Dynamic Valuation and Hedging of Counterparty Credit Exposure

S. Assefa*, T.R. Bielecki[†], S. Crépey^{*}, M. Jeanblanc^{*} and B. Zargari^{*}

*Université d'Évry Val-d'Essonne and CRIS Consortium [†]Illinois Institute of Technology

Asymptotic Statistics, Risk and Computation in Finance and Insurance CREST and Sakigake International Symposium 14th-18th December 2010 Tokyo Institute of Technology University-Ookayama Campus

This research benefited from the support of the 'Chaire Risque de crédit', Fédération Bancaire Françaises A = A = A = B = E

SQ (V

Markovian Copula Model and Common Shocks Copula Interpretation Counterparty Credit Risk Valuation in the Markovian Copula Mode Hedging the CCR-CVA in the Markovian Copula Model Conclusion

Outline

Counterparty Risk

Counterparty Credit Risk

2 Markovian Copula Model and Common Shocks Copula Interpretation

Counterparty Credit Risk

Counterparty Credit Risk Valuation in the Markovian Copula Model

- Case of one CDS
- Case of a Portfolio of CDSs
- Case of a CDO Tranche

4 Hedging the CCR-CVA in the Markovian Copula Model

◆□▶ ◆□▶ ◆□▶ ◆□▶

₽.

Markovian Copula Model and Common Shocks Copula Interpretatic Counterparty Credit Risk Valuation in the Markovian Copula Mode Hedging the CCR-CVA in the Markovian Copula Model Conclusion

Counterparty Credit Risk

Basic Concept

Risk that some value is lost by a party in OTC derivatives contracts due to the default of the other party [Canabarro and Duffie 03, Brigo et al. *]

- Early termination of a contract with positive value at time of default of the other party
 - Cum-dividend value, including promised payment not paid at default time

The primary form of (credit) risk – vulnerability Very significant during the crisis An important dynamic modeling issue/challenge, particularly in connection with credit derivatives

- Pricing at any future time
- Defaults dependence modeling
 - Wrong way risk

《口》 《圖》 《臣》 《臣》

₽.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Markovian Copula Model and Common Shocks Copula Interpretati Counterparty Credit Risk Valuation in the Markovian Copula Mode Hedging the CCR-CVA in the Markovian Copula Model Conclusion

General Set-Up

Counterparty Credit Risk

 $(\Omega, \mathbb{F}, \mathbb{P}), \mathbb{F} = (\mathcal{F}_t)_{t \in [0, \mathcal{T}]}$ risk-neutral pricing model (with r = 0 for notational simplicity, except in the numerical part)

- \mathbb{E}_t Conditional expectation under \mathbb{P} given \mathcal{F}_t
- τ_{-1} and τ_0 Default times of the two parties, referred to henceforth as the investor, labeled -1, and its counterparty, labeled 0
 - $[0, +\infty]$ -valued \mathbb{F} -stopping times
 - Bilateral counterparty risk ↔ counterparty risk on both sides is considered ↔ τ₋₁ < +∞, τ₀ < +∞
 - Whenever it makes sense: Lehman selling protection on itself??
 - Unilateral counterparty risk $\leftrightarrow \tau_{-1} = +\infty$
- R_{-1} and R_0 Recovery rates, given as $\mathcal{F}_{\tau_{-1}}$ and \mathcal{F}_{τ_0} measurable [0, 1]-valued random variables
 - $\tau \tau_{-1} \wedge \tau_0$, with related default and non-default indicator processes denoted by H and J, so $H_t = \mathbb{1}_{\tau < t}$ and J = 1 H.
 - No actual cash flow after τ

All cash flows and prices considered from the perspective of the investor $p_{\text{abs}} = -22$

Markovian Copula Model and Common Shocks Copula Interpretati Counterparty Credit Risk Valuation in the Markovian Copula Mode Hedging the CCR-CVA in the Markovian Copula Model Conclusion

