A statistical interpretation of Grothendieck's inequality: towards an approximation of the real Grothendieck constant

Frank Oertel

Philosophy, Logic \& Scientific Method
Centre for Philosophy of Natural and Social Sciences (CPNSS)
London School of Economics \& Political Science, UK
http://www.frank-oertel-math.de

Geometrical Aspects of Banach Spaces

School of Mathematics University of Birmingham, UK

25-29 June 2018

Contents

(1) An important information for readers
(2) A very short glimpse at A. Grothendieck's work in functional analysis
(3) A further reformulation of Grothendieck's inequality
(4) $K_{G}^{\mathbb{R}}$ and correlation matrix transformations
(5) Grothendieck's identity
(6) Towards a computation of $K_{G}^{\mathbb{R}}$

（1）An important information for readers

（2）A very short glimpse at A．Grothendieck＇s work in functional analysis
（3）A further reformulation of Grothendieck＇s inequality
（4）$K_{G}^{\mathbb{R}}$ and correlation matrix transformations
（5）Grothendieck＇s identity
（6）Towards a computation of $K_{G}^{\mathbb{R}}$

An important information for readers

The current version is a shortened ("web-publishable" ©) version of my presentation in Birmingham.

An important information for readers

The current version is a shortened ("web-publishable" ©) version of my presentation in Birmingham. If you are interested in a copy of my original slides, presented in Birmingham, could you please send an email to me in advance? I am happy to forward these to you, of course. Many thanks!

1．An important information for readers
（2）A very short glimpse at A．Grothendieck＇s work in functional analysis
（3）A further reformulation of Grothendieck＇s inequality
（4）$K_{G}^{\mathbb{R}}$ and correlation matrix transformations
（5）Grothendieck＇s identity
（6）Towards a computation of $K_{G}^{\mathbb{R}}$

A portrait of A. Grothendieck

A．Grothendieck lecturing at IHES
 （1958－1970）

Excerpt from A. Grothendieck's handwritten lecture notes I

Excerpt from A. Grothendieck's handwritten lecture notes II

Excerpt from A. Grothendieck's handwritten lecture notes III

(1) An important information for readers
(2) A very short glimpse at A. Grothendieck's work in functional analysis
(3) A further reformulation of Grothendieck's inequality
(4) $K_{G}^{\mathbb{R}}$ and correlation matrix transformations
(5) Grothendieck's identity
(6) Towards a computation of $K_{G}^{\mathbb{R}}$

Grothendieck's inequality in matrix

form I

Theorem (Lindenstrauss-Pelczyński (1968))

Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$ and $m, n \in \mathbb{N}$. Then there exists a universal constant $K>0$-not depending on m and n-such that for all matrices $A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{F})$, for all \mathbb{F}-Hilbert spaces H, for all unit vectors $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n} \in S_{H}$ the following inequality is satisfied:

$$
\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}\right| \leq K \max \left\{\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} p_{i} q_{j}\right|: p_{i}, q_{j} \in\{-1,1\}\right\}
$$

Grothendieck's inequality in matrix

form I

Theorem (Lindenstrauss-Pelczyński (1968))

Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$ and $m, n \in \mathbb{N}$. Then there exists a universal constant $K>0$ - not depending on m and n-such that for all matrices $A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{F})$, for all \mathbb{F}-Hilbert spaces H, for all unit vectors $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n} \in S_{H}$ the following inequality is satisfied:

$$
\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}\right| \leq K \max \left\{\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} p_{i} q_{j}\right|: p_{i}, q_{j} \in\{-1,1\}\right\} .
$$

The smallest possible value of the corresponding constant K is denoted by $K_{G}^{\mathbb{F}}$. It is called Grothendieck's constant.

Grothendieck's inequality in matrix

 form I
Theorem (Lindenstrauss-Pelczyński (1968))

Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$ and $m, n \in \mathbb{N}$. Then there exists a universal constant $K>0$ - not depending on m and n-such that for all matrices $A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{F})$, for all \mathbb{F}-Hilbert spaces H, for all unit vectors $u_{1}, \ldots, u_{m}, v_{1}, \ldots, v_{n} \in S_{H}$ the following inequality is satisfied:

$$
\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}\right| \leq K \max \left\{\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} p_{i} q_{j}\right|: p_{i}, q_{j} \in\{-1,1\}\right\} .
$$

The smallest possible value of the corresponding constant K is denoted by $K_{G}^{\mathbb{P}}$. It is called Grothendieck's constant. Computing the exact numerical value of this constant is an open problem (unsolved since 1953)!

Grothendieck's inequality in matrix form II

Theorem (R. E. Rietz (1974), H. Niemi (1983))
Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$ and H be an arbitrary Hilbert space over \mathbb{F}. Let $n \in \mathbb{N}$. Let $K_{G H}^{\mathbb{F}}$ denote the Grothendieck constant, derived from Grothendieck's inequality "restricted" to the set of all positive semidefinite $n \times n$-matrices over \mathbb{F}. Then

Grothendieck's inequality in matrix form II

Theorem (R. E. Rietz (1974), H. Niemi (1983))
Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$ and H be an arbitrary Hilbert space over \mathbb{F}. Let $n \in \mathbb{N}$. Let $K_{G H}^{\mathbb{F}}$ denote the Grothendieck constant, derived from Grothendieck's inequality "restricted" to the set of all positive semidefinite $n \times n$-matrices over \mathbb{F}. Then

$$
K_{G H}^{\mathbb{R}}=\frac{\pi}{2}
$$

Grothendieck's inequality in matrix form II

Theorem (R. E. Rietz (1974), H. Niemi (1983))
Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$ and H be an arbitrary Hilbert space over \mathbb{F}. Let $n \in \mathbb{N}$. Let $K_{G H}^{\mathbb{F}}$ denote the Grothendieck constant, derived from Grothendieck's inequality "restricted" to the set of all positive semidefinite $n \times n$-matrices over \mathbb{F}. Then

$$
K_{G H}^{\mathbb{R}}=\frac{\pi}{2} \quad \text { and }
$$

Grothendieck's inequality in matrix form II

Theorem (R. E. Rietz (1974), H. Niemi (1983))
Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$ and H be an arbitrary Hilbert space over \mathbb{F}. Let $n \in \mathbb{N}$. Let $K_{G H}^{\mathbb{F}}$ denote the Grothendieck constant, derived from Grothendieck's inequality "restricted" to the set of all positive semidefinite $n \times n$-matrices over \mathbb{F}. Then

$$
K_{G H}^{\mathbb{R}}=\frac{\pi}{2} \quad \text { and } \quad K_{G H}^{\mathbb{C}}=\frac{4}{\pi}
$$

Grothendieck's inequality in matrix form II

Theorem (R. E. Rietz (1974), H. Niemi (1983))
Let $\mathbb{F} \in\{\mathbb{R}, \mathbb{C}\}$ and H be an arbitrary Hilbert space over \mathbb{F}. Let
$n \in \mathbb{N}$. Let $K_{G H}^{\mathbb{F}}$ denote the Grothendieck constant, derived from Grothendieck's inequality "restricted" to the set of all positive semidefinite $n \times n$-matrices over \mathbb{F}. Then

$$
K_{G H}^{\mathbb{R}}=\frac{\pi}{2} \quad \text { and } \quad K_{G H}^{\mathbb{C}}=\frac{4}{\pi}
$$

From now on are going to consider the real case (i.e., $\mathbb{F}=\mathbb{R}$) only. Nevertheless, we allow an unrestricted use of all matrices $A \in \mathbb{M}(m \times n ; \mathbb{R})$ for any $m, n \in \mathbb{N}$ in GT .

Grothendieck's inequality in matrix form III

Until present the following encapsulation of $K_{G}^{\mathbb{R}}$ holds, primarily thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently, due to an impressive work of M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor (2011):

Grothendieck's inequality in matrix form III

Until present the following encapsulation of $K_{G}^{\mathbb{R}}$ holds, primarily thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently, due to an impressive work of M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor (2011):

$$
1,676<K_{G}^{\mathbb{R}} \stackrel{(!!)}{<} \frac{\pi}{2 \ln (1+\sqrt{2})} \approx 1,782
$$

Grothendieck's inequality in matrix

form III

Until present the following encapsulation of $K_{G}^{\mathbb{R}}$ holds, primarily thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently, due to an impressive work of M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor (2011):

$$
1,676<K_{G}^{\mathbb{R}} \stackrel{(!!)}{<} \frac{\pi}{2 \ln (1+\sqrt{2})} \approx 1,782 .
$$

Screening these numbers we might be tempted to guess the following

Grothendieck's inequality in matrix

form III

Until present the following encapsulation of $K_{G}^{\mathbb{R}}$ holds, primarily thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently, due to an impressive work of M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor (2011):

$$
1,676<K_{G}^{\mathbb{R}} \stackrel{(!!)}{<} \frac{\pi}{2 \ln (1+\sqrt{2})} \approx 1,782 .
$$

Screening these numbers we might be tempted to guess the following
Conjecture Is $K_{G}^{\mathbb{R}}=\sqrt{\pi}$

Grothendieck's inequality in matrix

form III

Until present the following encapsulation of $K_{G}^{\mathbb{R}}$ holds, primarily thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently, due to an impressive work of M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor (2011):

$$
1,676<K_{G}^{\mathbb{R}} \stackrel{(!!)}{<} \frac{\pi}{2 \ln (1+\sqrt{2})} \approx 1,782
$$

Screening these numbers we might be tempted to guess the following
Conjecture Is $K_{G}^{\mathbb{R}}=\sqrt{\pi}=\Gamma\left(\frac{1}{2}\right)$

Grothendieck's inequality in matrix

form III

Until present the following encapsulation of $K_{G}^{\mathbb{R}}$ holds, primarily thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently, due to an impressive work of M. Braverman, K. Makarychev, Y. Makarychev, and A. Naor (2011):

$$
1,676<K_{G}^{\mathbb{R}} \stackrel{(!!)}{<} \frac{\pi}{2 \ln (1+\sqrt{2})} \approx 1,782
$$

Screening these numbers we might be tempted to guess the following
Conjecture Is $K_{G}^{\mathbb{R}}=\sqrt{\pi}=\Gamma\left(\frac{1}{2}\right) \approx 1,772$?

Grothendieck's inequality rewritten I

By transforming Grothendieck's inequality into an equivalent inequality between traces of matrix products (respectively Hilbert-Schmidt inner products) we are lead to a surprising interpretation which reveals deep links to combinatorial (binary) optimisation, semidefinite programming (SDP) and multivariate statistics, built on suitable non-linear mappings between correlation matrices.

Grothendieck's inequality rewritten I

By transforming Grothendieck's inequality into an equivalent inequality between traces of matrix products (respectively Hilbert-Schmidt inner products) we are lead to a surprising interpretation which reveals deep links to combinatorial (binary) optimisation, semidefinite programming (SDP) and multivariate statistics, built on suitable non-linear mappings between correlation matrices.
We will sketch this approach which might lead to a constructive improvement of Krivine's upper bound $\frac{\pi}{2 \ln (1+\sqrt{2})}$. At least it also can be reproduced in this approach.

Grothendieck's inequality rewritten II

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$ be given, where $S_{H}:=\{w \in H:\|w\|=1\}$ denotes the unit sphere in H.

Grothendieck's inequality rewritten II

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$ be given, where $S_{H}:=\{w \in H:\|w\|=1\}$ denotes the unit sphere in H.
Firstly, note that

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}=
$$

Grothendieck's inequality rewritten II

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$ be given, where $S_{H}:=\{w \in H:\|w\|=1\}$ denotes the unit sphere in H.
Firstly, note that

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}=\operatorname{tr}\left(A^{\top} \Gamma_{H}(u, v)\right)=
$$

Grothendieck's inequality rewritten II

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$ be given, where $S_{H}:=\{w \in H:\|w\|=1\}$ denotes the unit sphere in H.
Firstly, note that

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}=\operatorname{tr}\left(A^{\top} \Gamma_{H}(u, v)\right)=\left\langle A, \Gamma_{H}(u, v)\right\rangle,
$$

is precisely the Hilbert-Schmidt inner product (or the Frobenius inner product) of the matrices $A \in \mathbb{M}(m \times n ; \mathbb{R})$ and $\Gamma_{H}(u, v) \in \mathbb{M}(m \times n ; \mathbb{R})$, where

Grothendieck's inequality rewritten II

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$ be given, where $S_{H}:=\{w \in H:\|w\|=1\}$ denotes the unit sphere in H.
Firstly, note that

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}=\operatorname{tr}\left(A^{\top} \Gamma_{H}(u, v)\right)=\left\langle A, \Gamma_{H}(u, v)\right\rangle,
$$

is precisely the Hilbert-Schmidt inner product (or the Frobenius inner product) of the matrices $A \in \mathbb{M}(m \times n ; \mathbb{R})$ and $\Gamma_{H}(u, v) \in \mathbb{M}(m \times n ; \mathbb{R})$, where

$$
\Gamma_{H}(u, v):=\left(\begin{array}{cccc}
\left\langle u_{1}, v_{1}\right\rangle_{H} & \left\langle u_{1}, v_{2}\right\rangle_{H} & \cdots & \left\langle u_{1}, v_{n}\right\rangle_{H} \\
\left\langle u_{2}, v_{1}\right\rangle_{H} & \left\langle u_{2}, v_{2}\right\rangle_{H} & \cdots & \left\langle u_{2}, v_{n}\right\rangle_{H} \\
\vdots & \vdots & \vdots & \vdots \\
\left\langle u_{m}, v_{1}\right\rangle_{H} & \left\langle u_{m}, v_{2}\right\rangle_{H} & \cdots & \left\langle u_{m}, v_{n}\right\rangle_{H}
\end{array}\right) .
$$

