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A portrait of A. Grothendieck




A. Grothendieck lecturing at IHES
(1958-1970)
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@ Grothendieck’s inequality in matrix formulation
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Grothendieck’s inequality in matrix
form |

Theorem (Lindenstrauss-Pelczynski (1968))

LetF € {R,C} andm,n € N. Let. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (a;;) € M(m x n;F), all F-Hilbert spaces H, all unit

vectors uy, ..., uy,v1,...,v, € H the following inequality is
satisfied:

m n m n
‘ZZaij<ui,vj~>H‘ S K max{‘ ZZaijpiqj‘ :p,',qj S {—1, 1}} .

i=1 j=1 i=1 j=1
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The smallest possible value of the corresponding constant K is
denoted by K. Itis called Grothendieck’s constant.
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Grothendieck’s inequality in matrix
form |

Theorem (Lindenstrauss-Pelczynski (1968))

LetF € {R,C} andm,n € N. Let. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (a;;) € M(m x n;F), all F-Hilbert spaces H, all unit
vectors uy, ..., uy,v1,...,v, € H the following inequality is
satisfied:

m n m n
‘ZZaij<ui,vj~>H‘ S K max{‘ ZZaijpiqj‘ :p,',qj S {—1, 1}} .

i=1 j=1 i=1 j=1

The smallest possible value of the corresponding constant K is
denoted by K. Itis called Grothendieck’s constant. Computing
the exact numerical value of this constant is an open problem
(unsolved since 1953)!
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Grothendieck’s inequality in matrix
form Il
An easy exercise shows that GT is equivalent to
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Grothendieck’s inequality in matrix
form Il
An easy exercise shows that GT is equivalent to
Theorem
LetF € {R,C} andm,n € N. LetA = (a;;) € M(m x n;F). Then

there exists a universal constant K > 0 such that the following
property is satisfied:

If
max{’ Zzaijpi%‘ 1pisqi € {—1, 1}} <1

i=1 j=1
then
m n
‘ Z Zaij<ui7 Vj>H’ <K.
i=1 j=1

for all Hilbert spaces over F and all unit vectors uy, . .
Viy...,vy € H.

'7”"’1!
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Grothendieck’s inequality in matrix
form Il

Thanks to a strong use of vector measures, representing kernel
Hilbert spaces (RKHS’s) and Hilbert space-valued stochastic
processes, all applied by members of probability schools we
may list a sharp value for K%, in the following particular case:
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Thanks to a strong use of vector measures, representing kernel
Hilbert spaces (RKHS’s) and Hilbert space-valued stochastic
processes, all applied by members of probability schools we
may list a sharp value for K%, in the following particular case:

Theorem (R. E. Rietz (1974), H. Niemi (1983))
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neNandA = (a;) € M(n x n; F) be Hermitian and positive
semidefinite. Then
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Hilbert spaces (RKHS’s) and Hilbert space-valued stochastic
processes, all applied by members of probability schools we
may list a sharp value for K%, in the following particular case:
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neNandA = (a;) € M(n x n; F) be Hermitian and positive
semidefinite. Then

s
Kg =~
G2
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Thanks to a strong use of vector measures, representing kernel
Hilbert spaces (RKHS’s) and Hilbert space-valued stochastic
processes, all applied by members of probability schools we
may list a sharp value for K%, in the following particular case:
Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
neNandA = (a;) € M(n x n; F) be Hermitian and positive
semidefinite. Then

v
KX == and
CAED)
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Grothendieck’s inequality in matrix
form Il

Thanks to a strong use of vector measures, representing kernel
Hilbert spaces (RKHS’s) and Hilbert space-valued stochastic
processes, all applied by members of probability schools we
may list a sharp value for K%, in the following particular case:

Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
neNandA = (a;) € M(n x n; F) be Hermitian and positive
semidefinite. Then

T 4
KXR=2- and KE=-—.
G 2 s

From now on are going to consider the real case (i.e., F = R)
only. Nevertheless, we allow an unrestricted use of all matrices
A € M(m x n;R) for any m,n € N.
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Grothendieck’s inequality in matrix
form IV

Until present the following encapsulation of K& holds, primarily
due to R. E. Rietz (1974), J. L. Krivine (1977), and most
recently, M. Braverman, K. Makarychev, Y. Makarychev, and A.
Naor (4-author paper from 2011, available on the arXiv):
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Until present the following encapsulation of K& holds, primarily
due to R. E. Rietz (1974), J. L. Krivine (1977), and most
recently, M. Braverman, K. Makarychev, Y. Makarychev, and A.
Naor (4-author paper from 2011, available on the arXiv):

s

1,676 < K& < ™ +\f)~1,782.

Screening these numbers we might be tempted to guess the
following

12/R9



Grothendieck’s inequality in matrix
form IV

Until present the following encapsulation of K& holds, primarily
due to R. E. Rietz (1974), J. L. Krivine (1977), and most
recently, M. Braverman, K. Makarychev, Y. Makarychev, and A.
Naor (4-author paper from 2011, available on the arXiv):

s

1,676 < K& < ™ +\f)~1,782.

Screening these numbers we might be tempted to guess the
following

Conjecture
IsKE =/~ 1,7727
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@® Grothendieck’s inequality rewritten
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Grothendieck’s inequality rewritten |

By transforming Grothendieck’s inequality into an equivalent
inequality between traces of matrix products (respectively
Hilbert-Schmidt inner products) we are lead to a surprising
interpretation which reveals deep links to combinatorial (binary)
optimisation, semidefinite programming (SDP) and multivariate
statistics, built on suitable non-linear transformations of
correlation matrices.
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By transforming Grothendieck’s inequality into an equivalent
inequality between traces of matrix products (respectively
Hilbert-Schmidt inner products) we are lead to a surprising
interpretation which reveals deep links to combinatorial (binary)
optimisation, semidefinite programming (SDP) and multivariate
statistics, built on suitable non-linear transformations of
correlation matrices.

We will sketch this approach which might lead to a constructive
improvement of Krivine’s upper bound m At least it also

can be reproduced in this approach.
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Grothendieck’s inequality rewritten |

By transforming Grothendieck’s inequality into an equivalent
inequality between traces of matrix products (respectively
Hilbert-Schmidt inner products) we are lead to a surprising
interpretation which reveals deep links to combinatorial (binary)
optimisation, semidefinite programming (SDP) and multivariate
statistics, built on suitable non-linear transformations of
correlation matrices.

We will sketch this approach which might lead to a constructive
improvement of Krivine’s upper bound . At least it also

can be reproduced in this approach.