Cash Flows

Counterparty Credit Risk

General case reduced to that of a

Fully netted and collateralized portfolio

- Δ Counterparty risky cumulative cash flows
- **D** Counterparty clean cumulative cash flows

$$\Delta = JD + HD_{\tau-} + H\Gamma_{\tau} + (R_0\chi^+ - \chi^-)[H, H^0] - (R_{-1}\chi^- - \chi^+)[H, H^{-1}] - \chi[[H, H^0], H^{-1}]$$

 $\Gamma_{\tau} \text{ Value of the collateral (or margin account) at time } \tau$ $\chi = P_{\tau} + (D_{\tau} - D_{\tau-}) - \Gamma_{\tau} \text{ Algebraic 'debt' of the counterparty to the investor at time } \tau$ $P_{\tau} \text{ 'Fair (ex-dividend) value' of the portfolio at } \tau$

$$D_{ au} - D_{ au-}$$
 Promised cash flow at au

Markovian Copula Model and Common Shocks Copula Interpretatic Counterparty Credit Risk Valuation in the Markovian Copula Mode Hedging the CCR-CVA in the Markovian Copula Model Conclusion

Counterparty Credit Risk

Representation Formula I

 $\Pi_t := \mathbb{E}_t \left[\Delta_T - \Delta_t \right] \text{ Counterparty Risky Value of the portfolio}$ $P_t := \mathbb{E}_t \left[D_T - D_t \right] \text{ Counterparty Clean Value of the portfolio}$

Market 'Legal Value' standard $P_{\tau} = P_{\tau}$ assumed for simplicity

CVA (Credit Valuation Adjustment)

$$CVA_t := J_t(P_t - \Pi_t)$$

can be represented as

$$\mathsf{CVA}_t = J_t \mathbb{E}_t[\xi] ,$$

where the \mathcal{F}_{τ} -measurable Potential Future Exposure at Default (PFED) ξ is given by

$$\xi = (1 - R_0) \mathbb{1}_{\tau = \tau_0} \chi^+ - (1 - R_{-1}) \mathbb{1}_{\tau = \tau_{-1}} \chi^- = \xi^+ - \xi^-$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

3

Markovian Copula Model and Common Shocks Copula Interpretatic Counterparty Credit Risk Valuation in the Markovian Copula Mode Hedging the CCR-CVA in the Markovian Copula Model Conclusion

Counterparty Credit Risk

Proof

Let $D^* = JD + HD_{\tau-}$ denote the dividend process corresponding to the cash flows of D 'stopped at $\tau-$ '. One has,

$$J_t \mathbb{E}_{\tau} \int_t^T \left(dD_s - dD_s^* \right) = J_t \mathbb{E}_{\tau} \int_{[\tau, T]} dD_s$$
$$= J_t \left(P_{\tau} + D_{\tau} - D_{\tau-} \right) = J_t \left(\chi + \Gamma_{\tau} \right)$$

So, taking conditional expectation given \mathcal{F}_t ,

$$J_t \mathbb{E}_t \left\{ \int_t^T \left(dD_s - dD_s^* \right) - \Gamma_\tau \right\} = J_t \mathbb{E}_t \chi \ .$$

Thus

$$\begin{aligned} J_t(P_t - \Pi_t) \\ &= J_t \mathbb{E}_t \chi - J_t \mathbb{E}_t \left\{ \mathbb{1}_{\tau = \tau_0} (R_0 \chi^+ - \chi^-) - \mathbb{1}_{\tau = \tau_{-1}} (R_{-1} \chi^- - \chi^+) - \mathbb{1}_{\tau_0 = \tau_{-1}} \chi \right] \\ &= J_t \mathbb{E}_t [\xi] . \end{aligned}$$

《口》《圖》《臣》《臣》 [][]

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Markovian Copula Model and Common Shocks Copula Interpretati Counterparty Credit Risk Valuation in the Markovian Copula Mode Hedging the CCR-CVA in the Markovian Copula Model Conclusion