Grothendieck's inequality rewritten III

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), p:=\left(p_{1}, \ldots, p_{m}\right)^{\top} \in\left(\mathbb{S}^{0}\right)^{m}$ and $q:=\left(q_{1}, \ldots, q_{n}\right)^{\top} \in\left(\mathbb{S}^{0}\right)^{n}$ be given, where $\mathbb{S}^{0}:=\{-1,1\}$
denotes the unit "sphere" in $\mathbb{R}=\mathbb{R}^{0+1}$.
Similarly as before, we obtain

$$
\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} p_{i} q_{j}=\operatorname{tr}\left(A^{\top} \Gamma_{\mathbb{R}}(p, q)\right)=\left\langle A, \Gamma_{\mathbb{R}}(p, q)\right\rangle
$$

where now

$$
\Gamma_{\mathbb{R}}(p, q):=p q^{\top}=\left(\begin{array}{cccc}
\pm 1 & \mp 1 & \ldots & \pm 1 \\
\mp 1 & \mp 1 & \ldots & \mp 1 \\
\vdots & \vdots & \vdots & \vdots \\
\pm 1 & \mp 1 & \ldots & \pm 1
\end{array}\right)
$$

Full matrix representation of the Hilbert space vectors

Pick all $m+n$ Hilbert space unit vectors
$u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n} \in H$ and represent them as

Full matrix representation of the Hilbert space vectors

Pick all $m+n$ Hilbert space unit vectors $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n} \in H$ and represent them as

$$
\left(\begin{array}{cccc}
\left\langle u_{1}, v_{1}\right\rangle & \left\langle u_{1}, v_{2}\right\rangle & \ldots & \left\langle u_{1}, v_{n}\right\rangle \\
\left\langle u_{2}, v_{1}\right\rangle & \left\langle u_{2}, v_{2}\right\rangle & \ldots & \left\langle u_{2}, v_{n}\right\rangle \\
\vdots & \vdots & \vdots & \vdots \\
\left\langle u_{m}, v_{1}\right\rangle & \left\langle u_{m}, v_{2}\right\rangle & \ldots & \left\langle u_{m}, v_{n}\right\rangle
\end{array}\right)
$$

Full matrix representation of the Hilbert space vectors

Pick all $m+n$ Hilbert space unit vectors $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n} \in H$ and represent them as

$$
\left(\begin{array}{cccc}
\left\langle u_{1}, v_{1}\right\rangle & \left\langle u_{1}, v_{2}\right\rangle & \ldots & \left\langle u_{1}, v_{n}\right\rangle \\
\left\langle u_{2}, v_{1}\right\rangle & \left\langle u_{2}, v_{2}\right\rangle & \ldots & \left\langle u_{2}, v_{n}\right\rangle \\
\vdots & \vdots & \vdots & \vdots \\
\left\langle u_{m}, v_{1}\right\rangle & \left\langle u_{m}, v_{2}\right\rangle & \ldots & \left\langle u_{m}, v_{n}\right\rangle
\end{array}\right)
$$

Does this matrix look familiar to you?

Full matrix representation of the Hilbert space vectors

Pick all $m+n$ Hilbert space unit vectors $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n} \in H$ and represent them as

$$
\left(\begin{array}{cccc}
\left\langle u_{1}, v_{1}\right\rangle & \left\langle u_{1}, v_{2}\right\rangle & \ldots & \left\langle u_{1}, v_{n}\right\rangle \\
\left\langle u_{2}, v_{1}\right\rangle & \left\langle u_{2}, v_{2}\right\rangle & \ldots & \left\langle u_{2}, v_{n}\right\rangle \\
\vdots & \vdots & \vdots & \vdots \\
\left\langle u_{m}, v_{1}\right\rangle & \left\langle u_{m}, v_{2}\right\rangle & \ldots & \left\langle u_{m}, v_{n}\right\rangle
\end{array}\right)
$$

Does this matrix look familiar to you?
It is a part of something larger...

Full matrix representation of the Hilbert space vectors

Pick all $m+n$ Hilbert space unit vectors $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n} \in H$ and represent them as

$$
\left(\begin{array}{cccc}
\left\langle u_{1}, v_{1}\right\rangle & \left\langle u_{1}, v_{2}\right\rangle & \ldots & \left\langle u_{1}, v_{n}\right\rangle \\
\left\langle u_{2}, v_{1}\right\rangle & \left\langle u_{2}, v_{2}\right\rangle & \ldots & \left\langle u_{2}, v_{n}\right\rangle \\
\vdots & \vdots & \vdots & \vdots \\
\left\langle u_{m}, v_{1}\right\rangle & \left\langle u_{m}, v_{2}\right\rangle & \ldots & \left\langle u_{m}, v_{n}\right\rangle
\end{array}\right)
$$

Does this matrix look familiar to you?
It is a part of something larger...
Namely:

Block matrix representation I

Block matrix representation I

Block matrix representation I

Block matrix representation II

$$
\left(\begin{array}{cccccccc}
\left\langle u_{1}, u_{1}\right\rangle & \left\langle u_{1}, u_{2}\right\rangle & \ldots & \left\langle u_{1}, u_{m}\right\rangle & \left\langle u_{1}, v_{1}\right\rangle & \left\langle u_{1}, v_{2}\right\rangle & \ldots & \left\langle u_{1}, v_{n}\right\rangle \\
\left\langle u_{2}, u_{1}\right\rangle & \left\langle u_{2}, u_{2}\right\rangle & \ldots & \left\langle u_{2}, u_{m}\right\rangle & \left\langle u_{2}, v_{1}\right\rangle & \left\langle u_{2}, v_{2}\right\rangle & \ldots & \left\langle u_{2}, v_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\left\langle u_{m}, u_{1}\right\rangle & \left\langle u_{m}, u_{2}\right\rangle & \ldots & \left\langle u_{m}, u_{m}\right\rangle & \left\langle u_{m}, v_{1}\right\rangle & \left\langle u_{m}, v_{2}\right\rangle & \ldots & \left\langle u_{m}, v_{n}\right\rangle \\
\left\langle v_{1}, u_{1}\right\rangle & \left\langle v_{1}, u_{2}\right\rangle & \ldots & \left\langle v_{1}, u_{m}\right\rangle & \left\langle v_{1}, v_{1}\right\rangle & \left\langle v_{1}, v_{2}\right\rangle & \ldots & \left\langle v_{1}, v_{n}\right\rangle \\
\left\langle v_{2}, u_{1}\right\rangle & \left\langle v_{2}, u_{2}\right\rangle & \ldots & \left\langle v_{2}, u_{m}\right\rangle & \left\langle v_{2}, v_{1}\right\rangle & \left\langle v_{2}, v_{2}\right\rangle & \ldots & \left\langle v_{2}, v_{n}\right\rangle \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
\left\langle v_{n}, u_{1}\right\rangle & \left\langle v_{n}, u_{2}\right\rangle & \ldots & \left\langle v_{n}, u_{m}\right\rangle & \left\langle v_{n}, v_{1}\right\rangle & \left\langle v_{m}, v_{2}\right\rangle & \ldots & \left\langle v_{n}, v_{n}\right\rangle
\end{array}\right)
$$

Block matrix representation III

$$
\left(\begin{array}{cccccccc}
1 & \left\langle u_{1}, u_{2}\right\rangle & \ldots & \left\langle u_{1}, u_{m}\right\rangle & \left\langle u_{1}, v_{1}\right\rangle & \left\langle u_{1}, v_{2}\right\rangle & \ldots & \left\langle u_{1}, v_{n}\right\rangle \\
\left\langle u_{2}, u_{1}\right\rangle & 1 & \ldots & \left\langle u_{2}, u_{m}\right\rangle & \left\langle u_{2}, v_{1}\right\rangle & \left\langle u_{2}, v_{2}\right\rangle & \ldots & \left\langle u_{2}, v_{n}\right\rangle \\
\vdots & \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\
\left\langle u_{m}, u_{1}\right\rangle & \left\langle u_{m}, u_{2}\right\rangle & \ldots & 1 & \left\langle u_{m}, v_{1}\right\rangle & \left\langle u_{m}, v_{2}\right\rangle & \ldots & \left\langle u_{m}, v_{n}\right\rangle \\
\left\langle v_{1}, u_{1}\right\rangle & \left\langle v_{1}, u_{2}\right\rangle & \ldots & \left\langle v_{1}, u_{m}\right\rangle & 1 & \left\langle v_{1}, v_{2}\right\rangle & \ldots & \left\langle v_{1}, v_{n}\right\rangle \\
\left\langle v_{2}, u_{1}\right\rangle & \left\langle v_{2}, u_{2}\right\rangle & \ldots & \left\langle v_{2}, u_{m}\right\rangle & \left\langle v_{2}, v_{1}\right\rangle & 1 & \ldots & \left\langle v_{2}, v_{n}\right\rangle \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \cdots & \vdots \\
\left\langle v_{n}, u_{1}\right\rangle & \left\langle v_{n}, u_{2}\right\rangle & \ldots & \left\langle v_{n}, u_{m}\right\rangle & \left\langle v_{n}, v_{1}\right\rangle & \left\langle v_{m}, v_{2}\right\rangle & \ldots & 1
\end{array}\right)
$$

A refresher of a few definitions I

Let $n \in \mathbb{N}$. We put
$\operatorname{PSD}(n ; \mathbb{R}):=\{S: S \in \mathbb{M}(n \times n ; \mathbb{R})$ and S is positive semidefinite $\}$.

A refresher of a few definitions I

Let $n \in \mathbb{N}$. We put
$\operatorname{PSD}(n ; \mathbb{R}):=\{S: S \in \mathbb{M}(n \times n ; \mathbb{R})$ and S is positive semidefinite $\}$.
Recall that $\operatorname{PSD}(n ; \mathbb{R})$ is a closed convex cone which (by definition!) consists of symmetric matrices only.

A refresher of a few definitions I

Let $n \in \mathbb{N}$. We put
$\operatorname{PSD}(n ; \mathbb{R}):=\{S: S \in \mathbb{M}(n \times n ; \mathbb{R})$ and S is positive semidefinite $\}$.
Recall that $\operatorname{PSD}(n ; \mathbb{R})$ is a closed convex cone which (by definition!) consists of symmetric matrices only.
Moreover, we consider the set

$$
C(n ; \mathbb{R}):=\left\{S \in P S D(n ; \mathbb{R}) \text { such that } S_{i i}=1 \text { for all } i \in[n]\right\}
$$

A refresher of a few definitions II

Let $d, k \in \mathbb{N}$ and $(H,\langle\cdot, \cdot\rangle)$ be an arbitrary d-dimensional Hilbert space (i. e, $H=l_{2}^{d}$). Let $w_{1}, w_{2}, \ldots, w_{k} \in H$. Put
$w:=\left(w_{1}, \ldots, w_{k}\right)^{\top} \in H^{k}$ and $S:=\left(w_{1}\left|w_{2}\right| \ldots \mid w_{k}\right) \in$ $\mathbb{M}(d \times k ; \mathbb{R})$. The matrix $\Gamma_{H}(w, w) \in \operatorname{PSD}(k ; \mathbb{R})$, defined as

$$
\Gamma_{H}(w, w)_{i j}:=\left\langle w_{i}, w_{j}\right\rangle=\left(S^{\top} S\right)_{i j} \quad(i, j \in[k]:=\{1,2, \ldots, k\})
$$

is called Gram matrix of the vectors $w_{1}, \ldots, w_{k} \in H$.

A refresher of a few definitions II

Let $d, k \in \mathbb{N}$ and $(H,\langle\cdot, \cdot\rangle)$ be an arbitrary d-dimensional Hilbert space (i. e, $H=l_{2}^{d}$). Let $w_{1}, w_{2}, \ldots, w_{k} \in H$. Put
$w:=\left(w_{1}, \ldots, w_{k}\right)^{\top} \in H^{k}$ and $S:=\left(w_{1}\left|w_{2}\right| \ldots i w_{k}\right) \in$ $\mathbb{M}(d \times k ; \mathbb{R})$. The matrix $\Gamma_{H}(w, w) \in P S D(k ; \mathbb{R})$, defined as

$$
\Gamma_{H}(w, w)_{i j}:=\left\langle w_{i}, w_{j}\right\rangle=\left(S^{\top} S\right)_{i j} \quad(i, j \in[k]:=\{1,2, \ldots, k\})
$$

is called Gram matrix of the vectors $w_{1}, \ldots, w_{k} \in H$.
Observe that

$$
\left(\begin{array}{cccc}
\left\langle u_{1}, v_{1}\right\rangle & \left\langle u_{1}, v_{2}\right\rangle & \ldots & \left\langle u_{1}, v_{n}\right\rangle \\
\left\langle u_{2}, v_{1}\right\rangle & \left\langle u_{2}, v_{2}\right\rangle & \ldots & \left\langle u_{2}, v_{n}\right\rangle \\
\vdots & \vdots & \vdots & \vdots \\
\left\langle u_{m}, v_{1}\right\rangle & \left\langle u_{m}, v_{2}\right\rangle & \ldots & \left\langle u_{m}, v_{n}\right\rangle
\end{array}\right)
$$

is not a Gram matrix!