21n(11\/§)

When the context is clear we suppress the Hilbert space
symbol “H” and use the notation “(-, -)” instead of “(-, -)g”
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Grothendieck’s inequality rewritten |l
Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
vi=(vi,...,v,) € S, be given, where Sy := {w € H : |w| = 1}
denotes the unit sphere in H.
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Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
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denotes the unit sphere in H.
Firstly, note that

m n

Z aj(ui, vi)u =

1 j=1

1
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Grothendieck’s inequality rewritten |l
Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
vi=(vi,...,v,) € S, be given, where Sy := {w € H : |w| = 1}
denotes the unit sphere in H.
Firstly, note that

ZZaU (Ui, vi)w = tr(A Ly (u, l)) = (A, y(u,v)),

i=1 j=1

is precisely the Hilbert-Schmidt inner product (or the Frobenius
inner product) of the matrices A € M(m x n;R) and
Cy(u,v) € M(m x n;R), where
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Grothendieck’s inequality rewritten |l
Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
vi=(vi,...,v,) € S, be given, where Sy := {w € H : |w| = 1}
denotes the unit sphere in H.
Firstly, note that

ZZ% (Ui, vi)w = tr(A Ly (u, l)) = (A, y(u,v)),

i=1 j=l1

is precisely the Hilbert-Schmidt inner product (or the Frobenius
inner product) of the matrices A € M(m x n;R) and
Cy(u,v) € M(m x n;R), where

(wi,vi)m  (wi,v2)u .. (U1, va)u

(up,vi)g (uz,vo)g ... (uz,va)m
Iy(u,v) = . !

<”m- Vl>ll <”m- VZ>I/ cee <”m¢ Vn>ll
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Grothendieck’s inequality rewritten:
Bell is lurking

Letm,n € NJA € M(m x n;R),u:= (p1,...,pm)' € (So)m and
q:=(q1,..-,q.)" € (S°)" be given, where S° := {—1,1}
denotes the unit “sphere” in R = RO*1,
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Grothendieck’s inequality rewritten:
Bell is lurking
Letm,n € NJA € M(m x n;R),u:= (p1,...,pm)' € (So)m and
q:=(q1,..-,q.)" € (S°)" be given, where S° := {—1,1}
denotes the unit “sphere” in R = RO+,
Similarly as before, we obtain

S apigi =tr(AT Tu(p.q)) = (A, Tw(p.q),

i=1 j=1

where now
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Grothendieck’s inequality rewritten:
Bell is lurking
Letm,n € NJA € M(m x n;R),u:= (p1,...,pm)' € (So)m and
q:=(q1,..-,q.)" € (S°)" be given, where S° := {—1,1}
denotes the unit “sphere” in R = RO+,
Similarly as before, we obtain

SN agpigi=tr(AT T (p.q)) = (A, Tx(p.q),

i=1 j=1
where now
rigqr pi1q2  --- Piqn
Ta(p.q) = pq’ = 172.611 p2q2 .. [72.5111
[),,,.q] [?,”.(]2 . . [),,,.(],l
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Grothendieck’s inequality rewritten:
Bell is lurking

Letm,n € NJA € M(m x n;R),u:= (p1,...,pm)' € (So)m and
q:=(q1,..-,q.)" € (S°)" be given, where S° := {—1,1}
denotes the unit “sphere” in R = RO+,

Similarly as before, we obtain

m n
SO agpigi =tr(AT Tulp.q)) = (A, Tu(p.q),
i=1 j=1
where now
<[71«,C]]>LS; </71-C]z>}; </7l-‘]11>L{
P2.qi)r  (P2.@2)r - (P2, 4n)R

<_[7ma q1 >R‘ <f)/)1: (]2>R oo <[)/)1¢ (J/1>E<Z
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Grothendieck’s inequality rewritten:
Bell is lurking
Letm,n € NJA € M(m x n;R),u:= (p1,...,pm)' € (So)m and
q:=(q1,..-,q.)" € (S°)" be given, where S° := {—1,1}
denotes the unit “sphere” in R = RO+,
Similarly as before, we obtain

Zzasziq]‘ =tr(A" T (p.q)) = (A, Tr(p.q)),

i=1 j=1

where now
+1 F1 ... &£l
i.l #l i.l
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors
Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(uy,vi) (up,va) ... (ur,vp)
(ug,vi) (up,va) ... (uz,vp)

<l/tm,V1> <Ltm,V2> cee <Mm7vn>
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(ur,vi)  (ui,v2) ... (u1,vp)
(ug,vi) (up,va) ... (uz,vp)
<l/tm,V1> <Mm:v2> cee <Mm7vn>

Does this matrix look familiar to you?
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(ur,vi)  (ur,v2) oo (U, vp)
(uz,v1> <u2,V2> e <Lt2,vn>
<l/tm,V1> <I/tm,V2> cee <Mmavn>

Does this matrix look familiar to you?
It is a part of something larger...
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(ur,vi)  (ur,v2) oo (U, vp)
(uz,v1> <u2,V2> e <Lt2,v,,>
<I/tm,V1> <I/tm,V2> cee <Mmavn>

Does this matrix look familiar to you?
It is a part of something larger...
Namely:
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Block matrix representation |

<u1,\11> <u1,V2> (ul,vn>
(ug,vi)  (up,vay ... (ua,vy)
<um.,v1) <um;v2> coo (thmy V)

(uy,vi)  Aup,va) oo (ug,vm)

<M2,V1> (uz,V2> <I/t2,vn>

<unn Vl) <um7 V2> . <um7 Vn>
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Block matrix representation |

(up,vi) (ur,va) ... (up,vy)
(up,vi) (ua,va) ... (up,vy)
(tmyv1) (s va) oo (U, Vi)

(ur,vi) (uz,vi) ... (um,v1)

(ui,va) (ua,v2) ... (um,v2)

<u1,'v,,) <u2,.vn> e (umyvn)
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Block matrix representation |

(up,vi) (ur,va) ... (up,vy)
(up,vi) (ua,va) ... (up,vy)
(tmyv1) (s va) oo (U, Vi)

(vi,ur) (viyup) ... (Vi Um)

(vo,ury  (va,up) ... (vo,up)

<v,,,'u1) <vn,.u2> coe (Vs )
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Block matrix representation |l

(uiur)  (uiyu) oo (un ) (ur,vi)  (uva) oo (U, ve)
(ug,ur)  (up,up) ... (up,up)  (ua,vi) (ua,va) ... (uz,vn)
<uma ”l> <Mm: Lt2> ce. <Mma Mm> <um’ V1> <um’ V2> e <uma Vn>
(viyur) (viyup) oo (s (vi,ve) (vipva) oo (i)
(vo,ur) (va,ua) ... (vo,um) (v2,vi) (v2,v2) ... (v2,vp)
Gt i) e i) omvi) mva) e ()
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1
<L12, Lll>

<”m: M1>
<V1, M1>
(va,uy)

<Vn7u1>

Block matrix representation Il

(u1, u2)
1

(m,up) ...
(vi,uz) ...
(va,up) ...

