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Why operator ideals? I

“Due to immense applications in spectral theory, geometry of
Banach spaces, theory of eigenvalue distributions etc., a theory
of operator ideals occupies a special importance in functional
analysis.” – P. D. Srivastava, A. Maji (2013)

Here, we would like to add the following point: it has been
demonstrated that the already very powerful analytic theory of
operator ideals can be significantly strengthened by
implementing the no less powerful theory of tensor products of
Banach spaces (including its inherent algebraic structure). It all
starts with A. Grothendieck’s canonical isometric isomorphism:

L2 (E,F) ∼= L (E,F′)
(!)∼= G′

where E,F ∈ BAN and G := E⊗̃πF.
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Why operator ideals? II
Let G be an arbitrary locally compact group with left Haar
measure µ, and let 1 ≤ p <∞. Recall that the group algebra
(L1(G), ∗) is a Banach algebra for the convolution product,
defined by

f ∗ g(t) :=

∫
G

f (s)g(s−1t)dµ(s) =

∫
G

f (ts)g(s−1)dµ(s) .

The Banach space Lp(G) is a Banach left L1(G)-module in a
canonical way (by using convolution again).

Theorem (B. E. Johnson, 1972)
Suppose that G is an amenable locally compact group and
1 < p <∞. Then Lp(G) is an injective Banach left
L1(G)-module.

Long-standing Conjecture
Does the converse hold? Partial results by H. G. Dales and M.
E. Polyakov, 2004.
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1 < p <∞. Then Lp(G) is an injective Banach left
L1(G)-module.

Long-standing Conjecture
Does the converse hold? Partial results by H. G. Dales and M.
E. Polyakov, 2004.

Multi-norm approach (H. G. Dales, M. Daws, H. L. Pham,
and P. Ramsden, 2012)
Let E be a normed space. Suppose that p ≥ 1. Then the
p-multi-norm on {En : n ∈ N} induces the norm on c0 ⊗ E, given
by the isometric embedding

c0 ⊗ E
1
↪→ Pp(E′, c0)
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1 < p <∞. Then Lp(G) is an injective Banach left
L1(G)-module.

Long-standing Conjecture
Does the converse hold? Partial results by H. G. Dales and M.
E. Polyakov, 2004.

Corollary (H. G. Dales, M. Daws, H. L. Pham, and P.
Ramsden, (2012))
Suppose that G is a locally compact group. If Lp(G) is an
injective Banach left L1(G)-module for some (and hence all)
1 < p <∞, G is amenable.
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Operator ideals in Jena: Albrecht
Pietsch
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Operator ideals: definition I

Firstly, let us recall A. Pietsch’s highly fruitful definition of an
(abstract) operator ideal between Banach spaces:

Definition (Pietsch – 1978)
An operator ideal A is an assignment of ascribing to each pair
of Banach spaces (E,F) a linear subspace A (E,F) of L (E,F)
satisfying the following conditions
(I1) IdK ∈ A (K,K);
(I2) If E0 and F0 are Banach spaces, then RST ∈ A (E0,F0),

whenever T ∈ L (E0,E), S ∈ A (E,F) and R ∈ L (F,F0).
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Operator ideals: definition II

Definition (ctd.)
Further, if for each pair of Banach spaces (E,F), A (E,F) is
supplied with a norm ‖·‖A , satisfying

(N1) ‖IdK‖A = 1;
(N2) ‖RST‖A ≤ ‖R‖ ‖S‖A ‖T‖ , whenever E0 and F0 are Banach

spaces and T ∈ L (E0,E), S ∈ A (E,F) and R ∈ L (F,F0),
then the pair

(
A , ‖·‖A

)
is called a normed operator ideal. If in

addition
(N3)

(
A (E,F), ‖·‖A

)
is a Banach space,

then the pair
(
A , ‖·‖A

)
is called a Banach operator ideal, or

Banach ideal, for short.
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Operator ideals: definition III

Definition (ctd.)
Further, if for each pair of Banach spaces (E,F), A (E,F) is
supplied with a p-norm ‖·‖A , with 0 < p ≤ 1, satisfying

(N1) ‖IdK‖A = 1;
(N2) ‖RST‖A ≤ ‖R‖ ‖S‖A ‖T‖ , whenever E0 and F0 are Banach

spaces and T ∈ L (E0,E), S ∈ A (E,F) and R ∈ L (F,F0),
then the pair

(
A , ‖·‖A

)
is called a p-normed operator ideal. If in

addition
(N3)

(
A (E,F), ‖·‖A

)
is a p-Banach space,

then the pair
(
A , ‖·‖A

)
is called a p-Banach operator ideal, or

p-Banach ideal, for short.