A refresher of a few definitions III

Let $n \in \mathbb{N}$. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\xi:=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)^{\top}: \Omega \longrightarrow \mathbb{R}^{n}$ be a random vector. Let $\mu:=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{\top} \in \mathbb{R}^{n}$ and $C \in \operatorname{PSD}(n ; \mathbb{R})$.

A refresher of a few definitions III

Let $n \in \mathbb{N}$. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\xi:=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)^{\top}: \Omega \longrightarrow \mathbb{R}^{n}$ be a random vector. Let $\mu:=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{\top} \in \mathbb{R}^{n}$ and $C \in \operatorname{PSD}(n ; \mathbb{R})$.
Recall that ξ is an n-dimensional Gaussian random vector with respect to the "parameters" μ and C (short: $\xi \sim N_{n}(\mu, C)$) if and only if for all $a \in \mathbb{R}^{n}$ there exists $\eta_{a} \sim N_{1}(0,1)$ such that

$$
\langle a, \xi\rangle=\sum_{i=1}^{n} a_{i} \xi_{i}=\langle a, \mu\rangle+\sqrt{\langle a, C a\rangle} \eta_{a}
$$

A refresher of a few definitions III

Let $n \in \mathbb{N}$. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\xi:=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)^{\top}: \Omega \longrightarrow \mathbb{R}^{n}$ be a random vector. Let $\mu:=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{\top} \in \mathbb{R}^{n}$ and $C \in \operatorname{PSD}(n ; \mathbb{R})$.
Recall that ξ is an n-dimensional Gaussian random vector with respect to the "parameters" μ and C (short: $\xi \sim N_{n}(\mu, C)$) if and only if for all $a \in \mathbb{R}^{n}$ there exists $\eta_{a} \sim N_{1}(0,1)$ such that

$$
\langle a, \xi\rangle=\sum_{i=1}^{n} a_{i} \xi_{i}=\langle a, \mu\rangle+\sqrt{\langle a, C a\rangle} \eta_{a}
$$

Note that we don't require here that C is invertible!

A refresher of a few definitions III

Let $n \in \mathbb{N}$. Fix a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and let $\xi:=\left(\xi_{1}, \xi_{2}, \ldots, \xi_{n}\right)^{\top}: \Omega \longrightarrow \mathbb{R}^{n}$ be a random vector. Let $\mu:=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right)^{\top} \in \mathbb{R}^{n}$ and $C \in \operatorname{PSD}(n ; \mathbb{R})$.
Recall that ξ is an n-dimensional Gaussian random vector with respect to the "parameters" μ and C (short: $\xi \sim N_{n}(\mu, C)$) if and only if for all $a \in \mathbb{R}^{n}$ there exists $\eta_{a} \sim N_{1}(0,1)$ such that

$$
\langle a, \xi\rangle=\sum_{i=1}^{n} a_{i} \xi_{i}=\langle a, \mu\rangle+\sqrt{\langle a, C a\rangle} \eta_{a}
$$

Note that we don't require here that C is invertible! Following Feller, the matrix $\mathbb{V}(\xi)$ defined as

$$
\mathbb{V}(\xi)_{i j}:=\mathbb{E}\left[\xi_{i} \xi_{j}\right]-\mathbb{E}\left[\xi_{i}\right] \mathbb{E}\left[\xi_{j}\right] \stackrel{(!)}{=} C_{i j} \quad(i, j \in[n])
$$

is known as the variance matrix of the Gaussian random vector ξ.

Structure of correlation matrices I

Proposition
Let $n \in \mathbb{N}$ and $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{M}(n \times n ; \mathbb{R})$. TFAE:

Structure of correlation matrices I

Proposition
Let $n \in \mathbb{N}$ and $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{M}(n \times n ; \mathbb{R})$. TFAE:
(i) $\Sigma \in \operatorname{PSD}(n ; \mathbb{R})$ and $\sigma_{i i}=1$ for all $i \in[n]$.

Structure of correlation matrices I

Proposition

Let $n \in \mathbb{N}$ and $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{M}(n \times n ; \mathbb{R})$. TFAE:
(i) $\Sigma \in \operatorname{PSD}(n ; \mathbb{R})$ and $\sigma_{i i}=1$ for all $i \in[n]$.
(ii) $\Sigma \in C(n ; \mathbb{R})$.

Structure of correlation matrices I

Proposition

Let $n \in \mathbb{N}$ and $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{M}(n \times n ; \mathbb{R})$. TFAE:
(i) $\Sigma \in \operatorname{PSD}(n ; \mathbb{R})$ and $\sigma_{i i}=1$ for all $i \in[n]$.
(ii) $\Sigma \in C(n ; \mathbb{R})$.
(iii) There exist vectors $x_{1}, \ldots, x_{n} \in S^{n-1}$ such that $\sigma_{i j}=\left\langle x_{i}, x_{j}\right\rangle$ for all $i, j \in[n]$.

Structure of correlation matrices I

Proposition

Let $n \in \mathbb{N}$ and $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{M}(n \times n ; \mathbb{R})$. TFAE:
(i) $\Sigma \in \operatorname{PSD}(n ; \mathbb{R})$ and $\sigma_{i i}=1$ for all $i \in[n]$.
(ii) $\Sigma \in C(n ; \mathbb{R})$.
(iii) There exist vectors $x_{1}, \ldots, x_{n} \in S^{n-1}$ such that $\sigma_{i j}=\left\langle x_{i}, x_{j}\right\rangle$ for all $i, j \in[n]$.
(iv) $\Sigma=\Gamma_{p_{2}^{m}}(x, x)$ for some $x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in\left(S^{n-1}\right)^{n}$.

Structure of correlation matrices I

Proposition

Let $n \in \mathbb{N}$ and $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{M}(n \times n ; \mathbb{R})$. TFAE:
(i) $\Sigma \in \operatorname{PSD}(n ; \mathbb{R})$ and $\sigma_{i i}=1$ for all $i \in[n]$.
(ii) $\Sigma \in C(n ; \mathbb{R})$.
(iii) There exist vectors $x_{1}, \ldots, x_{n} \in S^{n-1}$ such that $\sigma_{i j}=\left\langle x_{i}, x_{j}\right\rangle$ for all $i, j \in[n]$.
(iv) $\Sigma=\Gamma_{p_{2}^{\prime}}(x, x)$ for some $x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in\left(S^{n-1}\right)^{n}$.
(v) $\Sigma=\mathbb{V}(\xi)$ is a correlation matrix, induced by some n-dimensional Gaussian random vector $\xi \sim N_{n}(0, \Sigma)$.

Structure of correlation matrices I

Proposition

Let $n \in \mathbb{N}$ and $\Sigma=\left(\sigma_{i j}\right) \in \mathbb{M}(n \times n ; \mathbb{R})$. TFAE:
(i) $\Sigma \in \operatorname{PSD}(n ; \mathbb{R})$ and $\sigma_{i i}=1$ for all $i \in[n]$.
(ii) $\Sigma \in C(n ; \mathbb{R})$.
(iii) There exist vectors $x_{1}, \ldots, x_{n} \in S^{n-1}$ such that $\sigma_{i j}=\left\langle x_{i}, x_{j}\right\rangle$ for all $i, j \in[n]$.
(iv) $\Sigma=\Gamma_{p_{2}^{\prime}}(x, x)$ for some $x=\left(x_{1}, \ldots, x_{n}\right)^{\top} \in\left(S^{n-1}\right)^{n}$.
(v) $\Sigma=\mathbb{V}(\xi)$ is a correlation matrix, induced by some n-dimensional Gaussian random vector $\xi \sim N_{n}(0, \Sigma)$.
In particular, condition (i) implies that $\sigma_{i j} \in[-1,1]$ for all $i, j \in[n]$.

Structure of correlation matrices II

Observation
Let $k \in \mathbb{N}$. Then the sets $\left\{S: S=x x^{\top}\right.$ for some $\left.x \in\{-1,1\}^{k}\right\}$ and $\{\Theta: \Theta \in C(k ; \mathbb{R})$ and $r k(\Theta)=1\}$ coincide.

Structure of correlation matrices II

Observation
Let $k \in \mathbb{N}$. Then the sets $\left\{S: S=x x^{\top}\right.$ for some $\left.x \in\{-1,1\}^{k}\right\}$ and $\{\Theta: \Theta \in C(k ; \mathbb{R})$ and $r k(\Theta)=1\}$ coincide.
Proposition (K. R. Parthasarathy (2002))
Let $k \in \mathbb{N} . C(k ; \mathbb{R})$ is a compact and convex subset of the k^{2}-dimensional vector space $\mathbb{M}(k \times k ; \mathbb{R})$. Any $k \times k$-correlation matrix of rank 1 is an extremal point of the set $C(k ; \mathbb{R})$.

Structure of correlation matrices II

Observation
Let $k \in \mathbb{N}$. Then the sets $\left\{S: S=x x^{\top}\right.$ for some $\left.x \in\{-1,1\}^{k}\right\}$ and $\{\Theta: \Theta \in C(k ; \mathbb{R})$ and $r k(\Theta)=1\}$ coincide.
Proposition (K. R. Parthasarathy (2002))
Let $k \in \mathbb{N} . C(k ; \mathbb{R})$ is a compact and convex subset of the k^{2}-dimensional vector space $\mathbb{M}(k \times k ; \mathbb{R})$. Any $k \times k$-correlation matrix of rank 1 is an extremal point of the set $C(k ; \mathbb{R})$.
In particular, the (finite) set of all $k \times k$-correlation matrices of rank 1 is not convex.

Structure of correlation matrices II

Observation
Let $k \in \mathbb{N}$. Then the sets $\left\{S: S=x x^{\top}\right.$ for some $\left.x \in\{-1,1\}^{k}\right\}$ and $\{\Theta: \Theta \in C(k ; \mathbb{R})$ and $r k(\Theta)=1\}$ coincide.

Proposition (K. R. Parthasarathy (2002))
Let $k \in \mathbb{N} . C(k ; \mathbb{R})$ is a compact and convex subset of the k^{2}-dimensional vector space $\mathbb{M}(k \times k ; \mathbb{R})$. Any $k \times k$-correlation matrix of rank 1 is an extremal point of the set $C(k ; \mathbb{R})$.
In particular, the (finite) set of all $k \times k$-correlation matrices of rank 1 is not convex.
Let $k \in \mathbb{N}$. Put

$$
C_{1}(k ; \mathbb{R}):=\{\Theta: \Theta \in C(k ; \mathbb{R}) \text { and } \operatorname{rk}(\Theta)=1\}
$$

Canonical block injection of A

A naturally appearing question is the following:

Canonical block injection of A

A naturally appearing question is the following: Having gained - important - additional structure by "enlarging" the $m \times n$-matrix $\Gamma_{H}(u, v)$ to a $(m+n) \times(m+n)$-correlation matrix, how could this gained information be used to rewrite Grothendieck's inequality accordingly?

Canonical block injection of A

A naturally appearing question is the following: Having gained - important - additional structure by "enlarging" the $m \times n$-matrix $\Gamma_{H}(u, v)$ to a $(m+n) \times(m+n)$-correlation matrix, how could this gained information be used to rewrite Grothendieck's inequality accordingly? To answer this question, let us also "embed" the $m \times n$-matrix A suitably!

Canonical block injection of A

A naturally appearing question is the following: Having gained - important - additional structure by "enlarging" the $m \times n$-matrix $\Gamma_{H}(u, v)$ to a $(m+n) \times(m+n)$-correlation matrix, how could this gained information be used to rewrite Grothendieck's inequality accordingly? To answer this question, let us also "embed" the $m \times n$-matrix A suitably!

Definition

Let $m, n \in \mathbb{N}$ and $A \in \mathbb{M}(m \times n ; \mathbb{R})$ arbitrary. Put

$$
\widehat{A}:=\frac{1}{2}\left(\begin{array}{rr}
0 & A \\
A^{\top} & 0
\end{array}\right)
$$

Let us call $\mathbb{M}((m+n) \times(m+n) ; \mathbb{R}) \ni \widehat{A}$ the canonical block injection of A.

Canonical block injection of A

A naturally appearing question is the following: Having gained - important - additional structure by "enlarging" the $m \times n$-matrix $\Gamma_{H}(u, v)$ to a $(m+n) \times(m+n)$-correlation matrix, how could this gained information be used to rewrite Grothendieck's inequality accordingly? To answer this question, let us also "embed" the $m \times n$-matrix A suitably!

Definition

Let $m, n \in \mathbb{N}$ and $A \in \mathbb{M}(m \times n ; \mathbb{R})$ arbitrary. Put

$$
\widehat{A}:=\frac{1}{2}\left(\begin{array}{rr}
0 & A \\
A^{\top} & 0
\end{array}\right)
$$

Let us call $\mathbb{M}((m+n) \times(m+n) ; \mathbb{R}) \ni \widehat{A}$ the canonical block injection of A.
Observe that \widehat{A} is symmetric, implying that $\widehat{A}=\widehat{A}^{\top}$.

