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Disclaimer

This presentation and associated materials are provided for
informational and educational purposes only. Views expressed
in this work are the authors’ views. They are not necessarily
shared by the Federal Financial Supervisory Authority.

In particular, our research is by no means linked to any present
and future wording regarding global regulation of CCR
including EMIR and CRR.
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On CCR and its modelling challenges I

Suppose there are two parties who are trading a portfolio of
OTC derivative contracts such as, e. g., a portfolio of CDSs.
Counterparty credit risk (CCR) is the risk that at least one of
those two parties in that derivative transaction will default prior
to the expiration of the contract and will be unable to make all
contractual payments to its counterpart.
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On CCR and its modelling challenges II

• CCR is of bilateral nature, based on a contractual
exchange of cashflows between two parties over a period
of time.

• Future cashflow exchanges are not known with certainty
today. The main feature that distinguishes CCR from the
risk of a standard loan is the uncertainty of the exposure at
any future date. Hence, regarding the modelling of the
exposure a simulation of future cashflow exchanges is
necessary (Nested Monte-Carlo, SDEs, PDEs, SPDEs,
grid computing . . .).

• Wrong-Way/Right-Way Risk (WWR/RWR): strong
relationship between credit risk and market risk. So, we
need a truly dynamic (portfolio) credit risk model for both
parties: static copula models are not enough. Default
intensities should depend on systematic economic factors!
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CCR - The framework

We will adapt a “network view”.

Consider an investor (name “0”)
who trades with a counterparty (name “2”) and let T > 0 be the
final maturity of this trade.
• Let k ∈ {0, 2} be given and let X = (X(t))0≤t≤T denote a

stochastic process describing a cash flow between party 0
and party 2 (or a random sequence of prices). If, at time t,
Xt is seen from the point of view of party k, we denote its
value equivalently as Xt(k) or Xt(k; 2− k) or Xk(t) -
depending on its eligibility.

• Moreover, we will make use of the important notation
Yt(k | 2− k) to describe a cash flow Y from the point of view
of party k at time t contingent on the default of party 2− k.
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Information setup
Let τ0 denote the default time of the investor and τ2 the default
time of the counterparty. Suppose that the underlying financial
market model is arbitrage-free. Fix a filtered probability space
(Ω,G,G,Q), satisfying the usual conditions. Let G :=

∨
t≥0 Gt :=

σ
(⋃

t≥0 Gt

)
where the σ-algebra Gt contains both, the market

information up to time t and the information whether the default
of the investor or its counterpart has occurred or not up to time
t. Q is a (not necessarily unique) “spot martingale measure”.
Fix t ∈ R+. Let the σ-algebra Ft represent the observable
market information up to time t but the default event. Gt is then
defined as

Gt := Ft ∨Ht ⊇ Ft

where Ht := H(0)
t ∨H

(2)
t defines the filtration H generated by

the default times, i. e., H(k)
t := σ

(
H(k)

u ; 0 ≤ u ≤ t
)
, where

H(k)
u := 11{τk≤u}.
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First default at τ ∗ = min{τ0, τ2,T}

Consider τ := min{τ0, τ2} (i. e., the “first-to-default time”). By
construction both, τ0 and τ2 are G-stopping times.

• If τ > T neither the investor defaults nor does her
counterparty (during the life of the contract) and they both
can fulfill the agreements of the contract.

• On the contrary, if τ ≤ T then either the investor or her
counterparty defaults (or both).

Consider the G-stopping time τ∗ := min{τ,T}. We denote by
EQ
τ∗ the conditional expectation under Q given the stopped

filtration Gτ∗ , i. e., EQ
τ∗ := EQ[ · |Gτ∗ ]. The CCR analysis is based

on the functions x+ := max{x, 0} and x− := x+ − x = (−x)+ =
max{−x, 0} (x ∈ R).
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The set of all bilateral CCR scenarios

Let k ∈ {0, 2}. Consider the following sets:

• N := {τ0 > T and τ2 > T} (i. e., both, party 0 and party 2 do
not default until T);

• A−k := {τk ≤ T and τk < τ2−k} (i. e., party k defaults first and
until T);

• Ak := {τk ≤ T and τk = τ2−k} = A2−k =: Asim (i. e., party 0
and party 2 default simultaneously - until T).