9 / 58



Banach ideals: important examples I

•
(
F , ‖·‖

)
: the normed operator ideal consisting of all

operators of finite rank between Banach spaces. It is the
smallest operator ideal. However, there is no way to make
it a Banach ideal.

•
(
L , ‖·‖

)
: the largest Banach ideal consisting of the class of

all bounded linear operators between Banach spaces;
•
(
F , ‖·‖

)
: the Banach ideal of all approximable linear

operators;
•
(
K, ‖·‖

)
: the Banach ideal of all compact linear operators;

•
(
W, ‖·‖

)
: the Banach ideal consisting of all weakly

compact operators (coinciding with the class of all those
bounded linear operators between Banach spaces which
factor through a reflexive Banach space).
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Banach ideals: important examples II

•
(
N , ‖·‖N

)
: the smallest Banach ideal consisting of the

class of all nuclear operators between Banach spaces:
T ∈ N (E,F) iff there exist sequences (an)n∈N ⊆ E′ and
(yn)n∈N ⊆ F such that

∑∞
n=1 ‖an‖‖yn‖ <∞ and

T =
∑∞

n=1〈·, an〉yn =
∑∞

n=1 an⊗ yn, implying that
‖T‖N := inf

{∑∞
n=1 ‖an‖‖yn‖ : T = . . .

}
is well-defined.

•
(
I , ‖·‖I

)
: the Banach ideal of all integral operators:

T ∈ I(E,F) iff there exists a constant c ≥ 0 such that for all
finite rank operators L ∈ F(F,E)
‖T‖I := inf{c : c satisfies . . .} is well-defined for any
integral operator T.
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Banach ideals: important examples III

Theorem (Grothendieck – 1956)
T ∈ I (E,F) if and only if there exists a probability space
(Ω,F ,P), and operators S ∈ L(E,L∞(P)), R ∈ L

(
L1(P),F′′

)
,

such that the following diagram commutes

-E F′′

?
L∞(P)

6

L1(P)-

jFT

R

JL1(P)
L∞(P)

S

and ‖T‖I = inf{‖R‖ ‖S‖ : . . .}, where the infimum is taken over
all possible P’s, R’s, and S’s.

Main Idea of a Proof (dualisation of tensor products !)
Put Ω := BE′ × BF′′ . Then E ⊗ε F′

1
↪→ L∞(Ω,P)⊗ε (L1(Ω,P))′...
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Banach ideals: important examples IV

• Fix 1 ≤ p <∞, and consider
(
Pp , ‖·‖Pp

)
, the Banach ideal

of all absolutely p-summing operators; i. e., the class of all
operators between Banach spaces which map weakly
p-summable sequences in E to strongly p-summable
sequences in F.

Hence, T ∈ Pp(E,F) iff there exists a
constant c ≥ 0 such that for all n ∈ N, and for all
(x1, . . . , xn) ∈ En

( n∑
k=1

‖Txk‖p) 1
p

≤ c sup
{( n∑

k=1

|〈xk, a〉|p
) 1

p

: a ∈ BE′

}
,

implying that ‖T‖Pp
:= inf{c : c satisfies . . .} is well-defined

for any absolutely p-summing operator T.
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Banach ideals: important examples V

•
(
L2, ‖·‖L2

)
: the Banach ideal consisting of all operators

between Banach spaces which factor through a Hilbert
space:

-E F
@
@
@RH�

�
��

T

R ∈ LL 3 S

‖T‖L2
:= inf{‖R‖ ‖S‖ : T = RS . . .}, where the infimum is

taken over all possible Hilbert spaces H and factorising R’s
and S’s.
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Banach ideals: important examples VI

•
(
L∞, ‖·‖L∞

)
: the Banach ideal consisting of all operators

between Banach spaces which factor through some C(K),
where K is a compact set, in the following sense:

-E F′′

@
@
@R
C(K)
�
�
��

jFT

R ∈ LL 3 S

‖T‖L∞ := inf{‖R‖ ‖S‖ : T = RS . . .}, where the infimum is
taken over all possible spaces C(K) (K compact) and
factorising R’s and S’s.
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Banach ideals: important examples VII

•
(
L1, ‖·‖L1

)
: the Banach ideal consisting of all operators

between Banach spaces which factor through some L1(µ),
where µ is a Borel-Radon measure, in the following sense:

-E F′′

@
@
@R
L1(µ)
�
�
��

jFT

R ∈ LL 3 S

‖T‖L1
:= inf{‖R‖ ‖S‖ : T = RS . . .}, where the infimum is

taken over all possible spaces L1(µ) (µ a Borel-Radon
measure) and factorising R’s and S’s.
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In the following, if not differently stated, let
(
A , ‖·‖A

)
always be

an arbitrary p-Banach ideal and
(
B , ‖·‖B

)
always an arbitrary

q-Banach ideal, where 0 < p, q ≤ 1.