Representation Formula II

Expected Exposures (EPEs) and CVA

$$egin{aligned} \mathsf{EVA}_{\mathbf{0}} &= \int_{\mathbf{0}}^{\mathcal{T}} \mathsf{EPE}_{+}(s) \mathbb{P}(au_{\mathbf{0}} \in \mathit{ds}, \ au_{-\mathbf{1}} \geq s) \ &- \int_{\mathbf{0}}^{\mathcal{T}} \mathsf{EPE}_{-}(s) \mathbb{P}(au_{-\mathbf{1}} \in \mathit{ds}, \ au_{\mathbf{0}} \geq s) \end{aligned}$$

where the Expected Positive Exposures EPE_{\pm} , also known as the Asset Charge and the Liability Benefit, respectively, are the functions of time defined by, for $t \in [0, T]$,

$$\begin{split} \mathsf{EPE}_{+}(t) &= \mathbb{E}\left[(1-R_{0})\chi^{+} | \tau_{0} = t \leq \tau_{-1}\right], \\ \mathsf{EPE}_{-}(t) &= \mathbb{E}\left[(1-R_{-1})\chi^{-} | \tau_{-1} = t \leq \tau_{0}\right]. \end{split}$$

Remark

Need of a dynamic, tractable model for P_t , Γ_t

Counterparty Credit Risk

Markovian Copula Model and Common Shocks Copula Interpretatic Counterparty Credit Risk Valuation in the Markovian Copula Mode Hedging the CCR-CVA in the Markovian Copula Model Conclusion

Counterparty Credit Risk

▲□▶ ▲□▶ ▲□▶ ▲□▶

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Collateral Formation Qualification

Remark

For simplicity we only use in this presentation highly stylized models for the collateral process. We refer to the paper for such aspects of the collateral formation as

- margin call frequency + margin cure period = margin period of risk,
- collateral thresholds,
- minimum transfer amounts,
- haircut provisions.

Markovian Copula Model and Common Shocks Copula Interpretatio Counterparty Credit Risk Valuation in the Markovian Copula Mode Hedging the CCR-CVA in the Markovian Copula Model Conclusion

Counterparty Credit Risk

Counterparty Credit Risk

A crucial issue in connection with valuation and risk management of credit derivatives in the crisis

Wrong Way Risk [Redon 06]

Cycle and contagion effects \rightarrow Time of default of a counterparty selling credit protection typically given as a moment of high value of credit protection

'Joint Defaults Component' of the PFED hardly collateralizable

 \rightarrow Need of a dynamic but tractable model of defaults' dependence

More Set-Up

- $\mathbb{N}_n \{-1,0,\ldots,n\}$
- τ_i 's Default times (stopping times) of the investor, its counterparty and *n* credit names underlying a portfolio of credit derivatives

 H^{i} 's Default indicator processes, so $H^{i}_{t} = \mathbb{1}_{\tau_{i} \leq t}$

 R_i 's Recovery rates, assumed to be constant for simplicity (= 0 here for notational simplicity, except in the numerics)

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Outline

• Counterparty Credit Risk

2 Markovian Copula Model and Common Shocks Copula Interpretation

3 Counterparty Credit Risk Valuation in the Markovian Copula Model

- Case of one CDS
- Case of a Portfolio of CDSs
- Case of a CDO Tranche

4 Hedging the CCR-CVA in the Markovian Copula Model

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ →

₽.

Common Shocks Copula [Elouerkhaoui 07, Brigo et al. 07]

Let $\mathcal{I} = \{I_1, \dots, I_m\}$ denote a bunch of pre-specified subsets of \mathbb{N}_n Sets of obligors susceptible to default simultaneously Set $Y = \mathbb{N}_n \cup \mathcal{I}$ Define, for $i \in Y$, an intensity function $\lambda_i(t)$, and $\widehat{\tau}_i = \inf\{t > 0; \int_0^t \lambda_i(s) ds \ge E_i\}$,

for IID exponential random variables E_i s One then sets, for every $i \in \mathbb{N}_n$

$$\widetilde{\tau}_i = \widehat{\tau}_i \wedge \bigwedge_{I \in \mathcal{I}; I \ni i} \widehat{\tau}_I$$

Immediate extension to stochastic intensities $\lambda_i(t, X_t)$, for $i \in \mathbb{N}_n$, for a factor Markov process $X = (X^i)_{i \in \mathbb{N}_n}$ independent of the E_i s.

