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Simple Kermack-McKendrick SIR
Model I

The most “simple” deterministic epidemic model is built on the
following strongly simplifying assumptions:

(i) At any time point an individual in the population under
consideration is either susceptible (S), infected and
infectious (I) or recovered and immune (R).

(ii) The disease is transmitted by contact between an infected
and infectious individual and a susceptible individual. Only
susceptible individuals can get infected and, after having
been infectious for some time, an individual recovers and
becomes completely immune for the remainder of the
study period.

(iii) Throughout the whole study period the population under
consideration is fixed in size. There are no births, deaths,
immmigration or emigration during the whole study period.
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Simple Kermack-McKendrick SIR
Model I

(iv) There is no latency for the disease. The disease is
transmitted instantaneously upon contact.

(v) All susceptible individuals are equally susceptible and all
infected and infectious individuals are equally infectious.

“Individuals” can be human beings or animals or trees (; forest
fire) - but also non-biological entities, such as computers (;
computer viruses), or financial institutions (; infectious
defaults).
These assumptions reflect the situation for many diseases,
such as measles or influenza, and would seem to be
reasonable for computers whose anti-virus software has been
updated to recognise the virus.
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Simple Kermack-McKendrick SIR
Model II

Consider the evolution of an epidemic in a population of total
size N. The total population is divided into three classes
(“compartments”):

(S) the class of susceptibles, i. e. those individuals capable of
contracting the disease and becoming themselves
infectives;

(I) the class of infectives, i.e. the infected individuals capable
of transmitting the disease to susceptibles;

(R) the class of recovered individuals, i.e. those individuals
which, having contracted the disease, have recovered, and
hence cannot further transmit the disease.

An immediate implication of the assumptions is that individuals
can only make two moves: from S to I and from I to R. For this
reason the model is said to be an SIR epidemic model.
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Simple Kermack-McKendrick SIR
Model II

Moreover, in this model N = S + I + R does not change over
time (by assumption!).

The independent variable in the simple
SIR Model is the time t, and the rates of transfer between
compartments are mathematically expressed as derivatives
with respect to time of the numbers I and S (each one viewed
as a differentiable function of t). Hence, the simple SIR model is
given by a system of 2 coupled non-linear ODEs:

Ṡ :=
dS
dt

= f1(S, I) := −β S I

İ :=
dI
dt

= f2(S, I) := β S I − γ I = I (β S− γ) ,

where β, γ > 0 are positive constants, S(t) ≥ 0 and I(t) ≥ 0 for
all t ≥ 0.
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Simple Kermack-McKendrick SIR
Model II

β is called infection or transmission rate, and γ is known as
recovery rate.

By potentially substituting β through β N we may assume
WLOG that S + I + R = 1. These ODEs, together with the initial
conditions I(0) := I0 and S(0) := S0 := 1− I0 for some fixed
0 < I0 < 1 define the model.
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Simple Kermack-McKendrick SIR
Model III

In general, there is no analytic solution of this ODE system
available. To approximate the solution(s) of the ODE system we
have to rely on numerical methods (e. g., Runge-Kutta
methods).

Remark (Lotka-Volterra)
Coupled non-linear ODE systems of this type are very similar to
the Lotka-Volterra equations, also known as the predator-prey
equations, given by

Ṡ = α S− β S I = S (α− β I)

İ = γ S I − δ I = I (γ S− δ) ,

where α, β, γ, δ > 0 and S, I are defined on [0,∞).
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Deterministic generalisations of simple
SIR

Remark (Some deterministic generalisations of the simple
SIR model)
One can add an inflow of newborns into the class S of
susceptibles to the simple SIR model, at rate µN, and - the
births balancing - deaths in the classes at rates −µ S, −µ I,
−µR respectively, for some additional parameter µ > 0. These
models are known as classic endemic models.

Further slightly
more general deterministic models having no immunity
(individuals that recover become susceptible immediately) and
possibly including age structure and spatial diffusion are called
SIS-models (Susceptible - Infected - Susceptible). Models
having a latent state when infected, before becoming infectious,
are often called SEIR models (“E” stands for “exposed but not
infectious”). Models where immunity decreases after some time
are called SIRS models.
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The basic reproduction ratio

What can we already recognise from the structure of the ODE
system itself, without having to know any of its (approximate)
solutions?