Observation

Ω = N ·∪ A−0 ·∪ A−2 ·∪ Asim .

N = {τ∗ = T} ∩ {τ∗ 6= τ} and A−k = {τk = τ∗} ∩ {τ∗ 6= τ2−k},
implying that N ∈ Gτ∗ and A−k ∈ Gτ∗ .
In the following we assume that Asim = ∅Q-a.s.
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Vulnerable cash flows and money
conservation

Definition
Let X ≡ (Xt)t∈[0,T] be an arbitrary G-adapted stochastic process.
X is called non-vulnerable if X and 11NX Q-almost surely have
the same sample paths, else X is called vulnerable.

Standing Assumption (Money Conservation Principle)
Let 0 ≤ t ≤ T and k ∈ {0, 2}. Any non-vulnerable cash flow
X = (Xt)0≤t≤T between party k and its counterpart 2− k,
resulting from a trade between party k and its counterpart 2− k,
satisfies

Xt(k) = −Xt(2− k) .

Hence, a “sure” asset for party k represents a “sure” liability for
party 2− k.
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Valuation of defaultable claims I

Defaultable claims can be valued by interpreting them as
portfolios of claims between non-defaultable counterparties
including the riskless claim and mutual default protection
contracts. Fix k ∈ {0, 2}. From the point of view of party k latter
says:

Party k sells to party 2− k default protection on party 2− k
contingent to an amount specified by an ISDA close-out rule.

Let 0 ≤ t < τ∗ (Q-a.s.) and let
• Mt(k) be the mark-to-market value to party k in case both,

party k and party 2− k do not default until T;
• CVAt(k | 2− k) be the value of default protection that party k

sells to party 2− k contingent on the default of party 2− k.
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Valuation of defaultable Claims II

At t party k requires a payment of the “CCR risk premium”
CVAt(k | 2− k) > 0 from party 2− k to be compensated for the
risk of a default of party 2− k.

Conversely, party 2− k requires a
payment of CVAt(2− k | k) > 0 from party k to be compensated
for the risk of a default of party k. Therefore, party 2− k reports
at t the “bilaterally CCR-adjusted” value (defined as “fair value”
in FAS 157):

Vt(2− k) := −CVAt(2− k | k) + Mt(2− k) + CVAt(k | 2− k)

The inclusion of DVA began 2005. In September 2006 the
accounting standard in relation to fair value measurements FAS
157 (The Statements of Financial Accounting Standard, No
157 ) asked banks to record a DVA entry (implying that the DVA
of one party is the CVA of the other).
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Valuation of defaultable Claims III
FAS 157 namely says: “... Because nonperformance risk
includes the reporting entity’s credit risk, the reporting entity
should consider the effect of its credit risk (credit standing) on
the fair value of the liability in all periods in which the liability is
measured at fair value under other accounting
pronouncements...”

The European equivalent of FAS 157 is the fair value provision
of IAS 39 which had been published by the International
Accountancy Standards Board in 2005, showing similar
wording with respect to the valuation of CCR.

So, we define

DVAt(k; 2− k) := CVAt(2− k | k) .

14 / 50



Valuation of defaultable Claims III
FAS 157 namely says: “... Because nonperformance risk
includes the reporting entity’s credit risk, the reporting entity
should consider the effect of its credit risk (credit standing) on
the fair value of the liability in all periods in which the liability is
measured at fair value under other accounting
pronouncements...”

The European equivalent of FAS 157 is the fair value provision
of IAS 39 which had been published by the International
Accountancy Standards Board in 2005, showing similar
wording with respect to the valuation of CCR.

So, we define

DVAt(k; 2− k) := CVAt(2− k | k) .