◆□▶ ◆□▶ ◆□▶ ◆□▶ =

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Markovian Copula model

$$X = (X^i)_{i \in \mathbb{N}_n}, H = (H^i)_{i \in \mathbb{N}_n}$$

Main Properties

(i) The pair (X, H) is a Markov process. (ii) For $i \in \mathbb{N}_n$, the pair (X^i, H^i) is a Markov process

• No direct contagion effects

(iii) Common shocks copula interpretation $(\tau_i)_{i \in \mathbb{N}_n} \stackrel{(I)}{=} (\tilde{\tau}_i)_{i \in \mathbb{N}_n}$ also available conditionally on any given state of the Markovian Copula model

• Defaults dependence and Wrong way risk via Joint Defaults

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ─ 豆

 $\mathcal{A} \mathcal{A} \mathcal{A}$

A Tractable Model of Counterparty Credit Risk

- Semi-explicit pricing formulas for (clean) single-name credit derivatives like individual CDSs (assuming, say, affine processes Xⁱs) at any time t,
- Fast recursive convolution pricing schemes for (clean) portfolio loss credit derivatives like CDO tranches at any time *t*,
- Independent calibration of the model marginals and dependence structure
- Model simulation very fast
- Consistent dynamic hedging (though market incompleteness)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ─

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

◆□▶ ◆□▶ ◆□▶ ◆□▶

590

Outline

• Counterparty Credit Risk

2 Markovian Copula Model and Common Shocks Copula Interpretation

3 Counterparty Credit Risk Valuation in the Markovian Copula Model

- Case of one CDS
- Case of a Portfolio of CDSs
- Case of a CDO Tranche

4 Hedging the CCR-CVA in the Markovian Copula Model

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

3

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Unilateral CCR on a Payer CDS

'AIG selling protection on LEH to You'

Investor Buyer of default protection on a firm ('You') Counterparty Seller of default protection on the firm ('AIG')

Firm Reference credit underlying the CDS ('LEH')

 $\tau_{-1} = +\infty, \ \tau = \tau_0, \ n = 1$

[Huge and Lando 99, Hull and White 01, Jarrow and Yu 01, Leung and Kwok 05, Brigo and Chourdakis 08, Brigo and Capponi 08, Blanchet-Scalliet and Patras 08, Lipton and Sepp 09]

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

《曰》《卽》《言》《言》

 $\mathcal{A} \mathcal{A} \mathcal{A}$

PFED (no margining)

$$\xi = (1 - R_0) \Big(\mathbb{1}_{\tau < \tau_1 \land \tau} P_{\tau}^+ + \mathbb{1}_{\tau = \tau_1 < \tau} (1 - R_1) \Big)$$

- $\ensuremath{\textit{P}}$ Clean Price of the CDS
- T Maturity of the CDS
- R_1 Recovery rate on the underlying firm

Assessing the impact on the counterparty risk of the investor of

- the (clean) CDS spread $\kappa_0(=\kappa_2)$ of the counterparty
- \bullet the asset correlation ρ between the underlying firm and the counterparty

Limited impact of the factor process

Deterministic intensities below (affine in time)

• Explicit EPE and CVA formulas

EPE(t)

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

王

590

Left: ho = 10%, Right: ho = 70%

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

◆□▶ ◆□▶ ◆三▶ ◆三▶

王

590

CVA

Left: CVA(t) (ρ =40%), Right: CVA(0) as a function of ρ

atic Case of one CDS de Case of a Portfolio of CDSs Case of a CDO Tranche

Stochastic Intensities

CPU times in seconds for deterministic, two-factor and three-factor CIR specifications of the intensities

	0F	2F	3F
Calibration	0.01	0.30	0.35
EPE(t)	0.015	5.1	12
CVA(0)	0.015	5.0	12

《曰》《圖》《臣》《臣》

王

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

▲□▶ ▲圖▶ ▲国▶ ▲国▶

王

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

CVA_0 versus ν for a CDS on a low risk reference entity in the case **2F**.