Observation
Since Ṡ = −β S I on (0,∞) and S, I : [0,∞) −→ (0,∞) it follows
that Ṡ < 0 on (0,∞). Hence, in any case S is strictly decreasing
on (0,∞). Similarly, since İ = (β S − γ) I on (0,∞) it follows
that I is strictly increasing on the set
{t : t ≥ 0 and βS(t)− γ > 0}. Moreover, d

dt (S + I) = −γ I < 0 on
(0,∞), implying that - in any case - also the non-negative
function S + I is strictly decreasing on (0,∞).
This leads us to a key parameter in epidemiology:

Definition
R0 := β

γ > 0 is called basic reproduction ratio.
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Discussion on the role of R0 I
From ODE lectures we know that in the case of the SIR model
the following result holds:

Proposition
The initial value problem

İ = (β S(t)− γ) I, I(0) = I0 (I0 ∈ (0, 1])

has an uniquely determined positive solution on [0,∞). This
solution is given by

I(t) := I0 exp
(
β

∫ t

0
S(u) du

)
exp (−γ t) (t ≥ 0) .

Similarly, we can see that also S(t) > 0 for all t ≥ 0 (since S0 > 0
by assumption). Note that in general we don’t know whether
this unique solution I is bounded from above !
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Discussion on the role of R0 II

However, R0 = β
γ is the key ingredient here, since

Corollary
The following statements are equivalent:

(i) I(t) ≤ I0 for all t ≥ 0 (;“no large one-time outbreak of the
disease”).

(ii) S0 ≤ 1
R0

.
(iii) The function I is strictly decreasing on (0,∞) with limit

I∞ := lim
t→∞

I(t) = 0.

Proof.
(i)⇒ (ii) : Assume that I(t) ≤ I0 for all t ≥ 0. Then
exp

(
β
∫ t

0 S(u) du− γ t
)
≤ 1 for all t ≥ 0. Hence, 1

t

∫ t
0 S(u) du ≤ 1

R0

for all t ≥ 0. Consequently, S0 = S(0) = lim
t→0

1
t

∫ t
0 S(u) du ≤ 1

R0
.
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I∞ := lim
t→∞

I(t) = 0.

Proof.
(i)⇒ (ii) : Assume that I(t) ≤ I0 for all t ≥ 0. Then
exp

(
β
∫ t

0 S(u) du− γ t
)
≤ 1 for all t ≥ 0. Hence, 1

t

∫ t
0 S(u) du ≤ 1

R0

for all t ≥ 0. Consequently, S0 = S(0) = lim
t→0

1
t

∫ t
0 S(u) du ≤ 1

R0
.
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Discussion on the role of R0 II

Proof ctd.
(i)⇒ (iii) : Let S0 ≤ 1

R0
. Since Ṡ = −β I S on (0,∞) and both, I

and S are positive it follows that Ṡ < 0 on (0,∞), implying that S
is a strictly decreasing function on (0,∞). Hence,
S(t) < S(0) ≤ 1

R0
for all t > 0. In particular, β S− γ < 0 on [0,∞).

Consequently, İ = (β S− γ) I < 0 on (0,∞), implying that I is
strictly decreasing on (0,∞).

Since β S0 − γ < 0 (by
assumption) it follows that
exp

(
β
∫ t

0 S(u) du
)

exp (−γ t) ≤ exp (β S(0) t) exp (−γ t) = exp (−α t),
where α := − (β S0 − γ) > 0. Hence, I(t) decreases to 0 if
t→∞.
(iii)⇒ (i) : trivial.
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is a strictly decreasing function on (0,∞). Hence,
S(t) < S(0) ≤ 1

R0
for all t > 0. In particular, β S− γ < 0 on [0,∞).
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Discussion on the role of R0 III

Observation (Shape of the function I if R0 > 1)
Let R0 > 1 and 0 < t∗ such that S(t∗) = 1

R0
. Then I is strictly

increasing on (0, t∗). I attains its single maximum at t∗. I is
strictly decreasing on (t∗,∞).