14 / 50



Valuation of defaultable Claims IV

Consequently,

Vt(2− k) = −CVAt(2− k | k) + Mt(2− k) + CVAt(k | 2− k)

= Mt(2− k) + DVAt(2− k; k)−CVAt(2− k | k)

= Mt(2− k)− BVAt(2− k; k) , (1)

where

BVAt(2− k; k) := CVAt(2− k | k)− DVAt(2− k; k)
X
= −BVAt(k; 2−k) .

Similarly (due to the MCP and permutation):

Vt(k)
(2)
= Mt(k)− BVAt(k; 2− k)

(!)
= −Vt(2− k) (2)

for Q-almost all 0 ≤ t < τ∗. Hence, both parties agree. More
risky parties pay less risky parties in order to trade with them.
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Valuation of defaultable Claims V
Actually we have seen more: namely the following fact which
completely ignores the construction/definition of DVA:

Observation
Assume that the MCP holds, and suppose that both parties
include a possible future default of their respective counterpart.
Then

Vt(k) := Mt(k)−
(
CVAt(k | 2− k)− CVAt(2− k | k)

)
= −Vt(2− k)

for all k ∈ {0, 2} and Q-almost all 0 ≤ t < τ∗, implying that the
MCP can be transferred to the vulnerable cash flow V.

Notice that also at t = τ∗ the values Mt(k),CVAt(k | 2− k)
and CVAt(2− k | k) are “well-defined”. In general they do not
vanish. Yet Vt(k) = −Vt(2− k) is the agreed price between k
and 2− k before a (possible) first-to-default event happens!
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and 2− k before a (possible) first-to-default event happens!
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The DVA paradox I

Let us assume that party k is default-free (such as e. g. the
Bank of England (hopefully...)). Then τk =∞ and
CVAt(2− k | k) = DVAt(k; 2− k) = 0 for Q-almost all 0 ≤ t < τ∗ =
min{τ2−k,T}. If however, party 2− k converged to its own
default before T, CVAt(k | 2− k) ↑ . . . if t −→ τ2−k. Consequently,

Vt(k) = Mt(k)−CVAt(k | 2− k) ↓ . . . if t −→ τ2−k ,

implying that the default-free party k would be strongly exposed
to an increase of CVAt(k | 2− k) - transferred from the risky
party 2− k to the solvent party k.

And what does the risky party report?

Vt(2− k) = −Vt(k) = Mt(2− k)+DVAt(2− k; k) ↑ . . . if t −→ τ2−k !
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The DVA paradox II

Whenever an entity’s credit worsens, it receives a subsidy from
its counterparties in the form of a DVA positive mark to market
which can be monetised by the entity’s bond holders only at
their own default. Whenever an entity’s credit improves instead,
it is effectively taxed as its DVA depreciates.

Wealth is thus transferred from the equity holders of successful
companies to the bond holders of failing ones, the transfer
being mediated by banks acting as financial intermediaries and
implementing the traditional CVA/DVA mechanics.
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The main CCR building blocks

Π
(t,u]
k = −Π

(t,u]
2−k Random CCR free cumulative cash

flows from the claim in (t, u], discounted
to time t – seen from k’s point of view

Mk(t) = EQ[Π
(t,T]
k |Gt] Random NPV (or MtM) of Π

(t,u]
k – repre-

= −M2−k(t) sented as conditional expectation
w.r.t. Q, given the “information” Gt

0 ≤ Rk < 1 k’s (random) recovery rate; i. e., the
portion of the payoff from the MtM
paid by party k to party 2− k in
case of k’s default

0 < LGDk := 1− Rk ≤ 1 k’s (random) Loss Given Default
D(t, u) := D(0, u)/D(0, t) discount factor at time t for time u > t

(can be random)
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1 Bilateral First-to-Default Counterparty Credit Risk

2 Close-out according to ISDA

3 First-to-Default Credit Valuation Adjustment (FTDCVA)

4 UCVA and Basel III
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CCR free close-out I

So, how is BVAt(k; 2− k) = CVAt(k | 2− k)− DVAt(k; 2− k)
actually determined? More precisely: what role do play ISDA’s
close-out rules here?

Another important piece of notation: For any stochastic process
X we put X̃t := D(0, t)Xt and obtain the discounted process X̃
with numéraire D(0, ·).

