∣X0 = 0

]
= E

[
φ′
(∫ T

0

Xtdt

)∫ T

0

∫ T

0

JtJ
−1
s σ(s,Xs)1s<tasdsdt

∣∣∣∣X0 = 0

]
= E

[
φ′
(∫ T

0

Xtdt

)∫ T

0

∫ T

0

DsXtasdsdt

∣∣∣∣X0 = 0

]
= E

[∫ T

0

(
φ′
(∫ T

0

Xtdt

)∫ T

0

DsXtasdt

)
ds

∣∣∣∣X0 = 0

]
= E

[∫ T

0

Ds

(
φ

(∫ T

0

Xtdt

)
Jt

(∫ T

0

Jsds

)
as

)
ds

∣∣∣∣X0 = 0

]
= E

[
φ

(∫ T

0

Xtdt

)
D∗as

∣∣∣∣X0 = 0

]
.

We are justified to exchang the orders ofD∗ and
∫ T

0
in the third to last line as trajec-

tories of DsXt and Xt are continuous over [0, T ], and hence dominated convergence

theorem applies. It is then easy to verify that the process

2J2
t

σ(Xt)

(∫ T

0

Jsds

)−1

is a valid candidate for at. 2

Remark 6.2.10. Although we have used Malliavin calculus techniques to avoid

the usage of finite difference method in simulating a derivative, there are still two

potential problems that needs to be discussed.

1. While the finite difference method can perform poorly at places where the

payoff function φ is non-smooth or discontinuous, its rate of convergence is
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reasonably satisfactory when φ is smooth. In such circumstances, the extra

noise that is obtained by the global effect of the Malliavin integration by

parts that may bring us more trouble than benefit. The next section will

precisely illustrate what exactly is meant and will suggest a way of resolving

this problem via localisation. Figure 2 of [6]

2. Recall that in calculating the Malliavin weights for sensitivity with respect

to the initial condition for example, there was one stage where we had the

freedom to pick an arbitrary function at, that satisfies
∫ T

0
atdt = 1. We im-

mediately took the short cut by picking the most obvious a in our preceding

examples. However, what really ought be done here is to choose such a subject

to certain optimality conditions, such as minimisation of variance for exam-

ple. Currently, this is an area of very active research. [13] discusses some

elementary treatments, and links it with the Euler-Lagrange equations. [7] is

a more recent paper on this topic, and gives a more detailed treatment.

2

6.2.3 Localisation of Malliavin Weights

As mentioned in the previous section, the method of finite difference method is rea-

sonably good for φ smooth, while the technique using Malliavin weights obtained

from integration by parts has its advantages in when φ is non-smooth or discon-

tinuous. This section is devoted to develop a technique which combines the two,

namely to only apply the Malliavin integration by parts around any singularities of

φ. We illustrate this idea with the delta of a call option in the Black and Scholes.

∂

∂x
E
(
e−

∫ T
0 r(t)dt(ST −K)+

)
= E

(
e−

∫ T
0 r(t)dt1ST >KJT

)
= E

(
e−

∫ T
0 r(t)dt(ST −K)+

WT

xσT

)
.

Now, (ST −K)+WT is likely to be very large if T is large, and obviously it also has

a large variance. The idea is then to introduce a localisation around the singularity

at K. For δ > 0, let

Hδ(s) =


0, if s ≤ K − δ;
s−(K−δ)

2δ
, if K − δ ≤ s ≤ K + δ;

1, if s ≥ K + δ.

Let Gδ(t) =
∫ t

−∞Hδ(s)ds, Fδ(t) = (t−K)+ −Gδ(t). Then,

∂

∂x
E
(
e−

∫ T
0 r(t)dt(ST −K)+

)
=

∂

∂x
E
(
e−

∫ T
0 r(t)dtGδ(ST )

)
+

∂

∂x
E
(
e−

∫ T
0 r(t)dtFδ(ST )

)
= E

(
e−

∫ T
0 r(t)dtHδ(ST )JT

)
+ E

(
e−

∫ T
0 r(t)dtFδ(ST )

WT

xσT

)
.
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The advantage of writing in this form is that Fδ vanishes for s ≥ |K − δ|, and thus

Fδ(ST )WT vanishes when WT is large. A similar idea can in fact be used for all

Greeks, see for example [6] and [12] for details on other kinds of Greeks and/or

financial derivatives.