A further equivalent rewriting of GT I

Proposition
Let $m, n \in \mathbb{N}$ and $A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{R})$. Let $K>0$. TFAE:

A further equivalent rewriting of GT I

Proposition

Let $m, n \in \mathbb{N}$ and $A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{R})$. Let $K>0$. TFAE:
(i)

$$
\sup _{(u, v) \in S_{H}^{m} \times S_{H}^{n}}\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}\right| \leq K \max _{(p, q) \in\{-1,1\}^{m} \times\{-1,1\}^{n}}\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} p_{i} q_{j}\right|
$$

for all Hilbert spaces H over \mathbb{R}.

A further equivalent rewriting of GT I

Proposition

Let $m, n \in \mathbb{N}$ and $A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{R})$. Let $K>0$. TFAE:
(i)

$$
\sup _{(u, v) \in S_{H}^{m} \times S_{H}^{n}}\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}\right| \leq K \max _{(p, q) \in\{-1,1\}^{m} \times\{-1,1\}^{n}}\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} p_{i} q_{j}\right|
$$

for all Hilbert spaces H over \mathbb{R}.
(ii)

$$
\sup _{\Sigma \in C(m+n ; \mathbb{R})}|\langle\widehat{A}, \Sigma\rangle| \leq K \max _{\substack{\Theta \in C(m+n ; \mathbb{R}) \\ r k(\Theta)=1}}|\langle\widehat{A}, \Theta\rangle| .
$$

A further equivalent rewriting of GT II

Proposition

Let $m, n \in \mathbb{N}$ and $A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{R})$. Let $K>0$. TFAE:
(i)

$$
\max _{(u, v) \in S_{H}^{m} \times S_{H}^{n}}\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}\right| \leq K \max _{(p, q) \in\{-1,1\}^{m} \times\{-1,1\}^{n}}\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} p_{i} q_{j}\right|
$$

for all Hilbert spaces H over \mathbb{R}.
(ii)

$$
\max _{\Sigma \in C(m+n ; \mathbb{R})}|\langle\widehat{A}, \Sigma\rangle| \leq K \max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle| .
$$

A further equivalent rewriting of GT II

Proposition

Let $m, n \in \mathbb{N}$ and $A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{R})$. Let $K>0$. TFAE:
(i)

$$
\max _{(u, v) \in S_{H}^{m} \times S_{H}^{n}}\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j}\left\langle u_{i}, v_{j}\right\rangle_{H}\right| \leq K_{(p, q) \in\{-1,1\}^{m} \times\{-1,1\}^{n}}\left|\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} p_{i} q_{j}\right|
$$

for all Hilbert spaces H over \mathbb{R}.
(ii)

$$
\max _{\Sigma \in C(m+n ; \mathbb{R})}|\langle\widehat{A}, \Sigma\rangle| \leq K \max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle| .
$$

We don't know whether condition (ii) holds for all matrices in $\mathbb{M}((m+n) \times(m+n) ; \mathbb{R})$.

GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem (since it is SDP) and hence of polynomial worst-case complexity (P)):

$$
\max _{\Sigma \in C(m+n ; \mathbb{R})}|\langle\widehat{A}, \Sigma\rangle|
$$

GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem (since it is SDP) and hence of polynomial worst-case complexity (P)):

$$
\max _{\Sigma C(m+n ; \mathbb{R})}|\langle\widehat{A}, \Sigma\rangle|
$$

On the right side: an NP-hard, non-convex combinatorial (Boolean) optimisation problem:

$$
\max _{\substack{\Theta \in C(m+n ; \mathbb{R}) \\ r k(\Theta)=1}}|\langle\widehat{A}, \Theta\rangle|
$$

GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem (since it is SDP) and hence of polynomial worst-case complexity (P)):

$$
\max _{\Sigma C(m+n ; \mathbb{R})}|\langle\widehat{A}, \Sigma\rangle|
$$

On the right side: an NP-hard, non-convex combinatorial (Boolean) optimisation problem:

$$
\max _{\substack{\Theta \in C(m+n, \mathbb{R}) \\ \operatorname{ric}(\Theta)=1}}|\langle\widehat{A}, \Theta\rangle|
$$

Thus, Grothendieck's constant $K_{G}^{\mathbb{R}}$ is precisely the "integrality gap"; i. e., the maximum ratio between the solution quality of the NP-hard Boolean optimisation on the right side of GT and of its SDP relaxation on the left side!
(1) An important information for readers
(2) A very short glimpse at A. Grothendieck's work in functional analysis
(3) A further reformulation of Grothendieck's inequality
(4) $K_{G}^{\mathbb{R}}$ and correlation matrix transformations
(5) Grothendieck's identity
(6) Towards a computation of $K_{G}^{\mathbb{R}}$

Schur product and the matrix $f[A]$ I

Definition

Let $\emptyset \neq U \subseteq \mathbb{R}$ and $f: U \longrightarrow \mathbb{R}$ a function. Let $A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{R})$ such that $a_{i j} \in U$ for all $(i, j) \in[m] \times[n]$.

Schur product and the matrix $f[A]$ I

Definition

Let $\emptyset \neq U \subseteq \mathbb{R}$ and $f: U \longrightarrow \mathbb{R}$ a function. Let
$A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{R})$ such that $a_{i j} \in U$ for all $(i, j) \in[m] \times[n]$. Define $f[A] \in \mathbb{M}(m \times n ; \mathbb{R})$ - entrywise - as $f[A]_{i j}:=f\left(a_{i j}\right)$ for all $(i, j) \in[m] \times[n]$.

Schur product and the matrix $f[A]$ I

Definition

Let $\emptyset \neq U \subseteq \mathbb{R}$ and $f: U \longrightarrow \mathbb{R}$ a function. Let $A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{R})$ such that $a_{i j} \in U$ for all $(i, j) \in[m] \times[n]$. Define $f[A] \in \mathbb{M}(m \times n ; \mathbb{R})$ - entrywise - as $f[A]_{i j}:=f\left(a_{i j}\right)$ for all $(i, j) \in[m] \times[n]$.

Guiding Example
The Schur product (or Hadamard product)

$$
\left(a_{i j}\right) *\left(b_{i j}\right):=\left(a_{i j} b_{i j}\right)
$$

of matrices $\left(a_{i j}\right)$ and $\left(b_{i j}\right)$ leads to matrices $A^{* k}=f[A]$, where $f(x):=x^{k}(k \in \mathbb{N})$.

Schur product and the matrix $f[A]$ I

Definition

Let $\emptyset \neq U \subseteq \mathbb{R}$ and $f: U \longrightarrow \mathbb{R}$ a function. Let
$A=\left(a_{i j}\right) \in \mathbb{M}(m \times n ; \mathbb{R})$ such that $a_{i j} \in U$ for all $(i, j) \in[m] \times[n]$.
Define $f[A] \in \mathbb{M}(m \times n ; \mathbb{R})$ - entrywise - as $f[A]_{i j}:=f\left(a_{i j}\right)$ for all
$(i, j) \in[m] \times[n]$.
Guiding Example
The Schur product (or Hadamard product)

$$
\left(a_{i j}\right) *\left(b_{i j}\right):=\left(a_{i j} b_{i j}\right)
$$

of matrices $\left(a_{i j}\right)$ and $\left(b_{i j}\right)$ leads to matrices $A^{* k}=f[A]$, where $f(x):=x^{k}(k \in \mathbb{N})$.
The notation " $f[A]$ " is used to highlight the difference between the matrix $f(A)$ originating from the spectral representation of A (for normal matrices A) and the matrix $f[A]$, defined as above!

Schur product and the matrix $f[A]$ II

Theorem
For any $n \in \mathbb{N}$ the set $\mathbb{M}(n \times n ; \mathbb{R})$ with the usual addition and the Schur multiplication $*$ is a commutative Banach algebra under the operator norm. Moreover,

$$
\operatorname{PSD}(n ; \mathbb{R}) * \operatorname{PSD}(n ; \mathbb{R}) \subseteq \operatorname{PSD}(n ; \mathbb{R}) .^{1}
$$

Schur product and the matrix $f[A]$ II

Theorem

For any $n \in \mathbb{N}$ the set $\mathbb{M}(n \times n ; \mathbb{R})$ with the usual addition and the Schur multiplication * is a commutative Banach algebra under the operator norm. Moreover,

$$
\operatorname{PSD}(n ; \mathbb{R}) * \operatorname{PSD}(n ; \mathbb{R}) \subseteq \operatorname{PSD}(n ; \mathbb{R}) . .^{1}
$$

The set $\operatorname{PSD}(n ; \mathbb{R})$ is a closed, convex, pointed, and solid cone in $\mathbb{M}(n \times n ; \mathbb{R})$.

Schur product and the matrix $f[A]$ II

Theorem

For any $n \in \mathbb{N}$ the set $\mathbb{M}(n \times n ; \mathbb{R})$ with the usual addition and the Schur multiplication $*$ is a commutative Banach algebra under the operator norm. Moreover,

$$
\operatorname{PSD}(n ; \mathbb{R}) * \operatorname{PSD}(n ; \mathbb{R}) \subseteq \operatorname{PSD}(n ; \mathbb{R}) . .^{1}
$$

The set $\operatorname{PSD}(n ; \mathbb{R})$ is a closed, convex, pointed, and solid cone in $\mathbb{M}(n \times n ; \mathbb{R})$.

Corollary
Let $n \in \mathbb{N}$ Then

$$
C(n ; \mathbb{R}) * C(n ; \mathbb{R}) \subseteq C(n ; \mathbb{R})
$$

1. This is known as the Schur Product Theorem.

Correlation matrix transformation I

Corollary
Let $0<r \leq \infty$ and $f:[-r, r] \longrightarrow \mathbb{R}$ such that on $[-r, r]$

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

for some nonnegative coefficients $a_{k} \geq 0$.

Correlation matrix transformation I

Corollary
Let $0<r \leq \infty$ and $f:[-r, r] \longrightarrow \mathbb{R}$ such that on $[-r, r]$

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

for some nonnegative coefficients $a_{k} \geq 0$. Then $f(r) \geq 0$, $f([0, r]) \subseteq[0, f(r)]$ and $|f(t)| \leq f(r)$ for all $t \in[-r, r]$.

Correlation matrix transformation I

Corollary
Let $0<r \leq \infty$ and $f:[-r, r] \longrightarrow \mathbb{R}$ such that on $[-r, r]$

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

for some nonnegative coefficients $a_{k} \geq 0$. Then $f(r) \geq 0$, $f([0, r]) \subseteq[0, f(r)]$ and $|f(t)| \leq f(r)$ for all $t \in[-r, r]$. Moreover, $f[A] \in \operatorname{PSD}(n ;[-f(r), f(r)])$ for all $n \in \mathbb{N}$ and $A \in \operatorname{PSD}(n ;[-r, r])$.

Correlation matrix transformation I

Corollary
Let $0<r \leq \infty$ and $f:[-r, r] \longrightarrow \mathbb{R}$ such that on $[-r, r]$

$$
f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

for some nonnegative coefficients $a_{k} \geq 0$. Then $f(r) \geq 0$, $f([0, r]) \subseteq[0, f(r)]$ and $|f(t)| \leq f(r)$ for all $t \in[-r, r]$. Moreover, $f[A] \in \operatorname{PSD}(n ;[-f(r), f(r)])$ for all $n \in \mathbb{N}$ and $A \in \operatorname{PSD}(n ;[-r, r])$.

If in addition $r \geq 1$ and $f \neq 0$ then $f(1)>0$, and

$$
\frac{f}{f(1)}[\cdot]: C(n, \mathbb{R}) \longrightarrow C(n, \mathbb{R}) \text { for every } n \in \mathbb{N}
$$

Correlation matrix transformation II

Example

Let $x \in[-1,1]$.

$$
g(x):=\frac{2}{\pi} \arcsin (x)=\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n} \frac{x^{2 n+1}}{2 n+1}
$$

Correlation matrix transformation II

Example
Let $x \in[-1,1]$.

$$
\begin{aligned}
g(x) & :=\frac{2}{\pi} \arcsin (x)=\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n} \frac{x^{2 n+1}}{2 n+1} \\
& \stackrel{!}{=} \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi} n!} \frac{x^{2 n+1}}{2 n+1}
\end{aligned}
$$

Correlation matrix transformation II

Example
Let $x \in[-1,1]$.

$$
\begin{aligned}
g(x) & :=\frac{2}{\pi} \arcsin (x)=\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n} \frac{x^{2 n+1}}{2 n+1} \\
& ! \\
= & \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi} n!} \frac{x^{2 n+1}}{2 n+1} \xlongequal[y]{=} \frac{2}{\pi} x_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; x^{2}\right),
\end{aligned}
$$

Correlation matrix transformation II

Example
Let $x \in[-1,1]$.

$$
\begin{aligned}
g(x) & :=\frac{2}{\pi} \arcsin (x)=\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{4^{n}}\binom{2 n}{n} \frac{x^{2 n+1}}{2 n+1} \\
& \stackrel{!}{=} \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{\Gamma\left(n+\frac{1}{2}\right)}{\sqrt{\pi} n!} \frac{x^{2 n+1}}{2 n+1} \xlongequal{v} \frac{2}{\pi} x_{2} F_{1}\left(\frac{1}{2}, \frac{1}{2}, \frac{3}{2} ; x^{2}\right),
\end{aligned}
$$

where for $a, b, c \in \mathbb{C}$, satisfying $\Re(c-(a+b))>0$ and $z \in \mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$

$$
{ }_{2} F_{1}(a, b, c ; z):=\frac{\Gamma(c)}{\Gamma(a) \Gamma(b)} \sum_{n=0}^{\infty} \frac{\Gamma(a+n) \Gamma(b+n)}{\Gamma(c+n) n!} z^{n}
$$

denotes the hypergeometric function.