<vn,.u2> e

. <u1,um> <M1,V1> <u1,v2>
oy uy) (ua,vi)  (ua,v2) ..

1 (um;v1> (U, v2) ...

(v1, t) 1 (vi,v2)

(o, ) (va2,v1) 1

<Vn7 um> <Vi17 V1> <Vma V2> cee

. (Vi)
. (va, o)

(U, vp)
<u27vn>

<uma Vn>
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A refresher of a few definitions |
Let n € N. We put

PSD(n;R) := {S: ST =S € M(n x n;R), S is positive semidefinite}.
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Recall that PSD(n;R) is a closed convex cone.
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Recall that PSD(n;R) is a closed convex cone.
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C(n;R) := {S € PSD(n;R) such that S;; = 1 for all i € [n]}.
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A refresher of a few definitions |
Let n € N. We put

PSD(n;R) := {S: ST =§ € M(n x n;R), S is positive semidefinite}.

Recall that PSD(n;R) is a closed convex cone.
Moreover, we consider the set

C(m;R) := {S € PSD(n;R) such that S; = 1 for all i € [n]}.

The following statement (resulting from spectral
decomposition/SVD) is of utmost importance:
Theorem (Square roots in PSD(n; R))
Letn e NandS € M(n x n;R). TFAE:

(i) S € PSD(m;R).

(i) S = B? for some B € PSD(n; R).

This B € PSD(n; R) is unique and called the square root of S:
S1/2 .= B,

2 /R1



A refresher of a few definitions Il

Letd,k € Nand (H, (-,-)) be an arbitrary d-dimensional Hilbert
space (i.e, H = 19). Let wi,wa,...,wx € H. Put

w:i= (wi,...,w) € Hand

S:= (witwal ... twe) € M(d x k; R). The matrix I';; (w, w)

€ PSD(k;R), defined as

Ca(w,w)i = (wi,wj) = (STS) (i,j € [k == {1,2,....k})

i

is called Gram matrix of the vectors wy, ..., wi € H.
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A refresher of a few definitions Il

Letd,k € Nand (H, (-,-)) be an arbitrary d-dimensional Hilbert
space (i.e, H = 19). Let wi,wa,...,wx € H. Put

w:i= (wi,...,w) € Hand

S:= (witwal ... twe) € M(d x k; R). The matrix I';; (w, w)

€ PSD(k;R), defined as

Ca(w,w)ij == (wi,wj) ::(STS)A

o (k=112 k)

is called Gram matrix of the vectors wy, ..., wi € H.
Observe that
(ur,vi)  (u,v2) ... (u1,vn)
(ug,vi)y (up,va) ... (uz,vp)
(tm,v1)  (tm,v2) .. (tm,Vn)

is not a Gram matrix!

27 /R1



A refresher of a few definitions Il
Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
pi=(p1, 2, ..., ) €R"and C € PSD(n; R).
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A refresher of a few definitions Il
Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
pi=(p1, 2, ..., ) €R"and C € PSD(n; R).
Recall that ¢ is an n-dimensional Gaussian random vector with
respect to the “parameters” ;1 and C (short: £ ~ N, (i, C)) if and
only if for all a € R”" there exists 1, ~ N;(0, 1) such that

n

(a,6) =) ai& = (a, p) + V/{a, Cayne = (a, p) + | C"/al|na

i=1
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A refresher of a few definitions Il

Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let

w= (1, p2, -, pn) " € R"and C € PSD(n; R).

Recall that ¢ is an n-dimensional Gaussian random vector with
respect to the “parameters” ;1 and C (short: £ ~ N, (i, C)) if and
only if for all a € R”" there exists 1, ~ N;(0, 1) such that

(0,6) = ai& = (a, 1) + /{a, Cayna = (a, p) + [|C" a1,

i=1

Note that we don’t require here that C is invertible!
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A refresher of a few definitions Il

Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
pi=(p1, 2, ..., ) €R"and C € PSD(n; R).

Recall that ¢ is an n-dimensional Gaussian random vector with
respect to the “parameters” ;1 and C (short: £ ~ N, (i, C)) if and
only if for all a € R”" there exists 1, ~ N;(0, 1) such that

n

(0,6) = ai& = (a, 1) + /{a, Cayna = (a, p) + [|C" a1,

i=1

Note that we don’t require here that C is invertible! Following
Feller, the matrix V(¢) defined as

V(&) = E[&§] — E[&GIE[S] o Cy  (irj € [n])

is known as the variance matrix of the Gaussian random vector
£.
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Characterisation of PSD(n; R) |

Proposition
Letn e NandS € M(n x n;R). TFAE:
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() S is the variance matrix of some Gaussian random vector.
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Characterisation of PSD(n; R) |

Proposition

Letn € NandS € M(n x n;R). TFAE:
() S is the variance matrix of some Gaussian random vector.
(i) S =E[e¢T] for some Gaussian random vector & ~ N, (0, C).
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Characterisation of PSD(n; R) |

Proposition
Letn € NandS € M(n x n;R). TFAE:
() S is the variance matrix of some Gaussian random vector.

(i) S =E[e¢T] for some Gaussian random vector & ~ N, (0, C).

)
(i) S € PSD(n;R).
(iv) There exists a Hilbert space L and vectors zy,...,z, inL
such that

§ =T1(z,2) Zzlzl = Z diag(z) J diag(z)
=1 =1

where z := (z1,22,...,2,)| € L" and Jy := 1 for all k,1 € [n].