Definition
We write (

A , ‖·‖A
)
⊆
(
B , ‖·‖B

)
iff for all Banach spaces E,F, A (E,F) ⊆ B (E,F)
(“algebraically”) and ‖T‖B ≤ ‖T‖A for all T ∈ A (E,F).
If an arbitrary operator ideal is given, one can “derive
canonically” further operator ideals, such as e. g. the following
very important candidates:
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Dual operator ideal and regular hull

•
(
A dual, ‖·‖A dual

)
: the dual p-Banach ideal. T ∈ A dual(E,F) iff

T ′ ∈ A (F′,E′); ‖T‖A dual := ‖T ′‖A ;

•
(
A reg, ‖·‖A reg

)
: the regular hull of

(
A , ‖·‖A

)
. T ∈ A reg(E,F)

iff jFT ∈ A (E,F′′), where jF : F
1
↪→ F′′ is the canonical

injection. ‖T‖A reg := ‖jFT‖A ;

Recall that
(
A , ‖·‖A

)
is regular iff

(
A , ‖·‖A

)
=
(
A reg, ‖·‖A reg

)
.

Examples

•
(
N , ‖·‖N

) (!)

6=
(
N reg, ‖·‖N reg

)
=
(
N dual, ‖·‖N dual

)
;

•
(
K dual, ‖·‖

)
=
(
K , ‖·‖

)
;

•
(
P1, ‖·‖P1

)
=
(
Preg

1 , ‖·‖Preg
1

)
(
(
L2, ‖·‖L2

)
=
(
Lreg

2 , ‖·‖Lreg
2

)
=(

Ldual
2 , ‖·‖Ldual

2

)
.
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Injective and surjective operator ideals
•
(
A inj, ‖·‖A inj

)
: the injective hull of

(
A , ‖·‖A

)
. T ∈ A inj(E,F)

iff JFT ∈ A (E,F∞), where F∞ := C(BF′) and JF : F
1
↪→ F∞

is the canonical isometric embedding. ‖T‖A inj := ‖JFT‖A ;

•
(
A sur, ‖·‖A sur

)
: the surjective hull of

(
A , ‖·‖A

)
.

T ∈ A sur(E,F) iff TQE ∈ A (E1,F), where E1 := l1(BE,K)

and QE : E1 1
� E is the canonical metric surjection.

‖T‖A sur := ‖TQE‖A ;

Recall that
(
A , ‖·‖A

)
is injective (respectively surjective) iff(

A , ‖·‖A
)

=
(
A inj, ‖·‖A inj

)
(resp.

(
A , ‖·‖A

)
=
(
A sur, ‖·‖A sur

)
).

Examples

•
(
F , ‖·‖

) (!)

(
(
K , ‖·‖

)
=
(
F inj

, ‖·‖
)

=
(
F sur

, ‖·‖
)
;

•
(
P1, ‖·‖P1

)
=
(
I inj, ‖·‖I inj

)
is not surjective.
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Products of operator ideals I
T ∈ L (E,F) is an element of the product ideal A ◦ B (E,F) iff
there exists a Banach space G and operators R ∈ B (E,G) and
S ∈ A (G,F) such that T = SR:

-E F
@
@
@RG�

�
��

T

S ∈ AB 3 R

‖T‖A◦B := inf{‖S‖A · ‖R‖B : T = RS . . .}, where the infimum is
taken over all possible Banach spaces G, and factorising R’s
and S’s.

Examples

•
(
W ◦ I , ‖ · ‖W ◦I

) (!)
=
(
N , ‖·‖N

)
(
(
N reg , ‖·‖N reg

)
=(

N dual , ‖·‖N dual

)
=
(
I ◦W , ‖ · ‖I ◦W

)
;

•
(
L2 ◦ N , ‖ · ‖L2◦N

) (!)
=
(
P2 ◦ P2, ‖ · ‖P2◦P2

)
(
(
N , ‖·‖N

)
.
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Products of operator ideals II

Remark(
A ◦ B , ‖ · ‖A ◦B

)
is a r-Banach ideal, where 1

r = 1
p + 1

q . In
general, ‖ · ‖A ◦B is not a norm.