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

Bilateral CCR on a Payer CDS

$$au_{-1} \lor au_0 < +\infty, \ n=1$$

Proposition

For a counterparty risky payer CDS, one has,

$$\xi = (1 - R_0) \mathbb{1}_{\tau = \tau_0} \left(P_{\tau} + \mathbb{1}_{\tau_1 = \tau < \tau} (1 - R_1) - \Gamma_{\tau} \right)^+ - (1 - R_{-1}) \mathbb{1}_{\tau = \tau_{-1}} \left(P_{\tau} + \mathbb{1}_{\tau_1 = \tau < \tau} (1 - R_1) - \Gamma_{\tau} \right)^-$$

So, in case of no collateralization ($\Gamma = 0$), $\xi = (1 - R_0) \mathbb{1}_{\tau = \tau_0} \left(P_{\tau}^+ + \mathbb{1}_{\tau_1 = \tau < \tau} (1 - R_1) \right) - (1 - R_{-1}) \mathbb{1}_{\tau = \tau_{-1}} P_{\tau}^-$,

and in the case of extreme collateralization ($\Gamma_{\tau} = P_{\tau-}$),

$$\xi = (1-R_0) \mathbb{1}_{\tau=\tau_0=\tau_1 < \tau} (1-R_1-P_{\tau-})^+ -(1-R_{-1}) \mathbb{1}_{\tau=\tau_{-1}=\tau_1 \leq \tau} (1-R_1-P_{\tau-})^-$$

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

Bilateral CCR on a Payer CDS: Numerics (CIR Intensities)

Scenario: an investor with a very low risk profile, a counterparty which has middle credit risk profile and a reference name with high risk profile.

CVA in basis points for the case $\sigma_{-1}^{\prime} = \sigma_0^m = 0.01$

$(\alpha_{l_1}, \alpha_{l_2})$	$\sigma_{1}^{h} = 0.01$	$\sigma_1^h = 0.20$
(0,0)	1.4 (0.1)	4.5 (0.1)
(0.1,0)	28 (0.7)	29 (0.6)
(0.2,0)	55 (0.9)	55 (0.9))
(0.3,0)	82 (1.1)	82 (1.1)
(0.4,0)	110 (1.3)	109 (1.3)
(0.5,0)	138 (1.5)	136 (1.4)
(0.6,0)	166 (1.6)	164 (1.6)
(0.7,0)	195 (1.7)	191 (1.7)
(0.8,0)	224 (1.8)	220 (1.8)
(0.9,0)	253 (1.9)	248 (1.8)
(1.0,0)	281 (2.0)	276 (2.0)

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

▲□▶ ▲□▶ ▲□▶ ▲□▶

 $\mathcal{A} \mathcal{A} \mathcal{A}$

CDS Portfolio Unilateral CCR

Proposition

For a portfolio of CDS with unilateral CCR, one has,

$$\xi = (1 - R) \Big(P_{\tau} + \big(\sum_{i \text{ pay}} - \sum_{i \text{ rec}} \big) \mathbb{1}_{\tau_i = \tau < \tau_i} (1 - R_i) - \Gamma_{\tau} \Big)^+ ,$$

with $\Gamma = 0$ in the no collateralization case and $\Gamma_{\tau} = P_{\tau-}^+$ in the unilateral extreme collateralization case.

- Portfolio of 70 payer and 30 receiver CDSs
- Individual intensities of the form $a_i + X^i$ where a_i is a constant and X^i is a CIR process.
- Three homogenous groups of obligors
- Three nested groups of joint defaults

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

▲□▶ ▲□▶ ▲□▶ ▲□▶ →

÷.