20/R1



Characterisation of PSD(n; R) Il

This leads us straightforwardly to the following important block
matrix representation of positive semidefinite matrices:
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Characterisation of PSD(n; R) Il

This leads us straightforwardly to the following important block
matrix representation of positive semidefinite matrices:
Corollary

Letm,n € N and S € PSD(m + n;R) Then there is a
(finite-dimensional) Hilbert space H and vectors

Uy, uy,. ..Uy, vi,va,...v, € H such that

Ty(uu) Tu(uv)\ [ ElEET] ElenT]
S=Tu(w,w) = (I‘1L1H(14,v)T FZ(V,V)) a <E[§?7T]T EMZW)

wherew; .= u; ifl <i<mandw; :=v;_,ifm+1<i<m+n
and (&1, ... &ty Mn) T~ Nign(0,5).
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Characterisation of PSD(n; R) Il

This leads us straightforwardly to the following important block
matrix representation of positive semidefinite matrices:
Corollary

Letm,n € N and S € PSD(m + n;R) Then there is a

(finite-dimensional) Hilbert space H and vectors
Uy, uy,. ..Uy, vi,va,...v, € H such that

Ty(uu) Tu(uv)\ [ ElEET] ElenT]
S=Tu(w,w) = (I‘1L1H(14,v)T FZ(V,V)) a <E[§?7T]T EMZW)

wherew; = u; ifl <i<mandw; =vi_,ifm+1<i<m+n
and (&1, &my i,y - - - ,nn)T ~ Nyutn(0,5).
Moreover, we have:
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Geometry of correlation matrices

Observation
Letn e Nand ¥ = (0;) € M(n x n;R). TFAE:
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Geometry of correlation matrices

Observation
Letn e Nand ¥ = (0;) € M(n x n;R). TFAE:

(i) ¥ € PSD(n;R) and o;; = 1 for alli € [n].

(i) ¥ € C(m;R).
(iil) ¥ =Tp(x,x) =2 xx) =Y, diag(x;)J diag(x;) for
some x = (xi,...,x,)" € (s 1)".

21 /A1



Geometry of correlation matrices

Observation
Letn e Nand ¥ = (0;) € M(n x n;R). TFAE:
(i) ¥ € PSD(n;R) and o;; = 1 for alli € [n].

(i) ¥ € C(m;R).
(iil) ¥ =Tp(x,x) =2 xx) =Y, diag(x;)J diag(x;) for
some x = (xi,...,x,)" € (s 1)".

(iv) X is a correlation matrix, induced by some n-dimensional
Gaussian random vector.
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Geometry of correlation matrices

Observation
Letn e Nand ¥ = (0;) € M(n x n;R). TFAE:
(i) ¥ € PSD(n;R) and o;; = 1 for alli € [n].

(i) ¥ € C(m;R).
(iil) ¥ =Tp(x,x) =2 xx) =Y, diag(x;)J diag(x;) for
some x = (xi,...,x,)" € (s 1)".

(iv) X is a correlation matrix, induced by some n-dimensional
Gaussian random vector.

In particular, condition (i) implies that o;; € [—1,1] for alli,j € [n].
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Lurking correlation matrices in GT |

Letu:= (ur,uz,...,up)" € SHandv:= (vi,va,...,v,)" € St
Consider I'y (1, v) € M(m x n;R), defined as
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Letu:= (ur,uz,...,up)" € SHandv:= (vi,va,...,v,)" € St
Consider I'y (1, v) € M(m x n;R), defined as

Tr(u,v)ij:= (ui,vj)u ((i,j) € [m] x [n])
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Lurking correlation matrices in GT |
Letu:= (ur,uz,...,up)" € SHandv:= (vi,va,...,v,)" € St
Consider I'y (1, v) € M(m x n;R), defined as

Cr(u,v)ij == (ui,viyg  ((i,)) € [m] x [n]).

Putw:= (u",v")" = (u1,uz,...,tp,v1,v2,...,v,) " . Then
we Spt.
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Tr(u,v)ij:= (ui,vj)u ((i,j) € [m] x [n])

Putw:= (u",v")" = (u1,uz,...,tp,v1,v2,...,v,) " . Then
we SH.

Consequently we have canonically “embedded” our (column)
vector w € S5 into the following symmetric and positive
semidefinite (m + n) x (m + n)-correlation matrix:
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Lurking correlation matrices in GT |

Letu:= (ur,uz,...,up)" € SHandv:= (vi,va,...,v,)" € St
Consider I'y (1, v) € M(m x n;R), defined as

Tr(u,v)ij:= (ui,vj)u ((i,j) € [m] x [n])

Putw:= (u",v")" = (u1,uz,...,tp,v1,v2,...,v,) " . Then
we SH.

Consequently we have canonically “embedded” our (column)
vector w € S5 into the following symmetric and positive
semidefinite (m + n) x (m + n)-correlation matrix:

v Tu(u,u) Tg(u,v)
Cy(w,w) = (THH(U. V)T FZ(V. v>)
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Lurking correlation matrices in GT |l

Moreover,
Tr(p,q) :qu forallp e R", g € R"

and
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Lurking correlation matrices in GT |l

Moreover,
Tr(p,q) :qu forallp e R", g € R"
and

T T
Tr(x,x) =xx| = <pp pq ) forallx:=(p',q")" e R™™".
(x, x) a’ aqq’ P .q)
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Geometry of correlation matrices |l

Exercise
Letk € N. Then the sets {S: S = xx' for somex € {—1,1}}}
and {¥: X € C(k;R) and rk(X) = 1} coincide.
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Geometry of correlation matrices lll

Proposition (K. R. Parthasarathy (2002))

Letk € N. C(k;R) is a compact and convex subset of the
k?-dimensional vector space M(k x k;R). Any k x k-correlation
matrix of rank 1 is an extremal point of the set C(k;R).
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Proposition (K. R. Parthasarathy (2002))

Letk € N. C(k;R) is a compact and convex subset of the
k*-dimensional vector space M(k x k;R). Any k x k-correlation
matrix of rank 1 is an extremal point of the set C(k;R).

In particular, the (finite) set of all k x k-correlation matrices of
rank 1 is not convex.
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Geometry of correlation matrices lll

Proposition (K. R. Parthasarathy (2002))

Letk € N. C(k;R) is a compact and convex subset of the
k*-dimensional vector space M(k x k;R). Any k x k-correlation
matrix of rank 1 is an extremal point of the set C(k;R).

In particular, the (finite) set of all k x k-correlation matrices of
rank 1 is not convex.

Let k € N. Put

Ci(k;R) = {X: X € C(k;R) and rk(X) = 1}.

aE Ry



Canonical block injection of A |

A naturally appearing question is the following:
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Canonical block injection of A |

A naturally appearing question is the following:

Having gained - important - additional structure by “enlarging”
the m x n-matrix I'y(u, v) to @ (m + n) x (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly?
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Canonical block injection of A |

A naturally appearing question is the following:

Having gained - important - additional structure by “enlarging”
the m x n-matrix I'y(u, v) to @ (m + n) x (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly? To answer this question,
let us also “embed” the m x n-matrix A suitably!