Correlation matrix transformation III

Example

Let H be an arbitrary separable Hilbert space with ONB
$\left(x_{n}\right)_{n \in \mathbb{N}_{0}}$. Let $\psi \in H$ such that $\|\psi\|>0$.

Correlation matrix transformation III

Example

Let H be an arbitrary separable Hilbert space with ONB
$\left(x_{n}\right)_{n \in \mathbb{N}_{0}}$. Let $\psi \in H$ such that $\|\psi\|>0$. Consider the function

$$
[-1,1] \ni t \mapsto h_{\psi}(t):=\sum_{n=0}^{\infty}\left|\left\langle x_{n}, \psi\right\rangle\right|^{2} t^{n} .
$$

Correlation matrix transformation III

Example

Let H be an arbitrary separable Hilbert space with ONB
$\left(x_{n}\right)_{n \in \mathbb{N}_{0}}$. Let $\psi \in H$ such that $\|\psi\|>0$. Consider the function

$$
[-1,1] \ni t \mapsto h_{\psi}(t):=\sum_{n=0}^{\infty}\left|\left\langle x_{n}, \psi\right\rangle\right|^{2} t^{n}
$$

Then

$$
\frac{h_{\psi}}{\|\psi\|^{2}}[\cdot]: C(k, \mathbb{R}) \longrightarrow C(k, \mathbb{R}) \text { for every } k \in \mathbb{N}
$$

Correlation matrix transformation IV

Theorem
Let $1 \leq r \leq \infty$. Let $g:[-r, r] \longrightarrow \mathbb{R}$ be a function such that for each $n \in \mathbb{N} g[\Sigma]$ is a $(n \times n)$-correlation matrix for all
$(n \times n)$-correlation matrices Σ.

Correlation matrix transformation IV

Theorem

Let $1 \leq r \leq \infty$. Let $g:[-r, r] \longrightarrow \mathbb{R}$ be a function such that for each $n \in \mathbb{N} g[\Sigma]$ is a $(n \times n)$-correlation matrix for all $(n \times n)$-correlation matrices Σ. Then $g([0,1]) \subseteq[0,1], g(1)=1$ and $|g(t)| \leq 1$ for all $t \in[-1,1]$.

Correlation matrix transformation IV

Theorem

Let $1 \leq r \leq \infty$. Let $g:[-r, r] \longrightarrow \mathbb{R}$ be a function such that for each $n \in \mathbb{N} g[\Sigma]$ is a $(n \times n)$-correlation matrix for all $(n \times n)$-correlation matrices Σ. Then $g([0,1]) \subseteq[0,1], g(1)=1$ and $|g(t)| \leq 1$ for all $t \in[-1,1]$.
Moreover, $g[A] \in \operatorname{PSD}(n ; \mathbb{R})$ for all $A \in \operatorname{PSD}(n ;[-r, r])$ and all $n \in \mathbb{N}$.

Correlation matrix transformation and Schoenberg's Theorem

Even more holds:

Correlation matrix transformation and Schoenberg's Theorem

Even more holds:
Theorem (Schoenberg (1942), Rudin (1959), Guillot and Rajaratnam (2012))
Let $0<\alpha \leq \infty$ and $g:(-\alpha, \alpha) \longrightarrow \mathbb{R}$ be an arbitrary function. TFAE:

Correlation matrix transformation and Schoenberg's Theorem

Even more holds:
Theorem (Schoenberg (1942), Rudin (1959), Guillot and Rajaratnam (2012))
Let $0<\alpha \leq \infty$ and $g:(-\alpha, \alpha) \longrightarrow \mathbb{R}$ be an arbitrary function. TFAE:
(i) $g[A] \in \operatorname{PSD}(n ; \mathbb{R})$ for all $A \in \operatorname{PSD}(n ;(-\alpha, \alpha))$ and all $n \in \mathbb{N}$.

Correlation matrix transformation and Schoenberg's Theorem

Even more holds:
Theorem (Schoenberg (1942), Rudin (1959), Guillot and Rajaratnam (2012))
Let $0<\alpha \leq \infty$ and $g:(-\alpha, \alpha) \longrightarrow \mathbb{R}$ be an arbitrary function. TFAE:
(i) $g[A] \in \operatorname{PSD}(n ; \mathbb{R})$ for all $A \in \operatorname{PSD}(n ;(-\alpha, \alpha))$ and all $n \in \mathbb{N}$.
(ii) g is a smooth function that admits a power series representation $g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$ on $(-\alpha, \alpha)$ for some sequence $\left(b_{n}\right)$, consisting of nonnegative numbers only.

Correlation matrix transformation and Schoenberg's Theorem

Even more holds:
Theorem (Schoenberg (1942), Rudin (1959), Guillot and Rajaratnam (2012))
Let $0<\alpha \leq \infty$ and $g:(-\alpha, \alpha) \longrightarrow \mathbb{R}$ be an arbitrary function. TFAE:
(i) $g[A] \in \operatorname{PSD}(n ; \mathbb{R})$ for all $A \in \operatorname{PSD}(n ;(-\alpha, \alpha))$ and all $n \in \mathbb{N}$.
(ii) g is a smooth function that admits a power series representation $g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$ on $(-\alpha, \alpha)$ for some sequence $\left(b_{n}\right)$, consisting of nonnegative numbers only.

Q: How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?

Correlation matrix transformation and Schoenberg's Theorem

Even more holds:
Theorem (Schoenberg (1942), Rudin (1959), Guillot and Rajaratnam (2012))
Let $0<\alpha \leq \infty$ and $g:(-\alpha, \alpha) \longrightarrow \mathbb{R}$ be an arbitrary function. TFAE:
(i) $g[A] \in \operatorname{PSD}(n ; \mathbb{R})$ for all $A \in \operatorname{PSD}(n ;(-\alpha, \alpha))$ and all $n \in \mathbb{N}$.
(ii) g is a smooth function that admits a power series representation $g(x)=\sum_{k=0}^{\infty} b_{k} x^{k}$ on $(-\alpha, \alpha)$ for some sequence $\left(b_{n}\right)$, consisting of nonnegative numbers only.

Q: How can we link an NP-hard non-convex Boolean optimisation problem and its convex SDP relaxation?
A: Apply "suitable" correlation matrix transforms!
（1）An important information for readers
（2）A very short glimpse at A．Grothendieck＇s work in functional analysis
（3）A further reformulation of Grothendieck＇s inequality
（4）$K_{G}^{\mathbb{R}}$ and correlation matrix transformations
（5）Grothendieck＇s identity
（6）Towards a computation of $K_{G}^{\mathbb{R}}$

Grothendieck’s identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Grothendieck’s identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as $\operatorname{sign}:=\mathbb{1}_{[0, \infty)}-\mathbb{1}_{(-\infty, 0)}$.

Grothendieck’s identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as sign : $=\mathbb{1}_{(0, \infty)}-\mathbb{1}_{(-\infty, 0)}$. Then $\xi \sim N_{1}(0,1), \eta \sim N_{1}(0,1)$, $E[\xi \eta]=t$, and

Grothendieck's identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as sign : $=\mathbb{1}_{(0, \infty)}-\mathbb{1}_{(-\infty, 0)}$. Then $\xi \sim N_{1}(0,1), \eta \sim N_{1}(0,1)$, $E[\xi \eta]=t$, and
$\mathbb{E}[\operatorname{sign}(\xi) \operatorname{sign}(\eta)]$

Grothendieck's identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as sign : $=\mathbb{1}_{(0, \infty)}-\mathbb{1}_{(-\infty, 0)}$. Then $\xi \sim N_{1}(0,1), \eta \sim N_{1}(0,1)$, $E[\xi \eta]=t$, and
$\mathbb{E}[\operatorname{sign}(\xi) \operatorname{sign}(\eta)]=$

Grothendieck's identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as sign : $=\mathbb{1}_{(0, \infty)}-\mathbb{1}_{(-\infty, 0)}$. Then $\xi \sim N_{1}(0,1), \eta \sim N_{1}(0,1)$, $E[\xi \eta]=t$, and
$\mathbb{E}[\operatorname{sign}(\xi) \operatorname{sign}(\eta)]=4 \mathbb{P}(\xi \leq 0, \eta \leq 0)-1$

Grothendieck's identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as sign : $=\mathbb{1}_{(0, \infty)}-\mathbb{1}_{(-\infty, 0)}$. Then $\xi \sim N_{1}(0,1), \eta \sim N_{1}(0,1)$, $E[\xi \eta]=t$, and
$\mathbb{E}[\operatorname{sign}(\xi) \operatorname{sign}(\eta)]=4 \mathbb{P}(\xi \leq 0, \eta \leq 0)-1=$

Grothendieck's identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as sign : $=\mathbb{1}_{(0, \infty)}-\mathbb{1}_{(-\infty, 0)}$. Then $\xi \sim N_{1}(0,1), \eta \sim N_{1}(0,1)$, $E[\xi \eta]=t$, and

$$
\mathbb{E}[\operatorname{sign}(\xi) \operatorname{sign}(\eta)]=4 \mathbb{P}(\xi \leq 0, \eta \leq 0)-1=4 \Phi_{0, \Sigma_{t}}(0,0)-1
$$

Grothendieck's identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as sign : $=\mathbb{1}_{[0, \infty)}-\mathbb{1}_{(-\infty, 0)}$. Then $\xi \sim N_{1}(0,1), \eta \sim N_{1}(0,1)$, $E[\xi \eta]=t$, and

$$
\begin{aligned}
\mathbb{E}[\operatorname{sign}(\xi) \operatorname{sign}(\eta)] & =4 \mathbb{P}(\xi \leq 0, \eta \leq 0)-1=4 \Phi_{0, \Sigma_{t}}(0,0)-1 \\
& =
\end{aligned}
$$

Grothendieck's identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as sign : $=\mathbb{1}_{(0, \infty)}-\mathbb{1}_{(-\infty, 0)}$. Then $\xi \sim N_{1}(0,1), \eta \sim N_{1}(0,1)$, $E[\xi \eta]=t$, and

$$
\begin{aligned}
\mathbb{E}[\operatorname{sign}(\xi) \operatorname{sign}(\eta)] & =4 \mathbb{P}(\xi \leq 0, \eta \leq 0)-1=4 \Phi_{0, \Sigma_{t}}(0,0)-1 \\
& =\frac{2}{\pi} \arcsin (t)
\end{aligned}
$$

Grothendieck's identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as sign : $=\mathbb{1}_{(0, \infty)}-\mathbb{1}_{(-\infty, 0)}$. Then $\xi \sim N_{1}(0,1), \eta \sim N_{1}(0,1)$, $E[\xi \eta]=t$, and

$$
\begin{aligned}
\mathbb{E}[\operatorname{sign}(\xi) \operatorname{sign}(\eta)] & =4 \mathbb{P}(\xi \leq 0, \eta \leq 0)-1=4 \Phi_{0, \Sigma_{t}}(0,0)-1 \\
& =\frac{2}{\pi} \arcsin (t)=
\end{aligned}
$$

Grothendieck's identity I

Theorem (Grothendieck's identity - T. S. Stieltjes (1889), W. F. Sheppard (1898))

Let $-1 \leq t \leq 1$ and $(\xi, \eta)^{\top} \sim N_{2}\left(0, \Sigma_{t}\right)$, where

$$
\Sigma_{t}:=\left(\begin{array}{ll}
1 & t \\
t & 1
\end{array}\right) .
$$

Consider the function sign : $\mathbb{R} \longrightarrow\{-1,1\}$, defined as sign : $=\mathbb{1}_{(0, \infty)}-\mathbb{1}_{(-\infty, 0)}$. Then $\xi \sim N_{1}(0,1), \eta \sim N_{1}(0,1)$, $E[\xi \eta]=t$, and

$$
\begin{aligned}
\mathbb{E}[\operatorname{sign}(\xi) \operatorname{sign}(\eta)] & =4 \mathbb{P}(\xi \leq 0, \eta \leq 0)-1=4 \Phi_{0, \Sigma_{t}}(0,0)-1 \\
& =\frac{2}{\pi} \arcsin (t)=\frac{2}{\pi} \arcsin (\mathbb{E}[\xi \eta]) .
\end{aligned}
$$

Grothendieck's identity II

Corollary
Let $k \in \mathbb{N}, k \geq 2$. Let $\Sigma \in C(k ; \mathbb{R})$ an arbitrarily given correlation matrix.

