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An important information for readers

The current version is a shortened (“web-publishable” ©)
version of my presentation in Birmingham.
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An important information for readers

The current version is a shortened (“web-publishable” ©)
version of my presentation in Birmingham. If you are interested
in a copy of my original slides, presented in Birmingham, could
you please send an email to me in advance? | am happy to
forward these to you, of course. Many thanks!
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@ A very short glimpse at A. Grothendieck’s work in functional
analysis
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A portrait of A. Grothendieck




A. Grothendieck lecturing at IHES
(1958-1970)
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@® A further reformulation of Grothendieck’s inequality
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Grothendieck’s inequality in matrix
form |

Theorem (Lindenstrauss-Pelczynski (1968))

LetF € {R,C} andm,n € N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (a;;) € M(m x n;F), for all F-Hilbert spaces H, for

all unit vectors uy, ... ,un,v1, ..., v, € Sy the following inequality
is satisfied:

m n m n
‘ZZ&,’j(M,’,Vj>H‘ <K max{‘ ZZaijpiqj‘ 1Piqgj € {*l, 1}} .

i=1 j=1 i=1 j=1

12 /R



Grothendieck’s inequality in matrix
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Theorem (Lindenstrauss-Pelczynski (1968))

LetF € {R,C} andm,n € N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (a;;) € M(m x n;F), for all F-Hilbert spaces H, for
all unit vectors uy, ... ,un,v1, ..., v, € Sy the following inequality
is satisfied:

m n m n
‘ZZaij<ui,vj~>H‘ <K max{‘ ZZaijpiqj‘ 1Piqgj € {*l, 1}} .

i=1 j=1 i=1 j=1

The smallest possible value of the corresponding constant K is
denoted by K. Itis called Grothendieck’s constant.
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Grothendieck’s inequality in matrix
form |

Theorem (Lindenstrauss-Pelczynski (1968))

LetF € {R,C} andm,n € N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (a;;) € M(m x n;F), for all F-Hilbert spaces H, for
all unit vectors uy, ... ,un,v1, ..., v, € Sy the following inequality
is satisfied:

m n m n
‘ZZ&,’j(M,’,Vj>H‘ <K max{‘ ZZaijpiqj‘ 1Piqgj € {*l, 1}} .

i=1 j=1 i=1 j=1

The smallest possible value of the corresponding constant K is
denoted by K. Itis called Grothendieck’s constant. Computing
the exact numerical value of this constant is an open problem
(unsolved since 1953)!
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Grothendieck’s inequality in matrix
form Il

Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let KL, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices overF. Then
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Grothendieck’s inequality in matrix
form Il

Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let KL, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices overF. Then

s

R
KGHZE
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Grothendieck’s inequality in matrix
form Il

Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let KL, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices overF. Then

Koy = % and
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Grothendieck’s inequality in matrix
form Il

Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let KL, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices overF. Then

T 4
KE, == and K5, =—.
GH = 5 GH = —
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Grothendieck’s inequality in matrix
form Il

Theorem (R. E. Rietz (1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let KL, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices overF. Then

s C 4
From now on are going to consider the real case (i.e., F = R)

only. Nevertheless, we allow an unrestricted use of all matrices
A € M(m x n;R) forany m,n € Nin GT.
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Grothendieck’s inequality in matrix
form Il

Until present the following encapsulation of K& holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):
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Grothendieck’s inequality in matrix
form Il

Until present the following encapsulation of K& holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

M) T
1,676 < K& < ~1,782.
¢ 2In(1++2)
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Grothendieck’s inequality in matrix
form Il

Until present the following encapsulation of K& holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

M) T
1,676 < K& < ~1,782.
T 2m(1+v2)

Screening these numbers we might be tempted to guess the
following
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Grothendieck’s inequality in matrix
form Il

Until present the following encapsulation of K& holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

M) T
1,676 < K& < ~1,782.
T 2m(1+v2)

Screening these numbers we might be tempted to guess the
following

Conjecture
IsK: = /1
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Grothendieck’s inequality in matrix
form Il

Until present the following encapsulation of K& holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

M) T
1,676 < K& < ~1,782.
T 2m(1+v2)

Screening these numbers we might be tempted to guess the
following

Conjecture
IsKE = /7 =T(})
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Grothendieck’s inequality in matrix
form Il