Definition
Let m,n € Nand A € M(m x n;R) arbitrary. Put

~ 1/0 A
A'_2(AT o)

Let us call M(m x n;R) 3 A the canonical block injection of A.
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Canonical block injection of A |

A naturally appearing question is the following:

Having gained - important - additional structure by “enlarging”
the m x n-matrix I'y(u, v) to @ (m + n) x (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly? To answer this question,
let us also “embed” the m x n-matrix A suitably!

Definition
Let m,n € Nand A € M(m x n;R) arbitrary. Put

~ 1[(0 A
A'_2(AT o)

Let us call M(m x n;R) 3 A the canonical block injection of A.
Observe that A is symmetric, implying that A = AT .

26 /R1



@ Grothendieck’s inequality and correlation matrices
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A further equivalent rewriting of GT |

Proposition
Letm,n € N and A = (a;) € M(m x n;R). LetK > 0. TFAE:
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A further equivalent rewriting of GT |

Proposition
Letm,n € N and A = (a;) € M(m x n;R). LetK > 0. TFAE:
(i)

n

m
E a;ipiqj
i=1 j

=1

sup ‘Zm:zn:aij(u,-7vj)y‘ <K

max
11 {—1,1}n
wwyespxsy =1 o () e{-1.1}"x{-1,1}

for all Hilbert spaces H over R.



A further equivalent rewriting of GT |

Proposition
Letm,n € N and A = (a;) € M(m x n;R). LetK > 0. TFAE:
(i)

n

m
DD apig;
i=1 j

=1

m n
sup ‘ZZ“U(uhvj)H‘ <K e

(uw)ESExSy 21 =1

for all Hilbert spaces H over R.

(ii)
sup [(A,T)| <K max |(A,5)].
. YeC(m+nmR
reC(m+n;R) fk(<2)+:1>
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A further equivalent rewriting of GT Il

Proposition
Letm,n e NandA = (a;) € M(m x n;R). LetK > 0. TFAE:
(i)

n m n

m
a;i(ui, vi) max a;ipiqi
22 eyt ‘ <p,q>e{—1,1}'ﬂx{—1,1}"’ZZ P

i=1 j=I i=1 j=I

max
(u,v)ESY xS}

for all Hilbert spaces H over R.
(ii) N
max [(A,T)| <K max [(A,X)].
T'eC(m+n;R) 3eC; (m+n;R)
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A further equivalent rewriting of GT Il

Proposition
Letm,n e NandA = (a;) € M(m x n;R). LetK > 0. TFAE:
(i)

m
max E
(u,v)ESY xS}

i=1 j=I

m n
a;i(u;, v; ‘ < max ’ E E aiipiq;
7 ) ] (p)e{—1,1}mx{—1,1}n par yetdj

for all Hilbert spaces H over R.
(ii) N
max [(A,T)| <K max [(A,X)].
reC(m+n;R) YeCy(m+mR)
We don’t know whether condition (ii) holds for all matrices in
M((m + n) x (m+n);R).
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GT versus NP-hard optimisation

Observation

On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):

max  [(A,T)|
reC(m+n;R)
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GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):
max  [(A,T)|

reC(m+n;R)
On the right side: an NP-hard, non-convex combinatorial
(Boolean) optimisation problem:

~

max [(A, X))
SEC(m+nR)
rk(>)=1
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GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):
max  [(A,T)|

reC(m+n;R)
On the right side: an NP-hard, non-convex combinatorial
(Boolean) optimisation problem:

max |(A, X}
SeC(m+mR)
rk(>)=1
Thus, Grothendieck’s constant K3 is precisely the “integrality
gap’”; i.e., the maximum ratio between the solution quality of
the NP-hard Boolean optimisation on the right side of GT and
of its SDP relaxation on the left side!
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@ Towards a calculation of Grothendieck’s constant K
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Schur product and the matrix f[A]

Definition
Let® #1 CRandf: I — R afunction. Let
A = (a;) € M(m x n;R) such that a; € I for all (i,j) € [m] x [n].

A2 /R1



Schur product and the matrix f[A]

Definition

Let® #1 CRandf:I— R afunction. Let

A = (a;) € M(m x n;R) such that a; € I for all (i,j) € [m] x [n].
Define f[A] € M(m x n;R) - entrywise - as f[A];; := f(a;;) for all
(i,7) € [m] x [n].
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Schur product and the matrix f[A]

Definition

Let() #1 C R andf: 1 — R a function. Let

A = (a;;) € M(m x n;R) such that a; € I for all (i, ) € [m] x [n].
Define f[A] € M(m x n;R) - entrywise - as f[A];; := f(a;;) for all

(i,j) € [m] x [n].

Guiding Example
The Schur product (or Hadamard product)

(ajj) * (by) := (ayby)

of matrices (a;;) and (b;) leads to f[A], where f(x) := x°.
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Schur product and the matrix f[A]

Definition

Let® #1 CRandf: I — R afunction. Let

A = (a;;) € M(m x n;R) such that a; € I for all (i, ) € [m] x [n].
Define f[A] € M(m x n;R) - entrywise - as f[A];; := f(a;;) for all

(i,7) € [m] x [n].
Guiding Example
The Schur product (or Hadamard product)
(aij)  (byj) = (ayby)
of matrices (a;) and (b;) leads to f[A], where f(x) := x*.

Remark

The notation “f[A]” is used to highlight the difference between
the matrix f(A) originating from the spectral representation of A
(for normal matrices A) and the matrix f|A], defined as above !
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Grothendieck’s identity |

How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?
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How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<Tland(&n)" ~Ny(0,0,), where

_ (L p
o= (! 7).
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Grothendieck’s identity |

How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<Tland(&n)" ~Ny(0,0,), where

_ (L p
o= (! 7).

Consider the function sign: R — {—1, 1}, defined as
sign = 11[0700) — 11(,0070).
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Grothendieck’s identity |
How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,0,), where

_ (L p
o= (! 7).

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and
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How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,0,), where

_ (L p
o= (! 7).

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

E[sign(&)sign(n)]
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How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,0,), where

_ (L p
o= (! 7).

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

E(sign(§)sign(n)] =
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How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,0,), where

_ (L p
o= (! 7).

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

Elsign(¢)sign(n)] = 4P(§=0,n>0) 1
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How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,0,), where

_ (L p
o= (! 7).

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

Elsign(¢)sign(n)] = 4P(§=0,n>0) 1
= % arcsin (E[¢n])
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How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,0,), where

_ (L p
o= (! 7).