Grothendieck's identity II

Corollary
Let $k \in \mathbb{N}, k \geq 2$. Let $\Sigma \in C(k ; \mathbb{R})$ an arbitrarily given correlation matrix. Then also $\frac{2}{\pi} \arcsin [\Sigma] \in C(k ; \mathbb{R})$.

Grothendieck's identity II

Corollary

Let $k \in \mathbb{N}, k \geq 2$. Let $\Sigma \in C(k ; \mathbb{R})$ an arbitrarily given correlation matrix. Then also $\frac{2}{\pi} \arcsin [\Sigma] \in C(k ; \mathbb{R})$. There exists a Gaussian random vector $\xi \sim N_{k}(0, \Sigma)$ such that

$$
\frac{2}{\pi} \arcsin [\Sigma]=\mathbb{E}[\Theta(\xi)]
$$

where

$$
\Theta(\xi(\omega))_{i j}:=\operatorname{sign}\left(\xi_{i}(\omega)\right) \operatorname{sign}\left(\xi_{j}(\omega)\right)
$$

for all $\omega \in \Omega$, and for all $i, j \in[k]$.

Grothendieck's identity II

Corollary
Let $k \in \mathbb{N}, k \geq 2$. Let $\Sigma \in C(k ; \mathbb{R})$ an arbitrarily given correlation matrix. Then also $\frac{2}{\pi} \arcsin [\Sigma] \in C(k ; \mathbb{R})$. There exists a Gaussian random vector $\xi \sim N_{k}(0, \Sigma)$ such that

$$
\frac{2}{\pi} \arcsin [\Sigma]=\mathbb{E}[\Theta(\xi)],
$$

where

$$
\Theta(\xi(\omega))_{i j}:=\operatorname{sign}\left(\xi_{i}(\omega)\right) \operatorname{sign}\left(\xi_{j}(\omega)\right)
$$

for all $\omega \in \Omega$, and for all $i, j \in[k] . \Theta(\xi(\omega))$ is a correlation matrix of rank 1 for all $\omega \in \Omega$, and we have

Grothendieck's identity II

Corollary

Let $k \in \mathbb{N}, k \geq 2$. Let $\Sigma \in C(k ; \mathbb{R})$ an arbitrarily given correlation matrix. Then also $\frac{2}{\pi} \arcsin [\Sigma] \in C(k ; \mathbb{R})$. There exists a Gaussian random vector $\xi \sim N_{k}(0, \Sigma)$ such that

$$
\frac{2}{\pi} \arcsin [\Sigma]=\mathbb{E}[\Theta(\xi)],
$$

where

$$
\Theta(\xi(\omega))_{i j}:=\operatorname{sign}\left(\xi_{i}(\omega)\right) \operatorname{sign}\left(\xi_{j}(\omega)\right)
$$

for all $\omega \in \Omega$, and for all $i, j \in[k] . \Theta(\xi(\omega))$ is a correlation matrix of rank 1 for all $\omega \in \Omega$, and we have

$$
\max _{\substack{\Theta \in(\mathcal{C l} ; \mathbb{R}) \\ \operatorname{rank}(\Theta)=1}}|\langle\widehat{A}, \Theta\rangle| \geq \mathbb{E}[|\langle\widehat{A}, \Theta(\xi)\rangle|] \geq|\langle\widehat{A}, \mathbb{E}[\Theta(\xi)]\rangle|=\frac{2}{\pi}|\langle\widehat{A}, \arcsin [\Sigma]\rangle| .
$$

Krivine's constant reproduced I

Example

$$
f(x):=\sinh (x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \quad(x \in \mathbb{R})
$$

Krivine's constant reproduced I

Example

$$
\begin{gathered}
f(x):=\sinh (x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \quad(x \in \mathbb{R}) \\
g(y):=\sin (y)=\sum_{n=0}^{\infty}(-1)^{n} \frac{y^{2 n+1}}{(2 n+1)!} \stackrel{(!)}{=} \frac{1}{i} f(i y) \quad(y \in \mathbb{R})
\end{gathered}
$$

Krivine's constant reproduced I

Example

$$
\begin{gathered}
f(x):=\sinh (x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \quad(x \in \mathbb{R}) \\
g(y):=\sin (y)=\sum_{n=0}^{\infty}(-1)^{n} \frac{y^{2 n+1}}{(2 n+1)!} \stackrel{(!)}{=} \frac{1}{i} f(i y) \quad(y \in \mathbb{R}) \\
f\left(c^{*}\right)=1 \text { iff } c^{*}=\ln (1+\sqrt{2})
\end{gathered}
$$

Krivine's constant reproduced I

Example

$$
\begin{gathered}
f(x):=\sinh (x)=\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} \quad(x \in \mathbb{R}) \\
g(y):=\sin (y)=\sum_{n=0}^{\infty}(-1)^{n} \frac{y^{2 n+1}}{(2 n+1)!} \stackrel{(!)}{=} \frac{1}{i} f(i y) \quad(y \in \mathbb{R}) \\
f\left(c^{*}\right)=1 \text { iff } c^{*}=\ln (1+\sqrt{2})
\end{gathered}
$$

A bit more generally, the following (still special) case holds:

Krivine's constant reproduced II

Corollary

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f:(-r, r) \longrightarrow \mathbb{R}$ be a function such that f satisfies the "correlation assumptions".

Krivine's constant reproduced II

Corollary

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f:(-r, r) \longrightarrow \mathbb{R}$ be a function such that f satisfies the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then

Krivine's constant reproduced II

Corollary

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f:(-r, r) \longrightarrow \mathbb{R}$ be a function such that f satisfies the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then
$\max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle|$

Krivine's constant reproduced II

Corollary

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f:(-r, r) \longrightarrow \mathbb{R}$ be a function such that f satisfies the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then
$\max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle| \geq$

Krivine's constant reproduced II

Corollary

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f:(-r, r) \longrightarrow \mathbb{R}$ be a function such that f satisfies the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then
$\max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle| \geq \frac{2}{\pi}\left|\operatorname{tr}\left(A^{\top}\left(c^{*} S\right)\right)\right|$

Krivine's constant reproduced II

Corollary

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f:(-r, r) \longrightarrow \mathbb{R}$ be a function such that f satisfies the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then
$\max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle| \geq \frac{2}{\pi}\left|\operatorname{tr}\left(A^{\top}\left(c^{*} S\right)\right)\right|=\frac{2 c^{*}}{\pi}\left|\operatorname{tr}\left(A^{\top} \Gamma_{H}(u, v)\right)\right|$.

Krivine's constant reproduced II

Corollary

Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f:(-r, r) \longrightarrow \mathbb{R}$ be a function such that f satisfies the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then
$\max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle| \geq \frac{2}{\pi}\left|\operatorname{tr}\left(A^{\top}\left(c^{*} S\right)\right)\right|=\frac{2 c^{*}}{\pi}\left|\operatorname{tr}\left(A^{\top} \Gamma_{H}(u, v)\right)\right|$.

Hence,

$$
K_{G}^{\mathbb{R}} \leq \frac{\pi}{2 c^{*}}
$$

Krivine's constant reproduced III

Somewhat more generally, we have
Corollary
Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f, g:(-r, r) \longrightarrow \mathbb{R}$ be two functions such that both, f and g satisfy the "correlation assumptions".

Krivine's constant reproduced III

Somewhat more generally, we have
Corollary
Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f, g:(-r, r) \longrightarrow \mathbb{R}$ be two functions such that both, f and g satisfy the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then

Krivine's constant reproduced III

Somewhat more generally, we have
Corollary
Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f, g:(-r, r) \longrightarrow \mathbb{R}$ be two functions such that both, f and g satisfy the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then

$$
\max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle|
$$

Krivine's constant reproduced III

Somewhat more generally, we have
Corollary
Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f, g:(-r, r) \longrightarrow \mathbb{R}$ be two functions such that both, f and g satisfy the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then

$$
\max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle| \geq
$$

Krivine's constant reproduced III

Somewhat more generally, we have
Corollary
Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f, g:(-r, r) \longrightarrow \mathbb{R}$ be two functions such that both, f and g satisfy the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then

$$
\max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle| \geq \frac{2}{\pi}\left|\operatorname{tr}\left(A^{\top} \arcsin \circ g\left[c^{*} \Gamma_{H}(u, v)\right]\right)\right|
$$

Krivine's constant reproduced III

Somewhat more generally, we have
Corollary
Let $m, n \in \mathbb{N}, A \in \mathbb{M}(m \times n ; \mathbb{R}), u:=\left(u_{1}, u_{2}, \ldots, u_{m}\right)^{\top} \in S_{H}^{m}$ and $v:=\left(v_{1}, v_{2}, \ldots, v_{n}\right)^{\top} \in S_{H}^{n}$. Put $S:=\Gamma_{H}(u, v)$. Let $0<r \leq \infty$ and $f, g:(-r, r) \longrightarrow \mathbb{R}$ be two functions such that both, f and g satisfy the "correlation assumptions". Assume that $f\left(c^{*}\right)=1$ for some $0<c^{*}<r$. Then

$$
\max _{\Theta \in C_{1}(m+n ; \mathbb{R})}|\langle\widehat{A}, \Theta\rangle| \geq \frac{2}{\pi}\left|\operatorname{tr}\left(A^{\top} \arcsin \circ g\left[c^{*} \Gamma_{H}(u, v)\right]\right)\right| \approx ? ?
$$

(1) An important information for readers
(2) A very short glimpse at A. Grothendieck's work in functional analysis
(3) A further reformulation of Grothendieck's inequality
(4) $K_{G}^{\mathbb{R}}$ and correlation matrix transformations
(5) Grothendieck's identity
(6) Towards a computation of $K_{G}^{\mathbb{R}}$

Krivine rounding schemes revisited I

Natural Question

Can we possibly "remove" or cleverly substitute the arcsin function?

Krivine rounding schemes revisited I

Natural Question

Can we possibly "remove" or cleverly substitute the arcsin function?
Recall that the invertible function $\frac{2}{\pi}$ arcsin : $[-1,1] \longrightarrow[-1,1]$ transforming correlation matrices into correlation matrices arrived as a result of an explicit hard calculation of the non-trivial double integral

$$
H_{f, g}(t):=\mathbb{E}[f(\xi) g(\eta)],
$$

where $\xi, \eta \sim N(0,1)$ are correlated via $\mathbb{E}[\xi \eta]=t \in[-1,1]$ and $f:=g:=\operatorname{sign}=\mathbb{1}_{[0, \infty)}-\mathbb{1}_{(-\infty, 0)}$.

Krivine rounding schemes revisited II

Definition (Braverman, Makarychev, Makarychev, Naor (2011))

Fix $k \in \mathbb{N}$. Let $G_{1}, G_{2} \sim N_{k}\left(0, I_{k}\right)$ be independent (standard) Gaussian random vectors. Let $t \in[-1,1]$. Put $\tilde{f}(x):=f\left(\frac{1}{\sqrt{2}} x\right)$ and $\tilde{g}(y):=g\left(\frac{1}{\sqrt{2}} y\right)$, where $x, y \in \mathbb{R}^{k}$ and f, g are bounded.

Krivine rounding schemes revisited II

Definition (Braverman, Makarychev, Makarychev, Naor (2011))

Fix $k \in \mathbb{N}$. Let $G_{1}, G_{2} \sim N_{k}\left(0, I_{k}\right)$ be independent (standard) Gaussian random vectors. Let $t \in[-1,1]$. Put $\tilde{f}(x):=f\left(\frac{1}{\sqrt{2}} x\right)$ and $\tilde{g}(y):=g\left(\frac{1}{\sqrt{2}} y\right)$, where $x, y \in \mathbb{R}^{k}$ and f, g are bounded. Put

$$
H_{f, g}(t):=\mathbb{E}\left[\tilde{f}\left(G_{1}\right) \tilde{g}\left(t G_{1}+\sqrt{1-t^{2}} G_{2}\right)\right]
$$

Krivine rounding schemes revisited II

Definition (Braverman, Makarychev, Makarychev, Naor (2011))

Fix $k \in \mathbb{N}$. Let $G_{1}, G_{2} \sim N_{k}\left(0, I_{k}\right)$ be independent (standard) Gaussian random vectors. Let $t \in[-1,1]$. Put $\tilde{f}(x):=f\left(\frac{1}{\sqrt{2}} x\right)$ and $\tilde{g}(y):=g\left(\frac{1}{\sqrt{2}} y\right)$, where $x, y \in \mathbb{R}^{k}$ and f, g are bounded. Put

$$
\begin{aligned}
H_{f, g}(t) & :=\mathbb{E}\left[\tilde{f}\left(G_{1}\right) \tilde{g}\left(t G_{1}+\sqrt{1-t^{2}} G_{2}\right)\right] \\
& =\int_{\mathbb{R}^{2} k} \tilde{f}(x) \tilde{g}\left(t x+\sqrt{1-t^{2}} y\right) \gamma_{2 k}(d(x, y))
\end{aligned}
$$

Krivine rounding schemes revisited II

Definition (Braverman, Makarychev, Makarychev, Naor (2011))