Proposition

•
(
D2, ‖·‖D2

)
:=
(
P dual

2 ◦ P2, ‖ · ‖P dual
2 ◦P2

)
is a Banach ideal.

•
(
P2 ◦ P2, ‖ · ‖P2◦P2

)
is a 1

2 -Banach ideal, but not a Banach
ideal !

•
(
L2 ◦ P dual

2 , ‖ · ‖L2◦P
dual

2

)
⊆
(
P2, ‖·‖P2

)
.

• Let
(
A , ‖·‖A

)
⊆
(
D2, ‖·‖D2

)
. Then

(
L2 ◦ A , ‖ · ‖L2◦A

)
is

not a Banach ideal.
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Products of operator ideals III

Theorem (Grothendieck’s inequality in operator form)
Every (bounded linear) operator from l1 to l2 is absolutely
1-summing, and

‖T‖P1
≤ KG‖T‖

for some (universal) constant KG > 0.

Moreover,
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Equivalently,

L2 = P sur
1 = P dual inj

1 =
(
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respectively,
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(
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Grothendieck and Operations
Research

In fact, meanwhile there exist highly non-trivial applications of
Grothendieck’s inequality in OR, and in the theory of vector
valued measures, such as e. g. a construction of an algorithm
which combines semidefinite programming with a novel
rounding technique, where the latter is based on
Grothendieck’s inequality! This approach plays a major role in
the design of efficient approximation algorithms for dense graph
and matrix problems (keyword: “cut-norm” of a real matrix)!
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Adjoint operator ideal I
Let us recall that T ∈ A∗ (E,F) iff there exists a constant c ≥ 0
such that

|tr
(
TJE

MSQF
K
)
| ≤ c‖S‖A

for all Banach spaces M ∈ FIN(E), K ∈ COFIN(F), and
S ∈ L (F/K,M). If we denote

‖T‖A∗ := inf
(
c
)
,

where the infimum is taken over all such constants c, we obtain
a Banach ideal

(
A∗ , ‖·‖A∗

)
, the adjoint of

(
A , ‖·‖A

)
.

Recall
that a Banach ideal

(
A , ‖·‖A

)
is maximal iff

(
A , ‖·‖A

)
=(

A∗∗ , ‖·‖A∗∗
)
.

Examples

•
(
L∗ , ‖·‖L∗

)
=
(
I , ‖·‖I

)
=
(
F∗ , ‖·‖

F∗
)

=
(
K∗ , ‖·‖K∗

)
;

•
(
A inj∗, ‖·‖A inj∗

)
=
((
A∗ ◦ L∞

)reg
, ‖ · ‖(

A∗ ◦L∞
)reg

)
.
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Adjoint operator ideal II

Theorem
Let B be a maximal Banach ideal such that B ⊆ L∞. Then
B ◦ L2 cannot be a 1-Banach ideal.

Corollary
Let B be a maximal Banach ideal. If B ◦ L2 is a Banach ideal,
then B∗ cannot be injective.
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Minimal kernel and compact kernel
Of particular importance are the following two product ideal
constructions:
• The minimal kernel of

(
A, ‖·‖A

)
:(

Amin, ‖·‖Amin

)
:=
(
F ◦ A ◦ F , ‖ · ‖F◦A◦F

)

• The compact kernel of
(
A, ‖·‖A

)
[Karn-Sinha – 2012]:(

Acom, ‖·‖Acom

)
:=
(
K ◦ A ◦ K, ‖ · ‖K◦A◦K

)
Examples

•
(
F , ‖·‖

)
=
(
Lmin , ‖·‖Lmin

)
=
(
F com

, ‖·‖F com
)
;

•
(
N , ‖·‖N

)
=
(
Imin , ‖·‖Imin

)
;

• Let
(
C , ‖·‖C

)
be a Banach ideal. Then(

C∗ ◦ Cmin , ‖ · ‖C∗ ◦ Cmin

)
⊆
(
N , ‖·‖N

)
.
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Conjugate operator ideals I
T ∈ A4 (E,F) iff there exists a constant c ≥ 0 such that for all
finite rank operators L ∈ F(F,E)

|〈L,T〉| ≡ |tr
(
TL
)
| ≤ c · ‖L‖A

If we put
‖T‖A4 := inf

(
c
)
,

where the infimum is taken over all such constants c, we obtain
a Banach ideal

(
A4 , ‖·‖A4

)
, the conjugate of

(
A , ‖·‖A

)
.