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

Elsign(¢)sign(n)] = 4P(§=0,n>0) 1
= %arcsin (El¢n]) =
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Grothendieck’s identity |

How can we link an NP-hard non-convex Boolean optimisation
problem and its convex SDP relaxation?

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889))
Let—1<p<tland(&n)' ~Ny(0,0,), where

_ (L p
o= (! 7).

Consider the function sign: R — {—1, 1}, defined as
sign := 1 o) — I_c0)- Then & ~ N1(0,1),m ~ N1(0,1),
corr(§,m) = E[¢n] = p, and

Elsign(¢)sign(n)] = 4P(§=0,n>0) 1
= %arcsin (El¢n]) = % arcsin(p) .
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Grothendieck’s identity

Corollary

Letk € N. Let © € C(k;R) an arbitrarily given correlation matrix.
Then there exists a Gaussian random vector £ ~ N;(0,©) such
that

%arcsin[@] = E[E(f)] ’

where
E(§(w))y = sign(&i(w))sign(§;(w))

for allw € Q, and for all i,j € [k].
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Corollary

Letk € N. Let © € C(k;R) an arbitrarily given correlation matrix.
Then there exists a Gaussian random vector £ ~ N;(0,©) such
that

%arcsin[@] = E[E(f)] ’

where
E(§(w))y = sign(&i(w))sign(§;(w))

forallw € Q, and for alli,j € [k]. X(¢(w)) is a correlation matrix
of rank 1 for all w € €2, and we have
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Grothendieck’s identity

Corollary

Letk € N. Let © € C(k;R) an arbitrarily given correlation matrix.
Then there exists a Gaussian random vector £ ~ N;(0,©) such
that

%arcsin[@] = E[E(f)] ’

where
E(&(w))j == sign(&i(w))sign(&(w))
forallw € Q, and for alli,j € [k]. X(¢(w)) is a correlation matrix
of rank 1 for all w € (), and we have
max (4, %) > E[|(4 %(¢)]]

SeC(kR)
rank(3)=1

v

A E[S@)])] = 21, arcsinfe)).
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Grothendieck’s identity Il

Corollary
Letm,n € N and H be an arbitrary Hilbert space. Letu € S}; and
veSy. Then
Ouy = 2 arcsin[Ty (u, v)] = E [sign(¢) sign(n) ']
s
for some Gaussian random vectors £ ~ N,,(0,©,,,) and
n ~ Ny, (0, GW).

A5 /A1



Grothendieck’s identity Il

Corollary

Letm,n € N and H be an arbitrary Hilbert space. Letu € S}; and
veSy. Then

Ouy = 2 arcsin[Ty (u, v)] = E [sign(¢) sign(n) ']
™

for some Gaussian random vectors £ ~ N,,(0,©,,,) and

n e~ Ny (07 Gv,v) .

More generally, we have
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Grothendieck’s identity Il

Corollary
Letm,n € N and H be an arbitrary Hilbert space. Letu € S}; and
veSy. Then
Ouy = 2 arcsin[Ty (u, v)] = E [sign(¢) sign(n) ']
s
for some Gaussian random vectors £ ~ N,,(0,©,,,) and
n ~ Ny, (0, G)v,v).

More generally, we have

Proposition (Schoenberg (1942))

Letke Nand0 < r < co. Let © be an arbitrary

(k x k)-correlation matrix. Let f be a function that admits a
power series representation f(x) = >~ a,x" for some
sequence (a,) C [0,00) on (—r,r). Let0 < f(1) and put
= ﬁ f- Thenfl1[©] again is a (k x k)-correlation matrix.
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Grothendieck’s identity IV

Since for all p € [—1, 1]

[e.9]

. 1 20\ p>*! =1 i
arcsin = — — i
in(p) ;04”(n>(2n+ 2;4 Qn+1)!

it follows that (in general)
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Grothendieck’s identity IV

Since for all p € [—1, 1]

[e.9]

] 1 /2n p2n+1 e 1 p2n+1
arcsin = — — i
in(p) ;04”(n>(2n+ 2;4 Qn+1)!

it follows that (in general)

- R

AY) > —[(A i
jmax (A, D) 2 [(4, aresin[O])]
rank(¥X)=1

- ' )+ i 4(2n + 1 <2n> @, [@]Ml)’ ‘
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Exercise
Letk € Nand M € PSD(k;R).
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Exercise
Letk € Nand M € PSD(k;R).
Show that
arcsin[M] — M € PSD(k;R) .
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Exercise
Letk € Nand M € PSD(k;R).

Show that
arcsin[M] — M € PSD(k;R) .

How can we treat the difficult handling of the remaining part

> 1 2n\ n
> st ) @)

n=1

(which unfortunately “sits inside” an absolute value)?
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Grothendieck’s identity V

A seemingly fruitful and different approach is the following:
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A seemingly fruitful and different approach is the following:

(i) Transform an arbitrarily given correlation matrix ©
non-linearly - and entrywise - to another correlation matrix
O := ®[O] for some @ : C(k;R) — C(k; R) such that this
non-linear transformation ® strongly reduces the impact of
the arcsin function (up to a given small error).

A8 /R



Grothendieck’s identity V

A seemingly fruitful and different approach is the following:

(i) Transform an arbitrarily given correlation matrix 6
non-linearly - and entrywise - to another correlation matrix
O := ®[O] for some @ : C(k;R) — C(k; R) such that this
non-linear transformation ® strongly reduces the impact of
the arcsin function (up to a given small error).

(i) Apply Grothendieck’s identity to the so obtained correlation
matrix ©; and apply the estimation above - to arcsin[©;].
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Grothendieck’s identity V

A seemingly fruitful and different approach is the following:

(i) Transform an arbitrarily given correlation matrix ©
non-linearly - and entrywise - to another correlation matrix
O := ®[O] for some @ : C(k;R) — C(k; R) such that this
non-linear transformation ® strongly reduces the impact of
the arcsin function (up to a given small error).