Fix k ∈ {0, 2}, and assume that party 2− k defaults first,
implying that ∅ 6= A−2−k

X
= {τ2−k = τ∗} Q-a.s. Let ω ∈ A−2−k.

Suppose that the close-out is settled at τ2−k(ω) ≤ T (no margin
period of risk) and that no collateral is exchanged between
party k and party 2− k until τ2−k(ω).
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CCR free close-out II
Let ω ∈ A−2−k. A CCR free close-out (in a given netting set) is
reflected in the following table:

Mk(τ2−k)(ω) > 0 Mk(τ2−k)(ω) ≤ 0
Party k receives R2−k(ω) ·Mk(τ2−k)(ω) 0
from party 2− k
Party k pays to 0 −Mk(τ2−k)(ω)
party 2− k

Hence, since A−2−k = {τ2−k = τ∗} Q-a.s. the already defined
values Vk(t) (0 ≤ t < τ∗) could be extended in the following way:

Vk(τ
∗) := R2−k(Mk(τ

∗))+ − (−Mk(τ
∗))+

= Mk(τ
∗)− LGD2−k(Mk(τ

∗))+ (3)

6= Mk(τ
∗) + LGDk(M2−k(τ

∗))+
(MCP)

= −V2−k(τ
∗) .
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An axiomatic approach to CVA I
Put ∆k := Vk −Mk. Then

∆k(τ
∗)

(3)
= −LGD2−k(Mk(τ

∗))+ . (4)

Let us further assume that also representation (2) can be
extended to τ∗:

∆k(τ
∗) ≡ ∆τ∗(k) = −BVAτ∗(k; 2− k) (5)

and that 11A−
2−k

B̃VA•(k; 2− k) is a càdlàg UI-G-martingale.

Let 0 ≤ t < τ∗Q-a.s. Equation (2) and an application of the
Optional Sampling Theorem imply

11A−
2−k

∆̃t(k)
(2)
= −11A−

2−k
B̃VAt(k; 2− k)

(5)
= EQ

t
[
11A−

2−k
∆̃τ∗(k)

]
(4)
= −EQ

t
[
11A−

2−k
LGD2−k(M̃k(τ

∗))+
]
. (6)

23 / 50



An axiomatic approach to CVA I
Put ∆k := Vk −Mk. Then

∆k(τ
∗)

(3)
= −LGD2−k(Mk(τ

∗))+ . (4)

Let us further assume that also representation (2) can be
extended to τ∗:

∆k(τ
∗) ≡ ∆τ∗(k) = −BVAτ∗(k; 2− k) (5)

and that 11A−
2−k

B̃VA•(k; 2− k) is a càdlàg UI-G-martingale.

Let 0 ≤ t < τ∗Q-a.s. Equation (2) and an application of the
Optional Sampling Theorem imply

11A−
2−k

∆̃t(k)
(2)
= −11A−

2−k
B̃VAt(k; 2− k)

(5)
= EQ

t
[
11A−

2−k
∆̃τ∗(k)

]
(4)
= −EQ

t
[
11A−

2−k
LGD2−k(M̃k(τ

∗))+
]
. (6)

23 / 50



An axiomatic approach to CVA II
Observe that

∆̃t(k)
(2)
= −B̃VAt(k; 2− k) = B̃VAt(2− k; k)

(2)
= −∆̃t(2− k) .

Consequently (since equation (7) holds for all k ∈ {0, 2}), we
obtain

∆̃t(k) = 11A−
k

∆̃t(k) + 11A−
2−k

∆̃t(k) + 11N∆̃t(k)

= −11A−
k

∆̃t(2− k) + 11A−
2−k

∆̃t(k) + 11N∆̃t(k)

= EQ
t
[
11A−

k
LGDk(M̃2−k(τ

∗))+
]
− EQ

t
[
11A−

2−k
LGD2−k(M̃k(τ

∗))+
]

+ 11N∆̃t(k) .