Examples

•
(
D2, ‖·‖D2

)
=
(
L∗2 , ‖·‖L∗2

)
=
(
L42 , ‖·‖L42

)
;

•
(
L , ‖·‖

)
=
(
I∗ , ‖·‖I∗

) (!)

6=
(
I4 , ‖·‖I4

)
;

•
(
I , ‖·‖I

)
=
(
N44 , ‖·‖N44

)
=
(
F4 , ‖·‖

F4
)
.
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Conjugate operator ideals II

It is trivial to see that always(
A4 , ‖·‖A4

)
⊆
(
A∗ , ‖·‖A∗

)
.

Question
Does even isometric equality hold?
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Conjugate operator ideals III

Observation
IdE ∈ A4 (E,E)

iff there exists a c ≥ 0 such that |tr
(
L
)
| ≤ c‖L‖A

for all L ∈ F(E,E) iff tr :
(
F(E,E), ‖·‖A

)
−→ K is continuous.

Observation

• IdE ∈ N4 (E,E) iff E has the AP iff F inj
(F,E) = K(F,E) =

F(F,E) for all Banach spaces F;
• IdE ∈ I4 (E,E) iff E has the BAP (with constant
‖IdE‖I4 <∞).

•
(
L4∞, ‖·‖L4∞

)(!)
6=
(
L∗∞, ‖·‖L∗∞

)
=
(
P1, ‖·‖P1

)
;

• In general,
(
Amin4 , ‖·‖Amin4

)
6=
(
A∗ , ‖·‖A∗

)
(due to

Banach spaces without AP).
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Conjugate operator ideals IV

A deeper investigation of relations between the Banach ideals(
A4 , ‖·‖A4

)
and

(
A∗ , ‖·‖A∗

)
needs the analysis of a crucial -

and non-trivial - local property, known as “accessibility”.

Related research started with the following problem formulation
of Grothendieck in his famous RÉSUMÉ DE LA THÉORIE
MÉTRIQUE DES PRODUITS TENSORIELS
TOPOLOGIQUES:

Problem (Grothendieck - 1956)
D’autre part, si on désigne par ‖u‖α la norme sur E ⊗ F duale
de la norme |u′|α′ sur E′ ⊗ F′, on aura ‖u‖α ≤ |u|α, mais on ne
sait pas si on aura toujours ‖u‖α = |u|α.
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1 Operator ideals revisited

2 From
(
A , ‖·‖A

)
to
(
A new, ‖·‖A new

)
3 Accessible and quasi-accessible operator ideals

4 The principle of local reflexivity for operator ideals

5 A few open problems
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Accessible operator ideals I

Definition (Reisner 1979, Defant 1986)
Let 0 < p ≤ 1. A p-Banach ideal (A , ‖·‖A ) is called
right-accessible, if for all (M,F) ∈ FIN × BAN, operators
T ∈ L(M,F) and ε > 0 there are N ∈ FIN(F) and S ∈ L(M,N)
such that the following diagram commutes

-M F
@
@
@R N�

�
��

T

JF
NA 3 S

and ‖S‖A ≤ (1 + ε)‖T‖A .
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Quasi-accessible operator ideals I

Definition
Let 0 < p ≤ 1. A p-Banach ideal (A , ‖·‖A ) is called
quasi-right-accessible, if there exists a constant κ ≥ 0 such that
for all (M,F) ∈ FIN × BAN, operators T ∈ L(M,F) and ε > 0
there are N ∈ FIN(F) and S ∈ L(M,N) such that the following
diagram commutes

-M F
@
@
@R N�

�
��

T

JF
NA 3 S

and ‖S‖A ≤ (1 + ε)κ‖T‖A .
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Accessible operator ideals II

Definition (Reisner 1979, Defant 1986)
Let 0 < p ≤ 1. A p-Banach ideal (A , ‖·‖A ) is called
left-accessible, if for all (E,N) ∈ BAN × FIN, operators
T ∈ L(E,N) and ε > 0 there are K ∈ COFIN(E) and
R ∈ L(E/K,N) such that the following diagram commutes

-E N
@
@
@R

E/K
�
�
��

T

R ∈ AQE
K

and ‖R‖A ≤ (1 + ε)‖T‖A .