(i) Apply Grothendieck’s identity to the so obtained correlation
matrix ©; and apply the estimation above - to arcsin[©;].
(iii) A reiteration of the steps (i) and (ii) could lead to an

iterative algorithm which might converge to a “suitable” -
upper - bound of K.
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@ Grothendieck’s inequality and its relation to non-locality in
quantum mechanics
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Modelling quantum correlation |

Following Tsirelson’s thoughts we consider two sets, the set of
all “classical” (local) (m x n)-cross-correlation matrices and the
set of all (m x n)-quantum correlation matrices:
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all “classical” (local) (m x n)-cross-correlation matrices and the
set of all (m x n)-quantum correlation matrices:

(i) Let (Q,F,P) be a (“classical” Kolmogorovian) probability
space. Let A = (a;;) € M(m x n;R). A € Cioe(m x n; R) iff
aj = Ep|X;Y;j], where X;, Y; : Q@ — [—1, 1] are random
variables - all defined on the same given probability space
(Q, F,P).
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Modelling quantum correlation |

Following Tsirelson’s thoughts we consider two sets, the set of
all “classical” (local) (m x n)-cross-correlation matrices and the
set of all (m x n)-quantum correlation matrices:

(i) Let (Q,F,P) be a (“classical” Kolmogorovian) probability
space. Let A = (a;;) € M(m x n;R). A € Cioe(m x n; R) iff
aj = Ep|X;Y;j], where X;, Y; : Q@ — [—1, 1] are random
variables - all defined on the same given probability space
(Q, F,P).

(i) Let A = (a;) € M(m x n;R). A € QC(m x n; R) iff there are
k,l € N, a density matrix p on B(H,), where
Hy, := Ck® C!, and linear operators A; € B(C*), B; € B(C')
such that ||A;|| <1, ||Bj|| < 1 and

aj = (p,Ai @ Bj) = tr(p(A; @ By)) = tr(p(A; ® Ep)(Ex © B)))

for all (i,j) € [m] x [n].
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Modelling quantum correlation |l

Does QC(m x n;R) relate to our previous investigation of the left
side of GT?
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Does QC(m x n;R) relate to our previous investigation of the left
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In fact! Tsirelson unrevealed the following characterisation:
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Modelling quantum correlation |l

Does QC(m x n;R) relate to our previous investigation of the left
side of GT?

In fact! Tsirelson unrevealed the following characterisation:
Theorem (Tsirelson (1987, 1993))
LetA = (a;) € M(m x n;R). TFAE:
(i) A€ QC(m x n;R).
(i) A =Ty (u,v) for some k € N and some u € (s*~')" and
ve (sk=h"
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Modelling quantum correlation Il|

(uy,vi) (up,va) ... {ur,vn)

Flg(u,v): <M2,.V1> <M2,-v2> oo A{unyvn)

(s v1)  (Umyv2) oo (s vn)
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Modelling quantum correlation Il|

(uy,vi) (up,va) ... {ur,vn)
Flé»(u, ) = (ug,vi) (up,va) ... (ug,-vn)
(s v1)  (Umyv2) oo (s vn)

Ty (u,v) = UV is the product of the matrices U : % — 1" and
Vil — 5, where

ES[RY



Modelling quantum correlation IV

Hence, we see that if u € S} and v € S}, one can canonically
associate a linear operator to the (m x n)-matrix I'y (u, v) which
factors through the Hilbert space H := /5 such that

Ty (u,v) = UV for some (m x k)-matrix U and some

(k x n)-matrix V, satisfying

1 (Cr(u,v)) < [|Ull2eo - VI <1
g

\/

B2/R1



Modelling quantum correlation V

Theorem (Grothendieck (1953), Pisier (2001), Tsirelson
(1987))

Let H be a separable Hilbert space and m,n € N. Let
w:=(ug,...,un)" €Spandv:=(vy,...,v,)" €8t Then

Ty(u,v) € K ex({pg" :pe{-1,1}",q€ {-1,1}"})
= Kg Cioc(m x m;R) .

BA/RT



Modelling quantum correlation V

Theorem (Grothendieck (1953), Pisier (2001), Tsirelson
(1987))

Let H be a separable Hilbert space andm,n € N. Let
wi=(ui,...,uy)" €Sfandv:=(vi,...,v,)" €Sp. Then

Tu(u,v) € Ko CX({qu pe{-11}" qe{-1,1}"})
= Kg Cioc(m x m;R) .
Corollary (Tsirelson (1987, 1993))
Letm,n € N. Then
QC(m x m;R) € K¢ Crog(m x m;R).

Moreover, Cjoc(m x n;R) C QC(m x n;R). The latter set
inclusion is strict.

BA/RT



Bell’'s inequalities and GT |

It is well-known that it is also experimentally verified that
entangled composite quantum systems violate certain relations
between correlations - known as Bell’s inequalities.
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Bell’s inequalities and GT |

It is well-known that it is also experimentally verified that
entangled composite quantum systems violate certain relations
between correlations - known as Bell’s inequalities.

Purely in terms of of a very elementary application of classical
Kolmogorovian probability theory - and completely independent
of any modelling assumptions in physics - Bell’s inequalities
can be represented in form of an inequality originating from J. F.
Clauser, M. A. Horne, A. Shimony and R. A. Holt in 1969.
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Bell’s inequalities and GT Il

Lemma (BCHSH Inequality)

Let (Q, F,P) be an arbitrary probability space. Let X,,X», X3 and
X4 be arbitrary random variables with values in [—1, 1] P-a.s., all
defined on Q). Then

|E[P[X]X2] — EP[X1X3]| <1-— EP[X2X3]
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Lemma (BCHSH Inequality)

Let (Q, F,P) be an arbitrary probability space. Let X,,X», X3 and
X4 be arbitrary random variables with values in [—1, 1] P-a.s., all
defined on Q). Then

|E[P[X]X2] — EP[X1X3]| <1-— EP[X2X3]

and
|Ep[X1X2] + Ep[X1X3]| < 1+ Ep[XaX3].
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Lemma (BCHSH Inequality)

Let (Q, F,P) be an arbitrary probability space. Let X,,X», X3 and
X4 be arbitrary random variables with values in [—1, 1] P-a.s., all
defined on Q). Then

|E[P[X]X2] — EP[X1X3]| <1-— EP[X2X3]

and
|Ep[X1X2] + Ep[X1X3]| < 1+ Ep[XaX3].

In particular,

|EP[X1X2] + E[P[X1X3] + EP[X4X2] — ]EP[X4X3H <2.
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Lemma (BCHSH Inequality)

Let (Q, F,P) be an arbitrary probability space. Let X,,X», X3 and
X4 be arbitrary random variables with values in [—1, 1] P-a.s., all
defined on Q). Then

|E11:>[X]X2] — EP[X1X3]| <1-— EP[X2X3]

and
|Ep[X1X2] + Ep[X1X3]| < 1+ Ep[XaX3].

In particular,

|Ep[X1X2] + Ep[X1X3] + Ep[XaXs2] — Ep[XaX3]| < 2.