Next, let us assume that ∆̃t(k) = 0 on N (a very “reasonable”
assumption since neither party k nor party 2− k will default
before T). Really?
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An axiomatic approach to CVA III

Standing Assumption (B-Zero)

11NB̃VAt(k; 2− k) = 0

for all k ∈ {0, 2} and for Q-almost all 0 < t < τ∗.
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Vulnerable cash flows I

Let 0 ≤ t < τ∗Q-a.s. Keeping the assumption (B-Zero) in mind
let us revisit Brigo-Capponi’s construction of the following
vulnerable cash flow (which actually is an “existence result” –
cf. [4]):

Π̂
(t,T]
k := 11NΠ

(t,T]
k + 11A−

2−k
Π

(2−k)
k (t) + 11A−

k
Π

(k)
k (t) , (7)

where – due to the CCR free close-out rule of ISDA(!) and an
application of the MCP – the 2× 2 random matrix
(Π

(l)
k (t))l,k∈{0,2} is given by

Π
(l)
k (t) := Π

(t,τ∗]
k + (−1)

k+l
2 D(t, τ∗)

(
LGDl

(
Ml(τ

∗)
)−

+ Ml(τ
∗)
)

for all l ∈ {k, 2− k}.
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Vulnerable cash flows II

Lemma (Representation of Π̂
(t,T]
k )

Let 0 ≤ t < τ∗Q-a.s. Put ∆
(t,T]
k := Π̂

(t,T]
k −Π

(t,T]
k . Then

∆
(t,T]
k = −11A−

2−k
LGD2−kD(t, τ∗)

(
M2−k(τ

∗)
)−

+ 11A−
k

LGDkD(t, τ∗)
(
Mk(τ

∗)
)−

+ (1− 11N)D(t, τ∗)
(

Mk(τ
∗)−Π

(τ∗,T]
k

)
.

Hence, Π̂
(t,T]
k

(MCP)
= −Π̂

(t,T]
2−k and

EQ[(1− 11N)D(t, τ∗)
(

Mk(τ
∗)−Π

(τ∗,T]
k

)∣∣Gτ∗] (!)
= 0

(11N , D(t, τ∗) are Gτ∗-measurable and Mk(τ
∗) = EQ

τ∗
[
Π

(τ∗,T]
k

]
).
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Corollary (Brigo-Capponi (2009))
Let 0 ≤ t < τ∗Q-a.s. Then

EQ[Π̂(t,T]
k |Gt

] (!)
= Mt(k)

− EQ
[
11A−

2−k
LGD2−kD(t, τ∗)

(
Mk(τ

∗)
)+∣∣Gt

]
+ EQ

[
11A−

k
LGDkD(t, τ∗)

(
M2−k(τ

∗)
)+∣∣Gt

]
.

Proof.
We now only have to recall the “tower property” of conditional
expectation:

EQ[Π̂
(t,T]
k |Gt]

(!)
= EQ[EQ[Π̂(t,T]

k |Gτ∗
]∣∣Gt

]
.
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FTDCVA, FTDDVA and FTDBVA I

Let 0 ≤ t < τ∗Q-a.s. Put

FTDCVAt(k | 2− k) := EQ
t

[
11A−

2−k
LGD2−kD(t, τ2−k)(Mk(τ2−k))

+
]

X
= EQ

t

[
11A−

2−k
LGD2−kD(t, τ∗)(Mk(τ

∗))+
]
,

FTDDVAt(k; 2− k) := FTDCVAt(2− k | k),

FTDBVAk(t; T) := FTDCVAt(k | 2− k)− FTDDVAt(k; 2− k) .
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FTDCVA, FTDDVA and FTDBVA II

Definition
Let k = 0 or k = 2 and 0 ≤ t < τ∗Q-a.s.
(i) The positive Gt-measurable random variable

FTDCVAt(k | 2− k) is called First-to-Default Credit
Valuation Adjustment at t.

(ii) The positive Gt-measurable random variable
FTDDVAt(k; 2− k) := FTDCVAt(2− k | k) is called
First-to-Default Debit Valuation Adjustment at t.