Fix $k \in \mathbb{N}$. Let $G_{1}, G_{2} \sim N_{k}\left(0, I_{k}\right)$ be independent (standard) Gaussian random vectors. Let $t \in[-1,1]$. Put $\tilde{f}(x):=f\left(\frac{1}{\sqrt{2}} x\right)$ and $\tilde{g}(y):=g\left(\frac{1}{\sqrt{2}} y\right)$, where $x, y \in \mathbb{R}^{k}$ and f, g are bounded. Put

$$
\begin{aligned}
H_{f, g}(t) & :=\mathbb{E}\left[\tilde{f}\left(G_{1}\right) \tilde{g}\left(t G_{1}+\sqrt{1-t^{2}} G_{2}\right)\right] \\
& =\int_{\mathbb{R}^{2} 2} \tilde{f}(x) \tilde{g}\left(t x+\sqrt{1-t^{2}} y\right) \gamma_{2 k}(d(x, y)) \\
& \stackrel{(!)}{=} \int_{\mathbb{R}^{k}} \tilde{f}(x) \mathbb{E}\left[\tilde{g}\left(t x+\sqrt{1-t^{2}} G_{2}\right)\right] \gamma_{k}(d x)
\end{aligned}
$$

Krivine rounding schemes revisited II

Corollary
Let $k \in \mathbb{N},-1<t<1$ and f, g be as above. Then

Krivine rounding schemes revisited II

Corollary
Let $k \in \mathbb{N},-1<t<1$ and f, g be as above. Then
$H_{f, g}(t)$

Krivine rounding schemes revisited II

Corollary
Let $k \in \mathbb{N},-1<t<1$ and f, g be as above. Then
$H_{f, g}(t)=$

Krivine rounding schemes revisited II

Corollary
Let $k \in \mathbb{N},-1<t<1$ and f, g be as above. Then

$$
H_{f, g}(t)=\frac{1}{(2 \pi)^{k}\left(1-t^{2}\right)^{k / 2}} \int_{\mathbb{R}^{2 k}} \tilde{f}(x) \tilde{g}(y) \exp \left(\frac{-\|x\|^{2}-\|y\|^{2}+2 t\langle x, y\rangle}{2\left(1-t^{2}\right)}\right) d^{2 k}(x, y)
$$

Krivine rounding schemes revisited II

Corollary
Let $k \in \mathbb{N},-1<t<1$ and f, g be as above. Then

$$
\begin{aligned}
H_{f, g}(t) & =\frac{1}{(2 \pi)^{k}\left(1-t^{2}\right)^{k / 2}} \int_{\mathbb{R}^{2 k}} \tilde{f}(x) \tilde{g}(y) \exp \left(\frac{-\|x\|^{2}-\|y\|^{2}+2 t\langle x, y\rangle}{2\left(1-t^{2}\right)}\right) d^{2 k}(x, y) \\
& =
\end{aligned}
$$

Krivine rounding schemes revisited II

Corollary
Let $k \in \mathbb{N},-1<t<1$ and f, g be as above. Then

$$
\begin{aligned}
H_{f, g}(t) & =\frac{1}{(2 \pi)^{k}\left(1-t^{2}\right)^{k / 2}} \int_{\mathbb{R}^{2 k}} \tilde{f}(x) \tilde{g}(y) \exp \left(\frac{-\|x\|^{2}-\|y\|^{2}+2 t\langle x, y\rangle}{2\left(1-t^{2}\right)}\right) d^{2 k}(x, y) \\
& =\frac{1}{\pi^{k}\left(1-t^{2}\right)^{k / 2}} \int_{\mathbb{R}^{2 k}} f(x) g(y) \exp \left(\frac{-\|x\|^{2}-\|y\|^{2}+2 t\langle x, y\rangle}{1-t^{2}}\right) d^{2 k}(x, y)
\end{aligned}
$$

A lurking Mehler kernel

Observation
Fix $k \in \mathbb{N}$. Let $G \sim N_{k}\left(0, I_{k}\right)$ be a (standard) Gaussian random vector. Let $-1<t<1$ and g be as above.

A lurking Mehler kernel

Observation
Fix $k \in \mathbb{N}$. Let $G \sim N_{k}\left(0, I_{k}\right)$ be a (standard) Gaussian random vector. Let $-1<t<1$ and g be as above. Then

$$
\Lambda_{t} \tilde{g}(x):=\mathbb{E}\left[\tilde{g}\left(t x+\sqrt{1-t^{2}} G\right)\right]
$$

A lurking Mehler kernel

Observation
Fix $k \in \mathbb{N}$. Let $G \sim N_{k}\left(0, I_{k}\right)$ be a (standard) Gaussian random vector. Let $-1<t<1$ and g be as above. Then

$$
\begin{aligned}
\Lambda_{t} \tilde{g}(x) & :=\mathbb{E}\left[\tilde{g}\left(t x+\sqrt{1-t^{2}} G\right)\right] \\
& =\int_{\mathbb{R}^{k}} \tilde{g}(y) M_{t}(x, y) \gamma_{k}(d y)
\end{aligned}
$$

A lurking Mehler kernel

Observation
Fix $k \in \mathbb{N}$. Let $G \sim N_{k}\left(0, I_{k}\right)$ be a (standard) Gaussian random vector. Let $-1<t<1$ and g be as above. Then

$$
\begin{aligned}
\Lambda_{t} \tilde{g}(x) & :=\mathbb{E}\left[\tilde{g}\left(t x+\sqrt{1-t^{2}} G\right)\right] \\
& =\int_{\mathbb{R}^{k}} \tilde{g}(y) M_{t}(x, y) \gamma_{k}(d y)=\mathbb{E}\left[\tilde{g} M_{t}(x, G)\right],
\end{aligned}
$$

where

A lurking Mehler kernel

Observation
Fix $k \in \mathbb{N}$. Let $G \sim N_{k}\left(0, I_{k}\right)$ be a (standard) Gaussian random vector. Let $-1<t<1$ and g be as above. Then

$$
\begin{aligned}
\Lambda_{t} \tilde{g}(x) & :=\mathbb{E}\left[\tilde{g}\left(t x+\sqrt{1-t^{2}} G\right)\right] \\
& =\int_{\mathbb{R}^{k}} \tilde{g}(y) M_{t}(x, y) \gamma_{k}(d y)=\mathbb{E}\left[\tilde{g} M_{t}(x, G)\right],
\end{aligned}
$$

where

$$
M_{t}(x, y):=\frac{1}{\left(1-t^{2}\right)^{k / 2}} \exp \left(-\frac{t^{2}\left(\|x\|^{2}+\|y\|^{2}\right)-2 t\langle x, y\rangle}{2\left(1-t^{2}\right)}\right)
$$

A lurking Mehler kernel

Observation
Fix $k \in \mathbb{N}$. Let $G \sim N_{k}\left(0, I_{k}\right)$ be a (standard) Gaussian random vector. Let $-1<t<1$ and g be as above. Then

$$
\begin{aligned}
\Lambda_{t} \tilde{g}(x) & :=\mathbb{E}\left[\tilde{g}\left(t x+\sqrt{1-t^{2}} G\right)\right] \\
& =\int_{\mathbb{R}^{k}} \tilde{g}(y) M_{t}(x, y) \gamma_{k}(d y)=\mathbb{E}\left[\tilde{g} M_{t}(x, G)\right],
\end{aligned}
$$

where

$$
\begin{aligned}
M_{t}(x, y) & :=\frac{1}{\left(1-t^{2}\right)^{k / 2}} \exp \left(-\frac{t^{2}\left(\|x\|^{2}+\|y\|^{2}\right)-2 t\langle x, y\rangle}{2\left(1-t^{2}\right)}\right) \\
& =\frac{\varphi_{0, \Sigma(t)}(x, y)}{\varphi_{0, J_{k}}(x) \varphi_{0, l_{k}}(y)} .
\end{aligned}
$$

A bird's eye view - from the complex plane I

For the moment assume that in additon $f(-x)=-f(x)$ for all $x \in \mathbb{R}^{k}$ or $g(-y)=-g(y)$ for all $y \in \mathbb{R}^{k}$. Having Fourier transform techniques in mind, let us assume further that the function $z \mapsto H_{f, g}(z)$ can be analytically extended to a suitable domain in \mathbb{C}, containing $\pm i$.

A bird's eye view - from the complex plane I

For the moment assume that in additon $f(-x)=-f(x)$ for all $x \in \mathbb{R}^{k}$ or $g(-y)=-g(y)$ for all $y \in \mathbb{R}^{k}$. Having Fourier transform techniques in mind, let us assume further that the function $z \mapsto H_{f, g}(z)$ can be analytically extended to a suitable domain in \mathbb{C}, containing $\pm i$. Then

$$
\frac{1}{i} H_{f, g}(i)=i H_{f, g}(-i)=\frac{1}{2^{k / 2}} \int_{\mathbb{R}^{k}} \tilde{f}(x) \int_{\mathbb{R}^{k}} \tilde{g}(y) K(x, y) d^{k} y d^{k} x
$$

A bird's eye view - from the complex plane I

For the moment assume that in additon $f(-x)=-f(x)$ for all $x \in \mathbb{R}^{k}$ or $g(-y)=-g(y)$ for all $y \in \mathbb{R}^{k}$. Having Fourier transform techniques in mind, let us assume further that the function $z \mapsto H_{f, g}(z)$ can be analytically extended to a suitable domain in \mathbb{C}, containing $\pm i$. Then

$$
\begin{aligned}
\frac{1}{i} H_{f, g}(i)=i H_{f, g}(-i) & =\frac{1}{2^{k / 2}} \int_{\mathbb{R}^{k}} \tilde{f}(x) \int_{\mathbb{R}^{k}} \tilde{g}(y) K(x, y) d^{k} y d^{k} x \\
& =2^{k / 2} \int_{\mathbb{R}^{k}} f(x) \int_{\mathbb{R}^{k}} g(y) K(x, y) d^{k} y d^{k} x
\end{aligned}
$$

A bird's eye view - from the complex plane I

For the moment assume that in additon $f(-x)=-f(x)$ for all $x \in \mathbb{R}^{k}$ or $g(-y)=-g(y)$ for all $y \in \mathbb{R}^{k}$. Having Fourier transform techniques in mind, let us assume further that the function $z \mapsto H_{f, g}(z)$ can be analytically extended to a suitable domain in \mathbb{C}, containing $\pm i$. Then

$$
\begin{aligned}
\frac{1}{i} H_{f, g}(i)=i H_{f, g}(-i) & =\frac{1}{2^{k / 2}} \int_{\mathbb{R}^{k}} \tilde{f}(x) \int_{\mathbb{R}^{k}} \tilde{g}(y) K(x, y) d^{k} y d^{k} x \\
& =2^{k / 2} \int_{\mathbb{R}^{k}}(x) \int_{\mathbb{R}^{k}} g(y) K(x, y) d^{k} y d^{k} x,
\end{aligned}
$$

where

A bird's eye view - from the complex plane II

$$
K(x, y):=\sin (\langle x, y\rangle) \varphi_{0, I_{2 k}}(x, y)
$$

A bird's eye view - from the complex plane II

$$
\begin{aligned}
K(x, y) & :=\sin (\langle x, y\rangle) \varphi_{0, I_{2 k}}(x, y) \\
& =\frac{1}{(2 \pi)^{k}} \sin (\langle x, y\rangle) \exp \left(-\frac{\|x\|^{2}+\|y\|^{2}}{2}\right) .
\end{aligned}
$$

A bird's eye view - from the complex
 plane II

$$
\begin{aligned}
K(x, y) & :=\sin (\langle x, y\rangle) \varphi_{0, l_{2 k}}(x, y) \\
& =\frac{1}{(2 \pi)^{k}} \sin (\langle x, y\rangle) \exp \left(-\frac{\|x\|^{2}+\|y\|^{2}}{2}\right) .
\end{aligned}
$$

A similar non-trivial integral was explicitly calculated by H. König in 2001, leading to his conjecture whether $K_{G}^{\mathbb{R}}=\frac{\pi}{2 \ln (1+\sqrt{2})}$

- which had been refuted in 2011 only (cf. [1])!

Krivine rounding schemes revisited III

Example

Krivine rounding schemes revisited III

Example
Let $k \in \mathbb{N}$ and $-1<t<1$.

Krivine rounding schemes revisited III

Example
Let $k \in \mathbb{N}$ and $-1<t<1$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)^{\top} \in(0,1)^{k}$ and $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)^{\top} \in(0,1)^{k}$.