A left- and right-accessible p-Banach ideal is called accessible.
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Quasi-accessible operator ideals II

Definition
Let 0 < p ≤ 1. A p-Banach ideal (A , ‖·‖A ) is called
quasi-left-accessible, if there exists a constant κ ≥ 0 such that
for all (E,N) ∈ BAN × FIN, operators T ∈ L(E,N) and ε > 0
there are K ∈ COFIN(E) and R ∈ L(E/K,N) such that the
following diagram commutes

-E N
@
@
@R

E/K
�
�
��

T

R ∈ AQE
K

and ‖R‖A ≤ (1 + ε)κ‖T‖A .

A quasi-left- and quasi-right-accessible p-Banach ideal is called
quasi-accessible.
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Accessible operator ideals III

Definition (Reisner 1979, Defant 1986)
(A , ‖·‖A ) is totally accessible, if for every finite rank operator
T ∈ F(E,F) between Banach spaces and ε > 0 there are
(K,N) ∈ COFIN(E)× FIN(F) and S ∈ L(E/K,N) such that the
following diagram commutes

-E F

?
E/K

6

N-

T ∈ F

JF
N

S ∈ A

QE
K

and ‖S‖A ≤ (1 + ε)‖T‖A .
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Quasi-accessible operator ideals III

Definition
(A , ‖·‖A ) is quasi-totally accessible, if there exists a constant
κ ≥ 0 such that for every finite rank operator
T ∈ F(E,F) between Banach spaces and ε > 0 there are
(K,N) ∈ COFIN(E)× FIN(F) and S ∈ L(E/K,N) such that the
following diagram commutes

-E F

?
E/K

6

N-

T ∈ F

JF
N

S ∈ A

QE
K

and ‖S‖A ≤ (1 + ε)κ‖T‖A .
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Accessible maximal Banach ideals I

Obviously, every (quasi-)totally accessible p-Banach ideal is
(quasi-)right- and (quasi-)left-accessible (0 < p ≤ 1).

In the following, let us assume that
(
A , ‖·‖A

)
is a maximal

Banach ideal.

Examples

•
(
Amin , ‖·‖Amin

)
always is accessible;

•
(
N , ‖·‖N

)
=
(
Imin , ‖·‖Imin

)
and hence

(
I , ‖·‖I

)
are not

totally accessible;
• The maximal Banach ideal

(
L∞, ‖·‖L∞

)
=
(
P∗1 , ‖·‖P∗1

)
is

not totally accessible - in contrast to
(
P1, ‖·‖P1

)
;

•
(
Ainj , ‖·‖Ainj

)
always is right-accessible;

•
(
Asur , ‖·‖Asur

)
always is left-accessible.
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Accessible maximal Banach ideals II

Theorem (Pisier - 1993)
There exists a maximal Banach ideal

(
AP, ‖·‖AP

)
which neither

is right-accessible nor left-accessible. Moreover,
(
Ainj

P , ‖·‖Ainj
P

)
is not left-accessible.

Theorem
Let

(
A , ‖·‖A

)
be a maximal Banach ideal. TFAE:

•
(
A , ‖·‖A

)
is right-accessible;
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Accessible maximal Banach ideals III

Corollary
Let

(
A , ‖·‖A

)
be a right-accessible maximal Banach ideal. Let

E0 ∈ BAN such that IdE0 ∈ A (E0,E0). Then

A∗ (E0,F) ⊆ I (E0,F)

for all Banach spaces F, and ‖T‖I ≤ ‖IdE0‖A ‖T‖A∗ for all
T ∈ A∗ (E0,F).

Corollary
Let

(
A , ‖·‖A

)
be a right-accessible maximal Banach ideal such

that
(
A∗ , ‖·‖A∗

)
⊆
(
A , ‖·‖A

)
. Let E0 ∈ BAN such that

IdE0 ∈ A∗ (E0,E0). Then E0 has the BAP (with constant
‖IdE0‖A∗ ).
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Accessible maximal Banach ideals IV

Theorem
Let

(
A , ‖·‖A

)
be a maximal Banach ideal. TFAE:

•
(
A∗ , ‖·‖A∗

)
is totally-accessible;

•
(
A , ‖·‖A

)
=
(
A∗4 , ‖·‖A∗4

)
.