(iii) The real Gt-measurable random variable
FTDBVAt(k; 2−k) := FTDCVAt(k | 2−k)−FTDDVAt(k; 2−k)
is called First-to-Default Bilateral Valuation Adjustment at t.
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Brigo-Capponi reformulated

Theorem (Brigo-Capponi (2009))
Assume that the MCP holds and that the underlying financial
market model is arbitrage-free. Let 0 ≤ t < τ∗Q-a.s. Let Mt(k)
denote the mark-to-market value of the portfolio to party k in
case both, 0 and 2 do not default until T. If both parties apply
the CCR free close-out rule it follows that

EQ[Π̂(t,T]
k |Gt

]
= Mt(k)− FTDBVAt(k; 2− k)

for all k ∈ {0, 2}.
We even may formulate the following
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Bilateral CCR risk premium vs FTDBVA

Theorem
Let k ∈ {0, 2}. Assume that the MCP holds and that the
underlying financial market model is arbitrage-free. Let
0 ≤ t < τ∗Q-a.s. Let Vt(k) := Mt(k)− Bt(k; 2− k), where
• Mt(k) denotes the mark-to-market value of the portfolio to

party k in case both, 0 and 2 do not default until T,
• Bt(k; 2− k) = −Bt(2− k; k) is G-adapted,
• Vτ∗(k) = Mτ∗(k)− Bτ∗(k; 2− k),
• 11A−

2−k
B̃•(k; 2− k) is a càdlàg and uniformly integrable

G-martingale which satisfies condition (B-Zero).
If both parties 0 and 2 apply the CCR free close-out rule, then
Bt(k; 2− k) = FTDBVAt(k; 2− k) and Vt(k) = EQ[Π̂(t,T]

k |Gt
]
.
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Excerpt from Basel III (ACVA, Para 98)
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UCVAt(k | 2− k) as a special case of
FTDCVAt(k | 2− k)

Special Case (A single default only Basel III)

Fix k ∈ {0, 2}. Assume that in addition τk = +∞ (i. e., no default
of party k). Then A−2−k = {τ2−k ≤ T} (Q-a.s). and A−k = ∅.
Consequently, FTDDVAt(k; 2− k) = 0,

EQ[Π̂(t,T]
k |Gt

]
= Mt(k)− FTDCVAt(k | 2− k) ,

and
EQ[Π̂(t,T]

2−k |Gt
]

= Mt(2− k)+FTDDVAt(2− k; k).

Hence, if party k were the investor, and if τk = +∞ the
Unilateral CVA UCVAt(k, 2− k) := FTDCVAt(k | 2− k) would
have to be paid by party 2− k to the default free party k at t to
cover a potential default of party 2− k after t.
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Structure of FTDCVAt(k | 2− k)

Although we write “FTDCVAt(k | 2− k)” it always should be kept
in mind that we actually are working with a very complex object,
namely:

FTDCVAk(t,T,LGD2−k, τk, τ2−k,D(t, τ2−k),Mk(τ2−k)) !

In the following – similarly to Basel III – we consider the case
t = 0 “only”. Why? The case 0 < t < τ∗ requires an in depth
analysis of the conditional joint default process(

Q
(
τk ≤ T and τ2−k ≤ τk

∣∣Gt
))

t≥0
.

To cover dynamically changing stochastic dependence between
all embedded risk factors, a truly dynamic copula model has to
be constructed ( Bielecki, Crépey, Jeanblanc et al).
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UCVA and Basel III - Part I

Firstly we list a very restrictive case of a possible calculation of
UCVA, encoded in the much too simple “CVA = PD ∗ LGD ∗EE”
formula which however seems to be used often in financial
institutes.

Proposition (Rough Approximation – Part I)
Let k ∈ {0, 2}. Assume that
(i) party k will not default until T: τk := +∞;
(ii) LGD2−k is constant and non-random;
(iii) (M̃k(τ2−k))

+ and τ2−k are independent under Q (i. e., WWR
or RWR is ignored completely).