Proof.
Elementary differentiation and a bit of elementary algebra
induced by the structure of the SIR ODE system shows us that
İ(t) = 0 if and only if t = t∗ and

Ï X
= I (βS− γ)2 − β2 I2 S− γI

on (0,∞). Consequently, at t∗ I attains its single (and hence
global) maximum.
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Discussion on the role of R0 III

Proof ctd.
Let 0 < t < t∗. Then 1

R0
= S(t∗) < S(t), implying that in fact I is

strictly increasing on (0, t∗). Now let t∗ < t. Then
S(t) < S(t∗) = 1

R0
. Hence, I is strictly decreasing on (t∗,∞).
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Shape of the functions S, I and R in the
case R0 > 1

Here, N := 500 and S, I,R : [0,∞) −→ (0,N] (not the
percentages!).
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Discussion on the role of R0 IV

Even if the basic reproduction ratio R0 is not known to us the
number of susceptibles today (i.e., S0) and the percentage of
remaining susceptibles S∞ := lim

t→∞
S(t) ≤ 1 when the epidemic

is over already allows us to retrieve R0 at least if S0 ≤ 1
R0

, since:

Proposition
Let S0 ≤ 1

R0
and S(0) + I(0) = 1. Then

ln
(

S0

S∞

)
= R0 (1− S∞) .
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Discussion on the role of R0 IV

Proof.
Since Ṡ(t) = −β S(t)I(t) for all t ∈ (0,∞) and S(0) = S0 = 1− I0
we have

S(t) = S0 exp
(
−β

∫ t

0
I(u) du

)
(t ≥ 0) .

Hence,

S(t)
(!)
= S0 exp

(
R0

∫ t

0
(−γI(u)) du

)

= S0 exp (R0 (I(t) + S(t)− 1)) (why?) .
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Discussion on the role of R0 IV

Proof ctd.
Equivalently written:

ln
(

S(0)

S(t)

)
= R0 (1− S(t)− I(t)) .

Now we take limits on both sides of the latter equation (as
t→∞). Since S0 ≤ 1

R0
by assumption we know that

I∞ = lim
t→∞

I(t) = 0 - and the claim follows.
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1 Revisiting Deterministic Epidemic Models

2 Catching a Glimpse of Stochastic Epidemic Models
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A glimpse of the continuous time
Markov chain SIR model I

View the class of susceptibles, respectively the class of infected
as stochastic random variables, changing randomly in time.

Think e.g. at nodes in a random graph which change colour
according to their state. A bit more formally, fix an arbitrary
probability space (Ω,F ,P) and consider the mappings
Ω× [0,∞) 3 (ω, t) 7→ St(ω), respectively
Ω× [0,∞) 3 (ω, t) 7→ It(ω), where
It(ω), St(ω) ∈ S := {0, 1, 2, . . . ,N} for all ω ∈ Ω and t ∈ [0,∞).
In addition, given the current state of the S× S-valued process
(St, It)t≥0 at time t, we assume that the future state of this
process at time t + ∆t, for any ∆t > 0, does not depend on
times prior to t (known as Markov property). “The stochastic
system has no memory!”

22 / 30



 

A glimpse of the continuous time
Markov chain SIR model I

View the class of susceptibles, respectively the class of infected
as stochastic random variables, changing randomly in time.
Think e.g. at nodes in a random graph which change colour
according to their state.

A bit more formally, fix an arbitrary
probability space (Ω,F ,P) and consider the mappings
Ω× [0,∞) 3 (ω, t) 7→ St(ω), respectively
Ω× [0,∞) 3 (ω, t) 7→ It(ω), where
It(ω), St(ω) ∈ S := {0, 1, 2, . . . ,N} for all ω ∈ Ω and t ∈ [0,∞).
In addition, given the current state of the S× S-valued process
(St, It)t≥0 at time t, we assume that the future state of this
process at time t + ∆t, for any ∆t > 0, does not depend on
times prior to t (known as Markov property). “The stochastic
system has no memory!”

22 / 30



 

A glimpse of the continuous time
Markov chain SIR model I

View the class of susceptibles, respectively the class of infected
as stochastic random variables, changing randomly in time.
Think e.g. at nodes in a random graph which change colour
according to their state. A bit more formally, fix an arbitrary
probability space (Ω,F ,P) and consider the mappings
Ω× [0,∞) 3 (ω, t) 7→ St(ω), respectively
Ω× [0,∞) 3 (ω, t) 7→ It(ω), where
It(ω), St(ω) ∈ S := {0, 1, 2, . . . ,N} for all ω ∈ Ω and t ∈ [0,∞).

In addition, given the current state of the S× S-valued process
(St, It)t≥0 at time t, we assume that the future state of this
process at time t + ∆t, for any ∆t > 0, does not depend on
times prior to t (known as Markov property). “The stochastic
system has no memory!”