Corollary (Defant/Floret - 1993)
Let E be a Banach space such that IdE0 ∈ A (E0,E0). If the
adjoint

(
A∗ , ‖·‖A∗

)
is totally-accessible, E0 must have the BAP

(with constant ‖IdE0‖A ).
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Accessible maximal Banach ideals V

Proposition
Fix an arbitrary Banach space E0. Let

(
A , ‖·‖A

)
and

(
B , ‖·‖B

)
be two arbitrary 1-Banach ideals, such that A(E0, ·) ⊆ B(E0, ·)
and ‖S‖B ≤ ‖S‖A for all S ∈ A(E0, ·). If

(
B , ‖·‖B

)
is

left-accessible, then B∗(·,E0) ⊆ A∗(·,E0), and ‖T‖A∗ ≤ ‖T‖B∗
for all T ∈ B∗ (·,E0).
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Let
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• If Pdual
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Ainj , ‖·‖Ainj

)
is quasi-totally

accessible.
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Accessible maximal Banach ideals VI

Let
(
A , ‖·‖A

)
be a maximal Banach ideal. Looking at the

“increasing sequence”

(
Amin , ‖·‖Amin

)
⊆
(
F A
∗4

, ‖·‖A∗4
)
⊆
(
A∗4 , ‖·‖A∗4

)
(
(
A , ‖·‖A

)
,

Pisier’s counterexample and the accessibility of the “small”
ideal

(
Amin , ‖·‖Amin

)
lead to a very natural, yet non-trivial

question: is
(
A∗4 , ‖·‖A∗4

)
accessible?

The solution of this
question will lead us to a completely different topic; namely:
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1 Operator ideals revisited

2 From
(
A , ‖·‖A

)
to
(
A new, ‖·‖A new

)
3 Accessible and quasi-accessible operator ideals

4 The principle of local reflexivity for operator ideals

5 A few open problems
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A common denominator?

Let us have a quick glimpse at the following non-trivial results:

•
(
F , ‖·‖

)
=
(
Fdual

, ‖·‖
)

=
(
F reg

, ‖·‖
)

• Let E be a real Banach space. If the non-empty
intersection of two closed balls has a center of symmetry,
and if dim(E) = k <∞, then E is isometric to lk∞.

• Let E be a Banach space. E does not have proper cotype
iff there exists c ≥ 1 such that for every finite metric space
M, M Lipschitz embeds into E with distorsion at most c.

• Every PCA Banach space E contains a reflexive subspace.
• Let E be a Banach space. E has the AP iff IdE′ belongs to

the weak∗-closure of F (E′,E′).
Do the proofs of these statements reveal a common
denominator?
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The strong principle of local reflexivity I
In fact, all proofs are based on the strong principle of local
reflexivity (LRP), coined by Johnson, Lindenstrauss, Rosenthal
and Zippin [1969-1971] (which - very roughly speaking - states
that every Banach space F is “finitely representable” in its
bidual F′′):

Theorem (Strong principle of local reflexivity (S-LRP))
Let F be an arbitrary Banach space, M ∈ FIN an arbitrary finite
dimensional space, N ∈ FIN(F′), T ∈ L(M,F′′), and ε > 0. Then
there exists an operator S ∈ L(M,F) such that

(i) ‖S‖ ≤ (1 + ε)‖T‖;
(ii) 〈Sx, b〉 = 〈b,Tx〉 for all (x, b) ∈ M × N;
(iii) jFSx = Tx for all x ∈ M, satisfying Tx ∈ jF(F).

As we will recognise, statements (i) and (ii) are equivalent to
the following statement:
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The strong principle of local reflexivity II

Proposition(
I , ‖·‖I

)
=
(
L4 , ‖·‖L4

)
is left-accessible.
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S-LRP for maximal Banach ideals I

Suppose that
(
A , ‖·‖A

)
is an arbitrary maximal Banach ideal.

Is then the following transfer of the strong LRP to (the norm of)(
A , ‖·‖A

)
satisfied?