Then

UCVA0(k | 2− k) = Q(τ2−k ≤ T) · LGD2−k · EQ[(M̃k(τ2−k))
+
]
.
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UCVA and Basel III - Part II
Suppose there exists a further random variable M (a “market
risk factor”) so that Mk(τ2−k) is a function of M as well,
Mk(τ2−k,M) say.

Proposition (Rough Approximation – Part II)
Assume that
(i) Party k will not default until T: τk := +∞;
(ii) LGD2−k is constant and non-random;
(iii) For all t D(0, t) does not depend on M;
(iv) M and τ2−k are independent under Q.
Then

UCVAk(0 |T) = LGD2−k

∫ T

0
D(0, t)EQ[(Mk(t,M))+] dFQ

τ2−k
(t),

where FQ
τ2−k

(t) := Q(τ2−k ≤ t) for all t ∈ R (unconditional df).
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Proof.
Put Φ(t,m) := 11[0,T](t) · ψ(t,m), where (t,m)> ∈ R+ × R and
ψ(t,m) := D(0, t) · (Mk(t,m))+. Let FQ

(τ2−k,M) denote the bivariate
df of the random vector (τ2−k,M)> w.r.t. Q. Then

UCVA0(k | 2− k)
(i),(ii)

= LGD2−kEQ[Φ(τ2−k,M)]

= LGD2−k

∫
R+×R

Φ(t,m)dFQ
(τ2−k,M)(t,m)

(iv),Fubini
= LGD2−k

∫
[0,T]

(∫
R
ψ(t,m)dFQ

M(m)
)

dFQ
τ2−k

(t)

(iii)
= LGD2−k

∫ T

0
D(0, t)EQ[(Mk(t,M))+]dFQ

τ2−k
(t).
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EE, Wrong-Way Risk and Right-Way
Risk

EE(M)
k (t) := EQ[(Mk(t,M))+] is known as party k’s Expected

Exposure at t. In general it can be identified by MC simulation
only.

The situation where Q(τ2−k ≤ t) is positively dependent on
EE(M)

k (t), is referred to as Wrong-Way Risk (WWR). In the case
of WWR, there is a tendency for party 2− k to default when
party k’s exposure to party 2− k is relatively high. The situation
where Q(τ2−k ≤ t) is negatively dependent on EE(M)

k (t) is
referred to as Right-Way Risk (RWR). In the case of RWR,
there is a tendency for party 2− k to default when party k’s
exposure to party 2− k is relatively low (cf. [5], [6]).
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Is the ISDA formula (Para 98) of Basel
III true?

Technical Remark
Regarding the calculation of UCVA0(k | 2− k) in Basel III (para
98), observe that the integral in the above Proposition in fact is
a Lebesgue-Stieltjes integral. Hence, if t 7→ EE(M)

k (t) were not
continuous (in time) and if it oscillated too strongly, that integral
would not necessarily be a Riemann-Stieltjes integral, implying
that we seemingly cannot simply approximate it numerically
through a Riemann-Stieltjes sum of the type

UCVA0(k | 2− k) ≈
n∑

i=1

D(0, t∗i ) · EE(M)
k (t∗i ) · (FQ

τ2−k
(ti)− FQ

τ2−k
(ti−1))

=

n∑
i=1

D(0, t∗i ) · EE(M)
k (t∗i ) ·Q(ti−1 < τ2−k ≤ ti), (8)
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Basel III UCVA slightly modified
where 0 = t0 < . . . < tn = T and 2t∗i := ti−1 + ti. However:

Corollary
Assume that
(i) The assumptions (i), (ii) and (iv) of the previous

Proposition are satisfied;
(ii) For all i = 1, . . . , n, for all t ∈ [ti−1, ti],

Q(τ2−k > t) = exp
(
− λ(i)2−k t

)
, where λ(i)2−k > 0 is a constant;

(iii) For all i = 1, . . . , n, for all t ∈ [ti−1, ti], r(t) ≡ ri is constant;
(iv) LGD2−k is calibrated from a CDS curve with constant CDS

spread s(i)2−k on each [ti−1, ti].