22 / 30



 

A glimpse of the continuous time
Markov chain SIR model I

View the class of susceptibles, respectively the class of infected
as stochastic random variables, changing randomly in time.
Think e.g. at nodes in a random graph which change colour
according to their state. A bit more formally, fix an arbitrary
probability space (Ω,F ,P) and consider the mappings
Ω× [0,∞) 3 (ω, t) 7→ St(ω), respectively
Ω× [0,∞) 3 (ω, t) 7→ It(ω), where
It(ω), St(ω) ∈ S := {0, 1, 2, . . . ,N} for all ω ∈ Ω and t ∈ [0,∞).
In addition, given the current state of the S× S-valued process
(St, It)t≥0 at time t, we assume that the future state of this
process at time t + ∆t, for any ∆t > 0, does not depend on
times prior to t (known as Markov property).

“The stochastic
system has no memory!”

22 / 30



 

A glimpse of the continuous time
Markov chain SIR model I

View the class of susceptibles, respectively the class of infected
as stochastic random variables, changing randomly in time.
Think e.g. at nodes in a random graph which change colour
according to their state. A bit more formally, fix an arbitrary
probability space (Ω,F ,P) and consider the mappings
Ω× [0,∞) 3 (ω, t) 7→ St(ω), respectively
Ω× [0,∞) 3 (ω, t) 7→ It(ω), where
It(ω), St(ω) ∈ S := {0, 1, 2, . . . ,N} for all ω ∈ Ω and t ∈ [0,∞).
In addition, given the current state of the S× S-valued process
(St, It)t≥0 at time t, we assume that the future state of this
process at time t + ∆t, for any ∆t > 0, does not depend on
times prior to t (known as Markov property). “The stochastic
system has no memory!”

22 / 30



 

A glimpse of the continuous time
Markov chain SIR model II

Let s, i, k, j ∈ S and t ∈ [0,∞). Then the associated
time-homogeneous transition probabilities

p(s,i),(s+k,i+j) (∆t) := P
(
(St+∆t, It+∆t) = (s + k, i + j)

∣∣ (St, It) = (s, i)
)

are modelled as

p(s,i),(s+k,i+j) (∆t) :=


βs i ∆t + o(∆t) if (k, j) = (−1, 1)

γi ∆t + o(∆t) if (k, j) = (0,−1)

1− (βs i− γi) ∆t + o(∆t) if (k, j) = (0, 0)

o(∆t) else

Unfolding the powerful machinery of Chapman-Kolmogorov
equations, respectively time-homogeneous Markov semigroups
one can then start to calculate transition probabilities and
derived probabilities (think at multiple life insurance
mathematics...).
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A glimpse of the SDE SIR model of
Allen I

Coupled SDE SIR Model of Allen
Let β > 0, γ > 0 and W(1) and W(2) be two independent
standard Brownian motions.

dSt = −β St It dt −
√
β St It dW(1)

t

dIt = (β St It − γ It) dt +
√
β St It dW(1)

t −
√
γ It dW(2)

t .

Moreover, the initial conditions are given by I(0) := I0,
S(0) := S0 := 1− I0, 0 < I0 < 1 (as in the simple deterministic
case).
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A glimpse of the SDE SIR model of
Allen II

One equivalent formulation of the SDE SIR model of Allen is
the following one:

Coupled SDE SIR Model of Allen in Vector Notation
Let β > 0, γ > 0 and W(1) and W(2) be two independent
standard Brownian motions.

d
(

S
I

)
=

(
−β I 0
β I −γ

)(
S
I

)
dt +

(
−
√
β S I 0√
β S I −

√
γ I

)
d
(

W(1)

W(2)

)

Moreover, the initial conditions are given by
(

S(0)
I(0)

)
:=

(
S0
I0

)
,

where S0 := 1− I0, 0 < I0 < 1 (as in the simple deterministic
case).
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A glimpse of the SDE SIR model of
Allen III

Problem
Is the SDE SIR model of Allen well-defined ? To answer this
non-trivial question we need the whole machinery of
(multidimensional) Itô calculus including theory and application
of the (vector-valued stochastic) Itô integral ! Actually, SDEs are
stochastic integral equations. Brownian motion paths are
nowhere differentiable with probability 1!

Do data reflect
whether this model is useful in practice? Why are two
independent standard Brownian motions used? What about the
possibility of Poisson jumps? Are the solution processes S and
I still semimartingales?
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Thank you for your attention!

Are there any questions, comments or remarks?
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