Notice that this result holds independently of the choice of the
joint distribution of the rv’'s X1, X, X3, X4.

ER [RY



Bell’s inequalities and GT Il
How is the BCHSH inequality linked with GT?
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Bell’s inequalities and GT Il
How is the BCHSH inequality linked with GT?
To recognise this link let us relabel the random variables first:

Lemma (BCHSH Inequality)

Let (2, F,P) be an arbitrary probability space. LetX,,X,,Y; and
Y, be arbitrary random variables with values in [—1, 1] P-a.s., all
defined on ). Then

|EpX1Y1] — Ep[XiY2]| < 1 — Ep[Y,Y>]

and
|EP[X1 Y]] + E]p[X] Yz” <1+ EP[Y1Y2].

In particular,

|Ep[X1Y1] + Ep[X1Y2] + Ep[X2Y1] — Ep[XoYa]| < 2.
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Bell’s inequalities and GT Il
How is the BCHSH inequality linked with GT?
To recognise this link let us relabel the random variables first:

Lemma (BCHSH Inequality)

Let (2, F,P) be an arbitrary probability space. LetX,,X,,Y; and
Y, be arbitrary random variables with values in [—1, 1] P-a.s., all
defined on ). Then

|EpX1Y1] — Ep[XiY2]| < 1 — Ep[Y,Y>]

and
|EP[X1 Y]] + E]p[X] Yz” <1+ EP[Y1Y2].

In particular,

|Ep[X1Y1] + Ep[X1Y2] + Ep[X2Y1] — Ep[XoYa]| < 2.

In other words:

57/R1



Bell’s inequalities and GT Il

Observation (BCHSH Inequality in matrix form)

Let (Q, F,P) be an arbitrary probability space (in the sense of
Kolmogorov).
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Observation (BCHSH Inequality in matrix form)

Let (Q, F,P) be an arbitrary probability space (in the sense of
Kolmogorov).

Put

Ahad . — G _11> (Hadamard matrix ~ “quantum gate”)
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Bell’s inequalities and GT Il

Observation (BCHSH Inequality in matrix form)

Let (Q, F,P) be an arbitrary probability space (in the sense of
Kolmogorov).

Put

Ahad . — G _11> (Hadamard matrix ~ “quantum gate”)
Then

(A7, T)] = |tr(A"™T)| < 2 for all T € Cioo(2 x 2 R).

BER/RART



Bell’s inequalities and GT IV

Let us turn to the left “quantum correlation side” of GT!
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Bell’s inequalities and GT IV

Let us turn to the left “quantum correlation side” of GT!

Theorem (Tsirelson (1980))
Let H be an arbitrary Hilbert space, u € S?, andv € S%. Then

(AT Ty (u,v))| = [tr(AP39 Ty (u,v))| < 2V2
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Bell’s inequalities and GT IV

Let us turn to the left “quantum correlation side” of GT!
Theorem (Tsirelson (1980))
Let H be an arbitrary Hilbert space, u € S3, andv € S3,. Then

‘(AHadv FH(M, V)H — ’tr(AHadFH(M, V)) ’ < 2\[2
Even more holds!

To this end, we recall the main ideas underlying the
EPR/Bell-CHSH experiment.

£EQ/RY



Bell’'s inequalities and GT V

A source emits in opposite directions two spin % particles
created from one particle of spin 0. By rotating magnets
perpendicular to the directions of the two spin % particles, both,
Alice and Bob measure the spin in 2 different directions, leading
to angles -5 < oy, < 7 for Alice and —75 < 3y, 3, < 5 for
Bob. Only one angle per measurement can be chosen on both
sides. The outcome of this experiment is a “random” pair of
observables belonging to the set

{(A],B]), (AI,B2)7 (A27Bl)7 (A27B2)} .

Any of these observables takes its values in {—1,+1}.

RO /R
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A source emits in opposite directions two spin % particles
created from one particle of spin 0. By rotating magnets
perpendicular to the directions of the two spin % particles, both,
Alice and Bob measure the spin in 2 different directions, leading
to angles -5 < oy, < 7 for Alice and —75 < 3y, 3, < 5 for
Bob. Only one angle per measurement can be chosen on both
sides. The outcome of this experiment is a “random” pair of
observables belonging to the set

{(A],B]), (AI,B2)7 (A27Bl)7 (A27B2)} .

Any of these observables takes its values in {—1,+1}.
Describing this experiment purely in terms of mathematics we
immediately recognise that the Bell-Tsirelson constant 2v/2 is
attained by the Hadamard matrix, since:
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Bell’s inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains 2v/2)

Consider the Hilbert space H := C?> @ C?. Let
H>x:= % (e1 ® e1 + €2 ® e2) (“entangled Bell state”).
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Bell’s inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains 2v/2)

Consider the Hilbert space H := C?> @ C?. Let
H>x:= (e1®e1+ex®er) (‘entangled Bell state’). Let

3
sy :=0,0] = _Iﬂ and p, := _%.
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Bell’s inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains 2v/2)
Consider the Hilbert space H := C?> @ C?. Let
H>x:= (e1®e1+ex®er) (‘entangled Bell state’). Let

T 37 T
— = = —— an = —.
2,0&2 0)61 4 a dﬁ2 4

Put
(x, (A2 @ B1)X)g  (x, (A2 @ B2)x)u
where A; := R(w;), Bj := R(B;) and

DEPR ._ <<X7 (AL @B1)x)n (x, (A1 ®Bz)X>H> 7

M(2 x 2;C) 3 R(p) := <Z?§((:j)) _Si;r:)(sfg)o)> ’
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Bell’s inequalities and GT VI

Theorem (EPR/Bell-CHSH violates Bell and attains 2v/2)
Consider the Hilbert space H := C?> @ C?. Let
H>x:= (e1®e1+ex®er) (‘entangled Bell state’). Let

T 3w T
57042 =001 .= _T and 5, := —Z,

Put
(x, (A2 @ B1)X)g  (x, (A2 @ B2)x)u
where A; := R(w;), Bj := R(B;) and

DEPR ._ <<x, (AL @B1)x)n (x, (A1 ®Bz)X>H> 7

M(2 x 2;C) 3 R(p) := <Z?§((z)) _Si;r:)(sfg)o)> ’

ThenTEPR ¢ 9C(2 x 2;R) and
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Frank_Nabla
Notiz
This is the correct value of the angle $\beta_1$ (detected and corrected due to my revisit of Krivine's determination of the value of $K_G^\R(2)$) !  

- as at 10th April 2020
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