Then s(i)2−k = λ
(i)
2−k · LGD2−k (“Credit Triangle”), and

UCVA0(k | 2−k) =

n∑
i=1

s(i)2−k

∫ ti

ti−1

e−ri tEE(M)
k (t) exp

(
−

s(i)2−kt
LGD2−k

)
dt.
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CVA risk in Basel III (Para 99)
Assuming both, the approximation (8) of Basel III and the
“spread representation”

Q(t∗i−1 < τ2−k ≤ t∗i ) = e
(
s(i−1)

2−k , t
∗
i−1
)
− e
(
s(i)2−k, t

∗
i
)
,

where e(s, t) := exp(−s · t/LGD2−k), a Taylor series
approximation of 2nd order leads to the so called “CVA risk” of
Basel III, i. e., to a delta/gamma approximation for
UCVA0(k | 2− k), viewed as a function f (s2−k) of the
n-dimensional spread vector s2−k ≡ (s(1)2−k, . . . s

(n)
2−k)

> only:

f (s2−k + h)− f (s2−k)
(‖h‖ small )
≈

n∑
i=1

D(0, t∗i )EE(M)
k (t∗i ) hi

(
t∗i e
(
s(i)2−k, t

∗
i
)
− t∗i−1e

(
s(i−1)

2−k , t
∗
i−1
))

+

1
2 LGD 2−k

n∑
i=1

D(0, t∗i )EE(M)
k (t∗i ) h2

i
(
t∗2i−1e

(
s(i−1)

2−k , t
∗
i−1
)
− t∗2i e

(
s(i)2−k, t

∗
i
))
.
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CVA risk in Basel III: Flaws I

An analysis of “CVA volatility risk” and its capitalisation should
particularly treat the following serious flaws:

(i) CVA risk (and hedges) extend far beyond the risk of credit
spread changes. It includes all risk factors that drive the
underlying counterparty exposures as well as dependent
interactions between counterparty exposures and the
credit spreads of the counterparties (and their underyings).
By solely focusing on credit spreads, the Basel III UCVA
VaR and stressed VaR measures in its advanced approach
for determining a CVA risk charge do not reflect the real
risks that drive the P&L and earnings of institutes.
Moreover, banks typically hedge these non-credit-spread
risk factors. The Basel III capital calculation does not
include these hedges.
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CVA risk in Basel III: Flaws II

(ii) The non-negligible and non-trivial problem of a more
realistic inclusion of WWR should be analysed deeply. In
particular, the “alpha” multiplier 1.2 ≤ α should be revisited,
and any unrealistic independence assumption should be
strongly avoided.

(iii) Credit and market risks in UCVA are not different from the
same risks, embedded in many other trading positions
such as corporate bonds, CDSs, or equity derivatives. CVA
risk can be seen as just another source of market risk.
Consequently, it should be managed within the trading
book. Basel III requires that the CVA risk charge is
calculated on a stand alone basis, separated from the
trading book. This seems to be an artificial segregation. A
suitable approach would be to include UCVA and all of its
hedges into the trading book capital calculation.
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CVA risk in Basel III: Flaws III

(iv) Basel III considers unilateral CVA only. More precisely, the
regulatory calculation of the ACVA is based on UCVA0 – as
opposed to the calculations of CVA in FAS 157 respectively
IAS 39! Latter explicitly include the (U)DVA0. Hence, there
exists a non-trivial mismatch between regulation and
accounting! Moreover, as we have seen a thorough and
appropriate treatment of a market price of (bilateral) CCR
leads to FTDBVA0 and not to UCVA0. Consequently, further
research is necessary. There is work in progress such as
e.g. the running “Fundamental Review of the Trading Book”
or running projects in the RTF subgroup of the BCBS –
hopefully leading to necessary improvements of Basel III.
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Thank you for your attention!

Are there any questions, comments or remarks?

50 / 50



Thank you for your attention!

Are there any questions, comments or remarks?

50 / 50


	Bilateral First-to-Default Counterparty Credit Risk
	Close-out according to ISDA
	First-to-Default Credit Valuation Adjustment (FTDCVA)
	UCVA and Basel III