590

Counterparty	κ_0	CVA No Nett.	CVA Nett.	CVA Nett.	
risk type		No Marg.	No Marg.	with Marg.	
low	10	488.4 (7.0)	262.1 (3.8)	256.7 (3.8)	
low	20	808.4 (8.9)	433.9 (4.9)	423.0 (4.8)	
low	60	834.2 (8.9)	448.5 (4.8)	415.9 (4.8)	
low	100	860.4 (8.8)	463.2 (4.8)	409.8 (4.8)	
middle	120	5440.2 (21.4)	4338.1 (17.2)	4256.6 (17.1)	
middle	300	5364.1 (21.0)	4243.1 (16.9)	4076.8 (16.8)	
high	400	8749.9 (22.1)	7211.3 (18.1)	6943.0 (18.0)	
high	500	8543.5 (21.8)	7017.9 (17.8)	6713.8 (17.7)	

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

▲ロト ▲圖ト ▲国ト ▲国ト

王

590

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

王

590

EPE(t) for portfolio – Netting, No Margining

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶

王

590

EPE(t) for portfolio – Netting and Margining

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathcal{A} \mathcal{A} \mathcal{A}$

CCR of a Payer CDO

Investor or credit name -1 (default free) Buyer of default protection on the default of firms $\{1, \ldots, m\}$ via tranche(s) of a synthetic CDO e.g. iTraxx Europe

Counterparty or credit name 0 Seller of default protection on the firms $\{1, \ldots, n\}$ via tranche(s) of a synthetic CDO e.g. iTraxx Europe

Unilateral CCR $\tau_{-1} = \infty$, $\tau = \tau_0 < +\infty$, n = 125

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 $\mathcal{A} \mathcal{A} \mathcal{A}$

$\mathsf{CVA}_0 = \mathbb{E}\chi_{ au}^+$ where $\chi_{ au} = P_{ au} + (D_{ au} - D_{ au^-}) - \Gamma_{ au}$

- P_{τ} is the CDO tranche clean price at τ which is available through the conditional common shocks copula interpretation of the Markovian copula model
- $D_{\tau} D_{\tau-}$ is the CDO tranche promised cash flow at τ_0 which is the default payment due to the joint default of the counterparty and a subset of the names $\{1, 2, \ldots, n\}$
- Let collateral $\Gamma_{\tau} = 0$

→ Exact CVA Monte Carlo Valuation Scheme

• Up to the MC statistical error

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

<ロト (四) (三) (三) (三) (三)

 $\mathcal{A} \mathcal{A} \mathcal{A}$

$\mathsf{CVA}_0 = \mathbb{E}\chi_{ au}^+$ where $\chi_{ au} = P_{ au} + (D_{ au} - D_{ au^-}) - \Gamma_{ au}$

- P_{τ} is the CDO tranche clean price at τ which is available through the conditional common shocks copula interpretation of the Markovian copula model
- $D_{\tau} D_{\tau-}$ is the CDO tranche promised cash flow at τ_0 which is the default payment due to the joint default of the counterparty and a subset of the names $\{1, 2, \ldots, n\}$
- Let collateral $\Gamma_{\tau} = 0$
- \rightarrow Exact CVA Monte Carlo Valuation Scheme
 - Up to the MC statistical error

Case of one CDS Case of a Portfolio of CDSs Case of a CDO Tranche

CVA of CDO with joint default and no joint default

CDS ⁰	Tranches					
(bp)	1	2	3	4	5	6
1	2.441	0.051	0.027	800.0	0.004	0.059
	(0.547)	(0.011)	(0.007)	(0.003)	(0.001)	(0.012)
10	27.092	0.656	0.276	0.0898	0.0975	0.752
	(1.816)	(0.0412)	(0.0223)	(0.0112)	(0.0194)	(0.0428)
100	279.871	6.389	2.863	0.772	1.024	8.4116
	(5.773)	(0.125)	(0.0732)	(0.0327)	(0.0771)	(0.4056)
	279.86	6.338	2.803	0.712	0.792	7.086
	(5.773)	(0.124)	(0.0708)	(0.0266)	(0.0378)	(0.127)
1000	2073.953	55.147	34.855	18.739	15.206	106.662
	(13.635)	(0.3818)	(0.342)	(0.2945)	(0.318)	(1.201)
	2064.147	36.932	19.26	7.933	9.968	46.487
	(13.652)	(0.261)	(0.187)	(0.1309)	(0.178)	(0.392)

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ ─ 臣

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

Outline

• Counterparty Credit Risk

2 Markovian Copula Model and Common Shocks Copula Interpretation

3 Counterparty Credit Risk Valuation in the Markovian Copula Model

- Case of one CDS
- Case of a Portfolio of CDSs
- Case of a CDO Tranche

4 Hedging the CCR-CVA in the Markovian Copula Model

◆□▶ ◆□▶ ◆□▶ ◆□▶

₽.