Natural Question
Let

(
A , ‖·‖A

)
be an arbitrary maximal Banach ideal. Let F be

an arbitrary Banach space, M ∈ FIN an arbitrary finite
dimensional space, N ∈ FIN(F′), T ∈ L(M,F′′), and ε > 0. Does
there exist an operator S ∈ L(M,F) such that

(i) ‖S‖A ≤ (1 + ε)‖T‖A ,
(ii) 〈Sx, b〉 = 〈b,Tx〉 for all (x, b) ∈ M × N,
(iii) jFSx = Tx for all x ∈ M, satisfying Tx ∈ jF(F)?
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S-LRP for maximal Banach ideals II

Definition
Let

(
A , ‖·‖A

)
be an arbitrary maximal Banach ideal. Let F be

an arbitrary Banach space, M ∈ FIN an arbitrary finite
dimensional space, N ∈ FIN(F′), T ∈ L(M,F′′), and ε > 0. If
there exist an operator S ∈ L(M,F) such that

(i) ‖S‖A ≤ (1 + ε)‖T‖A ,
(ii) 〈Sx, b〉 = 〈b,Tx〉 for all (x, b) ∈ M × N,

we say that the maximal Banach ideal
(
A , ‖·‖A

)
satisfies the

‖·‖A -weak principle of local reflexivity.

We know that the ‖·‖A -weak principle of local reflexivity already
implies that jFSx = Tx for all x ∈ M, satisfying Tx ∈ jF(F) (i. e.,
point (iii) above).
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S-LRP for maximal Banach ideals III

Theorem
Let

(
A , ‖·‖A

)
be an arbitrary maximal Banach ideal. TFAE:

• The ‖·‖A -weak principle of local reflexivity is satisfied;

•
(
A4 , ‖·‖A4

)
is left-accessible.

Let us recall the following - non-trivial - result from 1991:

Theorem
Let

(
A , ‖·‖A

)
be an arbitrary maximal Banach ideal. Then(

A4dd , ‖·‖A4dd

)
is accessible.

In fact, we have:

Theorem
Let

(
A , ‖·‖A

)
be an arbitrary maximal Banach ideal. Then(

A4 , ‖·‖A4
)

is accessible!
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Theorem
Let

(
A , ‖·‖A

)
be an arbitrary maximal Banach ideal. TFAE:

• The ‖·‖A -weak principle of local reflexivity is satisfied;

•
(
A4 , ‖·‖A4

)
is left-accessible.

Let us recall the following - non-trivial - result from 1991:

Theorem
Let

(
A , ‖·‖A

)
be an arbitrary maximal Banach ideal. Then(

A4dd , ‖·‖A4dd

)
is accessible.

In fact, we have:

Theorem
Let

(
A , ‖·‖A

)
be an arbitrary maximal Banach ideal. Then(

A4 , ‖·‖A4
)

is accessible!

51 / 58



S-LRP for maximal Banach ideals VII

Theorem (S-LRP for maximal Banach ideals)
Let

(
A , ‖·‖A

)
be an arbitrary maximal Banach ideal. Let F be

an arbitrary Banach space, M ∈ FIN an arbitrary finite
dimensional space, N ∈ FIN(F′), T ∈ L(M,F′′), and ε > 0. Then
there exists an operator S ∈ L(M,F) such that

(i) ‖S‖A ≤ (1 + ε)‖T‖A ;
(ii) 〈Sx, b〉 = 〈b,Tx〉 for all (x, b) ∈ M × N;
(iii) jFSx = Tx for all x ∈ M, satisfying Tx ∈ jF(F).

52 / 58



An approximation result

Let us conclude this presentation with the following non-trivial
application of the LRP for maximal Banach ideals:

Theorem
Let

(
A , ‖·‖A

)
be an arbitrary maximal Banach ideal. Let E and

F be Banach spaces. Suppose that one of the following
conditions is satisfied:

(i) E′ has MAP;
(ii) F has MAP;
(iii)

(
A∗4 , ‖·‖A∗4

)
is totally-accessible.

Then
Amin (E,F) = F A

∗4
(E,F)

1
↪→ A∗4 (E,F) ,

and ‖T‖A∗4 = ‖T‖Amin for every T ∈ F A
∗4

(E,F).
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• Suppose T ∈ N4 (E,F), where (E,F) are arbitrary Banach
spaces. Does T factor through a Banach space which has
the AP?

• Suppose T ∈ I4 (E,F), where (E,F) are arbitrary Banach
spaces. Does T factor through a Banach space which has
the BAP?

• Is the following isometric equality true:(
K ◦N4 , ‖·‖K ◦N4

) (?)
=
(
F , ‖·‖

) (?)
=
(
N4 ◦K , ‖·‖N4◦K

)
?

• Describe useful relations between
(
N4 dual, ‖·‖N4 dual

)
and(

I4 dual, ‖·‖I4 dual

)
!
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Thank you for your attention!

Are there any questions, comments or remarks?
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