Krivine rounding schemes revisited III

Example
Let $k \in \mathbb{N}$ and $-1<t<1$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)^{\top} \in(0,1)^{k}$ and $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)^{\top} \in(0,1)^{k}$. Consider

$$
\mathbb{R}^{k} \ni x \mapsto \chi_{\alpha}(x):=1-2 \prod_{i=1}^{k} \mathbb{1}_{\left(-\infty, \frac{\Phi^{-1}\left(\alpha_{i}\right)}{\sqrt{2}}\right]}\left(x_{i}\right) .
$$

Krivine rounding schemes revisited III

Example
Let $k \in \mathbb{N}$ and $-1<t<1$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)^{\top} \in(0,1)^{k}$ and $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)^{\top} \in(0,1)^{k}$. Consider

$$
\mathbb{R}^{k} \ni x \mapsto \chi_{\alpha}(x):=1-2 \prod_{i=1}^{k} \mathbb{1}_{\left(-\infty, \frac{\Phi^{-1}\left(\alpha_{i}\right)}{\sqrt{2}}\right]}\left(x_{i}\right) .
$$

Then $\chi_{\alpha}(x) \in\{-1,1\}$ for all $x \in \mathbb{R}^{k}$, and

Krivine rounding schemes revisited III

Example
Let $k \in \mathbb{N}$ and $-1<t<1$. Let $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right)^{\top} \in(0,1)^{k}$ and $\beta=\left(\beta_{1}, \ldots, \beta_{k}\right)^{\top} \in(0,1)^{k}$. Consider

$$
\mathbb{R}^{k} \ni x \mapsto \chi_{\alpha}(x):=1-2 \prod_{i=1}^{k} \mathbb{1}_{\left(-\infty, \frac{\Phi^{-1}\left(\alpha_{i}\right)}{\sqrt{2}}\right]}\left(x_{i}\right) .
$$

Then $\chi_{\alpha}(x) \in\{-1,1\}$ for all $x \in \mathbb{R}^{k}$, and

$$
H_{\chi_{\alpha}, \chi_{\beta}}(t) \stackrel{(!)}{=} 1-2\left(\prod_{i=1}^{k} \alpha_{i}+\prod_{i=1}^{k} \beta_{i}\right)+4 c_{\Sigma(t)}(\alpha, \beta),
$$

where $c_{\Sigma(t)}$ denotes the $2 k$-dimensional Gaussian copula with respect to the correlation matrix $\Sigma(t)$!

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)

Krivine rounding schemes revisited IV

A special case is the following（meanwhile not unknown ！）
Example（Sheppard（1899））
Let $k=1$ ．Then $\chi_{\frac{1}{2}}=$ sign，and

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)
Example (Sheppard (1899))
Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\mathbb{E}\left[\operatorname{sign}\left(\frac{X_{1}}{\sqrt{2}}\right) \operatorname{sign}\left(\frac{X_{2}}{\sqrt{2}}\right)\right]
$$

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)
Example (Sheppard (1899))
Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\mathbb{E}\left[\operatorname{sign}\left(\frac{X_{1}}{\sqrt{2}}\right) \operatorname{sign}\left(\frac{X_{2}}{\sqrt{2}}\right)\right]=
$$

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)
Example (Sheppard (1899))
Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\mathbb{E}\left[\operatorname{sign}\left(\frac{X_{1}}{\sqrt{2}}\right) \operatorname{sign}\left(\frac{X_{2}}{\sqrt{2}}\right)\right]=H_{\chi_{\frac{1}{2}}, \chi_{\frac{1}{2}}}(t)
$$

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)
Example (Sheppard (1899))
Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\mathbb{E}\left[\operatorname{sign}\left(\frac{X_{1}}{\sqrt{2}}\right) \operatorname{sign}\left(\frac{X_{2}}{\sqrt{2}}\right)\right]=H_{\chi_{\frac{1}{2}}, \chi_{\frac{1}{2}}}(t)=
$$

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)
Example (Sheppard (1899))
Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\mathbb{E}\left[\operatorname{sign}\left(\frac{X_{1}}{\sqrt{2}}\right) \operatorname{sign}\left(\frac{X_{2}}{\sqrt{2}}\right)\right]=H_{\chi_{\frac{1}{2}}, \chi_{\frac{1}{2}}}(t)=4 c_{\Sigma(t)}\left(\frac{1}{2}, \frac{1}{2}\right)-1
$$

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)
Example (Sheppard (1899))
Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{sign}\left(\frac{X_{1}}{\sqrt{2}}\right) \operatorname{sign}\left(\frac{X_{2}}{\sqrt{2}}\right)\right] & =H_{\chi_{\frac{1}{2}}, \chi_{\frac{1}{2}}}(t)=4 c_{\Sigma(t)}\left(\frac{1}{2}, \frac{1}{2}\right)-1 \\
& =
\end{aligned}
$$

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)
Example (Sheppard (1899))
Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{sign}\left(\frac{X_{1}}{\sqrt{2}}\right) \operatorname{sign}\left(\frac{X_{2}}{\sqrt{2}}\right)\right] & =H_{\chi_{\frac{1}{2}}, \chi_{\frac{1}{2}}}(t)=4 c_{\Sigma(t)}\left(\frac{1}{2}, \frac{1}{2}\right)-1 \\
& =\frac{2}{\pi} \arcsin (t)
\end{aligned}
$$

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)
Example (Sheppard (1899))
Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{sign}\left(\frac{X_{1}}{\sqrt{2}}\right) \operatorname{sign}\left(\frac{X_{2}}{\sqrt{2}}\right)\right] & =H_{\chi_{\frac{1}{2}}, \chi_{\frac{1}{2}}}(t)=4 c_{\Sigma(t)}\left(\frac{1}{2}, \frac{1}{2}\right)-1 \\
& =\frac{2}{\pi} \arcsin (t)=
\end{aligned}
$$

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)
Example (Sheppard (1899))
Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{sign}\left(\frac{X_{1}}{\sqrt{2}}\right) \operatorname{sign}\left(\frac{X_{2}}{\sqrt{2}}\right)\right] & =H_{\chi_{\frac{1}{2}}, \chi_{\frac{1}{2}}}(t)=4 c_{\Sigma(t)}\left(\frac{1}{2}, \frac{1}{2}\right)-1 \\
& =\frac{2}{\pi} \arcsin (t)=\frac{2}{\pi} \arcsin \left(\mathbb{E}\left[X_{1} X_{2}\right]\right) .
\end{aligned}
$$

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)

Example (Sheppard (1899))

Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{sign}\left(\frac{X_{1}}{\sqrt{2}}\right) \operatorname{sign}\left(\frac{X_{2}}{\sqrt{2}}\right)\right] & =H_{\chi_{\frac{1}{2}}, \chi_{\frac{1}{2}}}(t)=4 c_{\Sigma(t)}\left(\frac{1}{2}, \frac{1}{2}\right)-1 \\
& =\frac{2}{\pi} \arcsin (t)=\frac{2}{\pi} \arcsin \left(\mathbb{E}\left[X_{1} X_{2}\right]\right) .
\end{aligned}
$$

A strong drawback: in general there is no closed form for values of multivariate Gaussian copulas available. One has to rely on approximation techniques and simulation methods here (such as standard Monte Carlo). One significant point to observe is that (by Sklar's Theorem) the structure of copulas requires a calculation of single quantile functions. Their values have to be implemented as upper bounds of (large) multi-dimensional integrals, originating from the underlying multi-dimensional Gaussian distribution.

Krivine rounding schemes revisited IV

A special case is the following (meanwhile not unknown !)
Example (Sheppard (1899))
Let $k=1$. Then $\chi_{\frac{1}{2}}=$ sign, and

$$
\begin{aligned}
\mathbb{E}\left[\operatorname{sign}\left(X_{1}\right) \operatorname{sign}\left(X_{2}\right)\right] & =H_{\chi_{\frac{1}{2}}, x_{\frac{1}{2}}}(t)=4 c_{\Sigma(t)}\left(\frac{1}{2}, \frac{1}{2}\right)-1 \\
& =\frac{2}{\pi} \arcsin (t)=\frac{2}{\pi} \arcsin \left(\mathbb{E}\left[X_{1} X_{2}\right]\right) .
\end{aligned}
$$

A strong drawback: in general there is no closed form for values of multivariate Gaussian copulas available. One has to rely on approximation techniques and simulation methods here (such as standard Monte Carlo). One significant point to observe is that (by Sklar's Theorem) the structure of copulas requires a calculation of single quantile functions. Their values have to be implemented as upper bounds of (large) multi-dimensional integrals, originating from the underlying multi-dimensional Gaussian distribution.

Krivine rounding schemes revisited V

Theorem
Let $l_{2} \cong H$ be a separable Hilbert space, $m, n \in \mathbb{N}, k:=m+n$ and $f, g: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ be bounded. Suppose the following conditions are satisfied:

Krivine rounding schemes revisited V

Theorem

Let $l_{2} \cong H$ be a separable Hilbert space, $m, n \in \mathbb{N}, k:=m+n$ and $f, g: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ be bounded. Suppose the following conditions are satisfied:
(i) $H_{f, g}^{\prime}(0) \neq 0$ and $H_{f, g}(0) \geq 0$.
(ii) $\operatorname{abs}\left(H_{f, g}^{-1}\right)(c)=1$, for some $c \equiv c(f, g)>0$.

Krivine rounding schemes revisited V

Theorem

Let $l_{2} \cong H$ be a separable Hilbert space, $m, n \in \mathbb{N}, k:=m+n$ and $f, g: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ be bounded. Suppose the following conditions are satisfied:
(i) $H_{f, g}^{\prime}(0) \neq 0$ and $H_{f, g}(0) \geq 0$.
(ii) $\operatorname{abs}\left(H_{f, g}^{-1}\right)(c)=1$, for some $c \equiv c(f, g)>0$.

Then for all $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n} \in S_{H}$ there exist k \mathbb{R}^{k}-valued random vectors $X_{1}, X_{2}, \ldots, X_{m}, Y_{1}, Y_{2}, \ldots, Y_{n}$ such that $X_{i} \sim N_{k}\left(0, I_{k}\right)$ for all $i \in[m]$ and $Y_{j} \sim N_{k}\left(0, I_{k}\right)$ for all $j \in[n]$ and

$$
\frac{1}{c} \mathbb{E}\left[f\left(\frac{1}{\sqrt{2}} X_{i}\right) g\left(\frac{1}{\sqrt{2}} Y_{j}\right)\right]=\left\langle u_{i}, v_{j}\right\rangle_{H}
$$

for all $(i, j) \in[m] \times[n]$.

Krivine rounding schemes revisited V

Theorem

Let $l_{2} \cong H$ be a separable Hilbert space, $m, n \in \mathbb{N}, k:=m+n$ and $f, g: \mathbb{R}^{k} \longrightarrow \mathbb{R}$ be bounded. Suppose the following conditions are satisfied:
(i) $H_{f, g}^{\prime}(0) \neq 0$ and $H_{f, g}(0) \geq 0$.
(ii) $\operatorname{abs}\left(H_{f, g}^{-1}\right)(c)=1$, for some $c \equiv c(f, g)>0$.

Then for all $u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{n} \in S_{H}$ there exist k \mathbb{R}^{k}-valued random vectors $X_{1}, X_{2}, \ldots, X_{m}, Y_{1}, Y_{2}, \ldots, Y_{n}$ such that $X_{i} \sim N_{k}\left(0, I_{k}\right)$ for all $i \in[m]$ and $Y_{j} \sim N_{k}\left(0, I_{k}\right)$ for all $j \in[n]$ and

$$
\frac{1}{c} \mathbb{E}\left[f\left(\frac{1}{\sqrt{2}} X_{i}\right) g\left(\frac{1}{\sqrt{2}} Y_{j}\right)\right]=\left\langle u_{i}, v_{j}\right\rangle_{H}
$$

for all $(i, j) \in[m] \times[n]$. If $f, g: \mathbb{R}^{k} \longrightarrow\{-1,+1\}$ then $K_{G}^{\mathbb{R}} \leq \frac{1}{c(f, g)}$.

A phrase of G. H. Hardy

"... at present I will say only that if a chess problem is, in the crude sense, 'useless', then that is equally true of most of the best mathematics; that very little of mathematics is useful practically, and that that little is comparatively dull. The 'seriousness' of a mathematical theorem lies, not in its practical consequences, which are usually negligible, but in the significance of the mathematical ideas which it connects..."

- A Mathematician's Apology (1940)

Only a - very - few references

[[1] M. Braverman, K. Makarychev, Y. Makarychev and A. Naor.
The Grothendieck constant is strictly smaller than Krivine's bound.
http://arxiv.org/abs/1103.6161 (2011).
(囯 [2] J. Briët, F. M. de Oliveira Filho and F. Vallentin.
The Grothendieck problem with rank constraint.
Proc. of the 19th Intern. Symp. on Math. Theory of Netw. and Syst. - MTNS 2010, 5-9 July, Budapest (2010).

國 [3] M. X. Goemans and D. P. Williamson.
Improved Approximation Algorithms for Maximum Cut and Satisfiability Problems Using Semidefinite Programming. J. Assoc. Comp. Machinery., Vol. 42, No. 6, 1115-1145 (1995).

Only a - very - few references

睩 [4] H. König.
On an extremal problem originating in questions of unconditional convergence.
Recent progress in multivariate approximation
(Witten-Bommerholz, 2000), ser. Internat. Ser. Numer.
Math. Basel: Birkhäuser, vol. 137, pp. 185-192 (2001).
[[5] G. Pisier.
Grothendieck's theorem, past and present.
Bull. Am. Math. Soc., New Ser. 49, No. 2, 237-323 (2012).
Cf. also: http://www.math.tamu.edu/~pisier/
grothendieck.UNCUT.pdf!
[[6] W. Sheppard.
On the application of the theory of error to cases of normal distribution and normal correlation.
Philosophical Transactions of the Royal Society of London, Series A, 192:101-167, 531 (1899).

Only a - very - few references

图 [7] T.S. Stieltjes. Extrait d'une lettre adressé à M. Hermite. Bull. Sci. Math. Ser. 2 13:170 (1889).

Thank you for your attention!

Are there any questions, comments or remarks?