6.2.4 American Options and Conditional Expectations

It was mentioned in section 6.1 that prices to contingent claims φ can generally

be expressed as EQ(φ(XT )|X0 = x). However, there also other types of contingent

claims, like the American option (c.f. [14], [1] and section 5.1 of [34]) whose option

value takes the form, E(φ(XT )|Xt = x) say for some t < T , and t is not necessarily

zero.

It was known for a long time that a general conditional expectations of the form

E(φ(XT )|Xt = x) creates computational challenge when one applies Monte Carlo

techniques. The reason is that often we have P(Xt = x) ≈ 0, then essentially almost

all simulated paths will not end up hitting {Xt = x}, and hence are redundant for

purposes of computing the conditional expectation. The goal of this section is to

transform

E(φ(XT )|Xt = x) → E(φ(XT )× weight)

to obtain a more numerically friendly expression for simulation.

Let δx denote the Dirac delta centered at x. Then, one may express the condi-

tional expectation as,

E(φ(XT )|Xt = x) =
E(φ(XT )δx(Xt))

E(δx(Xt))
.

With the aid of the joint distribution of XT and Xt, which we shall denote by

p(x, y), under certain regularity conditions, one computes,

E(φ(XT )δx(Xt)) =

∫ ∫
φ(x)δx(y)p(x, y)dxdy

= −
∫ ∫

φ(x)H(y)
∂p

∂y
(x, y)dxdy

=

∫ ∫
φ(x)H(y)p(x, y)π(x, y)dxdy

= E(φ(FT )H(G)π),

where πx(x, y) = − ∂
∂y

log p, and H(y) = 1{y≥x} + c so that dH
dy

= δx(y).

This simple calculation again reveals a similar problem to the one we faced with

the computation of Greeks. Namely, we require some knowledge of the underlying

joint density, which is often not available in practice. However, it does explain the

existence of certain weights, whose computable form will be derived by applying
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the integration by parts relation. We assume from now on that DsXT , DsXt ∈
L2([0, T ]× Ω). We also assume there exists a smooth process us ∈ H1 satisfying,

E
(∫ T

0

DsXtusds

∣∣∣∣σ(XT , Xt)

)
= 1.

A trivial choice of ut under certain regularity conditions is simply us = 1
TDsXt

.

The following theorem expresses the conditional expectation in the desired form for

numerical computation.

Theorem 6.2.11. Let φ be a Lipschitz function, and H(y) = 1{y≥x} + c for some

c ∈ R, then we have

E(φ(XT )|Xt = t) =
φ(XT )H(Xt)D

∗(u)− φ′(XT )H(Xt)
∫ T

0
DsXTusds

E(H(Xt)D∗u)
.

Proof. By definition of a conditional expectation, we have

E(φ(XT )|Xt = x) = lim
ε→0

E(φ(XT )1(−ε,ε)(Xt))

E(1(−ε,ε)(Xt))
.

Now we use the integration by parts relation to get

E(φ(XT )1(−ε,ε)(Xt)) = E
(∫ T

0

Ds(φ(XT )Hε(Xt))usds

)
− E

(
φ′(XT )Hε(Xt)

∫ T

0

DsXTusds

)
= E

(
φ(XT )Hε(Xt)D

∗u− φ′(XT )Hε(Xt)

∫ T

0

DsXTusds

)
where

Hε(y) =


c, if y ≤ −ε;
y + ε+ c, if −ε ≤ y ≤ ε;

2ε+ c, if y ≥ ε.

On the other hand, we have

E(Hε(Xt)D
∗u) = E

(∫ T

0

DsHε(Xt)uds

)
= E

(
1(−ε,ε)(Xt)

∫ T

0

DsXtuds

)
= 1(−ε,ε)(Xt)

The proof is then finished when we let ε→ 0, since 1
ε
Hε(Xt) converges to 2H(Xt),

as P(G = 0) = 0. 2

Remark 6.2.12.
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1. If there exists us that also satisfies

E
(∫ T

0

Dsusds

∣∣∣∣σ(XT , Xt)

)
= 0,

then we have

E(φ(XT )|Xt = x) =
φ(XT )H(Xt)D

∗(u)

E(H(Xt)D∗u)
.

2. The result in theorem 6.2.5 also works for a general conditional expectation

of the form E(φ(F )|A) for Borel measurable functions φ, with at most linear

growth at infinity, and A is any measurable set. Please consult [13] and [6]

for details.