Hedging the CCR-CVA by a CDS on the counterparty

• Unilateral counterparty credit risk

•
$$\xi = \chi^+$$

- Rolling CDS on the counterparty used as a hedging instrument
 - Wealth of a self-financing trading strategy in market CDSs on the counterparty
 - Much like with futures contracts
 - Value Q = 0
 - Yet due to the trading gains ('dividends') of the strategy the related cumulative value process $\widehat{Q} \neq 0$

《曰》《卽》《臣》《臣》 [][]

 $\mathcal{A} \mathcal{A} \mathcal{A}$

- Riskless (constant) asset used for making the hedging strategy self-financed
- Min-variance hedging the counterparty jump-to-default component of the delta-hedged P&L

 ζ_t Number of rolling CDS held in the hedging strategy at time t

So
$$P\&L_0^{\zeta} = 0$$
 and, for $t \in [0, T]$,
 $dP\&L_t^{\zeta} = dCVA_t - \zeta_t d\widehat{Q}_t$

Theorem

The strategy which minimizes the risk-neutral variance of the counterparty jump-to-default risk component of process $P\&L^{\zeta}$, is given by, for $t \leq \tau$ (and $\zeta^{jd} = 0$ on $(\tau, T]$) $\zeta_t^{jd} = EPE_t - CVA_{t-1}$

where the Expected Positive Exposure is defined by

$$EPE_t = \mathbb{E}(\xi \mid \mathcal{F}_{\tau-}) \mid_{\tau=t}$$

- Rigorous connection between the CCR 'price' CVA and its 'delta' EPE
- Related notions of EPEs used in an ad-hoc way by practitioners for hedging CVA, but
 - Dynamic min-variance hedging strategy here, as opposed to hypothetical static replication strategies based on the unilateral CVA Representation Formula II

$$\mathsf{CVA}_0 = \int_0^{\tau} \mathsf{EPE}(s) \mathbb{P}(\tau \in ds) \text{ with } \mathsf{EPE}(t) = \mathbb{E}\left[\xi | \tau = t\right]$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

 $\mathcal{A} \mathcal{A} \mathcal{A}$

• Process $\mathsf{EPE}_t = \mathbb{E}(\xi | \mathcal{F}_{\tau-}) |_{\tau=t} \neq \mathsf{Function} \; \mathsf{EPE}(t) = \mathbb{E}(\xi | \tau = t)$

- ζ^{jd} changes the counterparty jump-to-default exposure from ξ to $EPE_{\tau} = \mathbb{E}(\xi | \mathcal{F}_{\tau-})$, the 'best guess' of ξ available right before τ
- Issue of hedging bilateral counterparty risk more involved
 - Using hedging instruments sensitive to the default times of the counterparty and the investor

To Sum-up

• Simplicity and Consistency of a 'dynamized copula' set-up

- Fast single-name and static basket credit derivatives pricing schemes
- Decoupled Calibration Methodology
 - Automatically calibrated marginals
 - Model dependence parameters calibrated independently
- Model simulation very fast
- Adequation of the model's CVA and EPE with stylized features
- Dynamic Consistency between price (CVA) and hedging (EPE revisited)

◆□▶ ◆□▶ ◆□▶ ◆□▶ →

₽.

 $\mathcal{A} \mathcal{A} \mathcal{A}$

Perspectives

Assessing systematically the impact of

- Netting
- Collateralization
 - Dealing with the issue of optimal collateralization as a control problem
- Factors

Facing the simulation computational challenge of CCR on real-life porfolios with tens of thousands of contracts

- More intensive than (Credit-)VaR or other risk measure computations
 - Value the portfolio at every time point of every simulated trajectory
- Devise appropriate variance reduction techniques
 - Importance Sampling exploiting the Markovian structure of the model

- Particle methods
- Devise appropriate approximate or simulation/regression procedures for non-analytic 'exotic' derivatives