3. The existence of us in the preceding corollary really depends on that DsXT

is not proportional to DsXt. If the two derivatives are in fact proportional, it

will be shown in section 6.3 that this implies there is some function ϕ, such

that XT = ϕ(Xt). In such cases, E(XT |Xt = x) = ϕ(0).

2

6.3 Other Applications in Finance

As at today (2004), there are two main types applications of Malliavin calculus

in finance that are known. The first of its kind dates back to 1991, it involves

application Clark’s theorem whose key ideas are illustrated in [26] and [27]. It can

be viewed as an extension to the classical theory introduced by [15]. Where [15] uses

the Itô’s martingale representation to argue for the existence of a hedging strategy,

[27] will use Clark’s martingale representation to give an explicit form of it.

This idea was followed on by [20], who applied it to the study of inside traders.

Inside traders by definition are ones whose strategies are Gt adapted, where the

public information Ft ⊂ Gt. Traditionally, it is known that under certain condi-

tions, the insider will possess arbitrage opportunities, but the proof was again an

existential one. In [20], Malliavin calculus was used via a Clark-type of argument,

and obtained an explicit arbitrage strategies for the insider.

The second type of application in finance is centered around the integration

by parts formula, it was first introduced in 1999. With hindsight of the materials

covered in chapters 4, 5 and 6, the real power of integration by parts is the ability to

deal with probability densities. Traditional applications of probability theory relied

very much on the knowledge of the density function, yet the density function for

solutions to many important stochastic differential equations do not have an explicit

form. In chapters 4, 5 and 6, we have already seen some treatments provided by

integration by parts formula, and currently this remains to be an area of very active

research.
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A book written by P. Malliavin [32] is scheduled to be released in July 2005.

It will be the first book that aims to systematically cover the ideas of Malliavin

calculus applied to mathematical finance.

Another interesting application of Malliavin calculus is the ability, to some ex-

tent, describe nonlinear functional dependencies of random variables. It is well

known that the covariance or correlation was traditionally used as a popular tool to

determine any linear relationships between two random variables F and G. When

the functional dependency is nonlinear however, we could somewhat “linearise” such

a relation by looking at the Malliavin derivatives. More precisely, let F and G be

FT -measurable and smooth in the sense that DtF and DtG exists for 0 ≤ t ≤ T .

Then if F = φ(G) for some say Lipschitz φ, we would then have DtF = φ′(G)DtG

a.s., and thus DtF and DtG are proportional as functions of t. This leads us to

consider, the Malliavin correlation defined by

C(F,G)2 = sup
ω

ess


∣∣∣∫ T

0
DtFDtGdt

∣∣∣2(∫ T

0
|DtF |2dt

)(∫ T

0
|DtG|2dt

)


and in case of DtF or DtG are identically zero on [0, T ], we then define that

C(F,G) = 1. Two easy observations we make by just staring at the definition

is that, suppose φ and ϕ are Lipschitz functions, then F = φ(G) ⇐⇒ C(F,G) = 1

and C(F,G) = C(φ(F ), φ(G)). Since Lipschitz functions are dense in the set of

measurable functions, we can then extend the previous observation to say that

C(F,G) is constant on σ(F )× σ(G).

Let us also mention the case when C(F,G) = 0, obviously this means some form

of L2-orthogonality. A question raised by Üstunel (final remarks of [13]) is to ask to

what extent does this Malliavin type of correlation actually leads us to determine

whether two arbitrary L2 random variables are independent?

One should observe that if we let X ∈ L2(Ω) and

F =

{
X, if X ≥ 0,

0, otherwise;
and G =,

{
0, if X ≥ 0,

−X, otherwise;

then F and G has disjoint support and hence C(F,G)2 will always be zero, yet F

and G are by no means independent. At this stage, I am hoping to define a class of

“analytic random variables” as an analogue of analytic functions in the sense that

some form of analytic continuation is available. Work with these class of random

variables, let

Ck(F,G)2 = sup
ω

ess


∣∣∣∫ T

0
Dk

t FD
k
tGdt

∣∣∣2(∫ T

0
|Dk

t F |2dt
)(∫ T

0
|Dk

tG|2dt
)
 ,
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and I hope to in the future prove something like if Ck(F,G) = 0 for all k = 0, 1, 2, ...,

then F and G are independent random variables.
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