Until present the following encapsulation of K& holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

M) T
1,676 < K& < ~1,782.
T 2m(1+v2)

Screening these numbers we might be tempted to guess the
following

Conjecture
IsKg =7 =T(3) ~1,772?
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Grothendieck’s inequality rewritten |

By transforming Grothendieck’s inequality into an equivalent
inequality between traces of matrix products (respectively
Hilbert-Schmidt inner products) we are lead to a surprising
interpretation which reveals deep links to combinatorial (binary)
optimisation, semidefinite programming (SDP) and multivariate
statistics, built on suitable non-linear mappings between
correlation matrices.
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Grothendieck’s inequality rewritten |

By transforming Grothendieck’s inequality into an equivalent
inequality between traces of matrix products (respectively
Hilbert-Schmidt inner products) we are lead to a surprising
interpretation which reveals deep links to combinatorial (binary)
optimisation, semidefinite programming (SDP) and multivariate
statistics, built on suitable non-linear mappings between
correlation matrices.

We will sketch this approach which might lead to a constructive

™

improvement of Krivine’s upper bound TRV At least it also
can be reproduced in this approach.
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Grothendieck’s inequality rewritten |l
Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
vi=(vi,...,v,) € S, be given, where Sy := {w € H : |w| = 1}
denotes the unit sphere in H.
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Grothendieck’s inequality rewritten |l
Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
vi=(vi,...,v,) € S, be given, where Sy := {w € H : |w| = 1}
denotes the unit sphere in H.
Firstly, note that

m n

Z aj(ui, vi)u =

1 j=1

1
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Grothendieck’s inequality rewritten |l
Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
vi=(vi,...,v,) ! € S, be given, where Sy := {w € H : |w|
denotes the unit sphere in H.
Firstly, note that

ZZ% (Ui, vi)H _tr(A Ly (u, l)) =

i=1 j=l1

=1}
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Grothendieck’s inequality rewritten |l
Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
vi=(vi,...,v,) € S, be given, where Sy := {w € H : |w| = 1}
denotes the unit sphere in H.
Firstly, note that

ZZaU (Ui, vi)w = tr(A Ly (u, l)) = (A, y(u,v)),

i=1 j=1

is precisely the Hilbert-Schmidt inner product (or the Frobenius
inner product) of the matrices A € M(m x n;R) and
Cy(u,v) € M(m x n;R), where
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Grothendieck’s inequality rewritten |l
Let m,n € NJA € M(m x m;R), u:= (uy,...,u,)" €S% and
vi=(vi,...,v,) € S, be given, where Sy := {w € H : |w| = 1}
denotes the unit sphere in H.
Firstly, note that

ZZ% (Ui, vi)w = tr(A Ly (u, l)) = (A, y(u,v)),

i=1 j=l1

is precisely the Hilbert-Schmidt inner product (or the Frobenius
inner product) of the matrices A € M(m x n;R) and
Cy(u,v) € M(m x n;R), where

(wi,vi)m  (wi,v2)u .. (U1, va)u

(up,vi)g (uz,vo)g ... (uz,va)m
Iy(u,v) = . !

<”m- Vl>ll <”m- VZ>I/ cee <”m¢ Vn>ll

1A /AT



Grothendieck’s inequality rewritten Il

Letm,n € NJA € M(m x n;R),p:= (p1,....pm) " € (So)m and
q:=(q1,---,q2)" € (S°)" be given, where §° := {—1,1}
denotes the unit “sphere” in R = RO+!,

Similarly as before, we obtain

m n
SO agpigi =tr(AT Tulp.q)) = (A, Tx(p.q),
i=1 j=1
where now
+1 F1 ... =+1

Fl F1 ... =FI
Tr(p,q)i=pqg" =| . . . .
41 F1o... %l
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors
Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(ur,vi)  (ui,v2) ... (u1,vp)
(ug,vi) (up,va) ... (uz,vp)
<l/tm,V1> <Ltm,V2> cee <Mm7vn>
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(ur,vi)  (ui,v2) ... (u1,vp)
(ug,vi) (up,va) ... (uz,vp)
<l/tm,V1> <Mm:v2> cee <Mm7vn>

Does this matrix look familiar to you?
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(ur,vi)  (ur,v2) oo (U, vp)
(uz,v1> <u2,V2> e <Lt2,vn>
<l/tm,V1> <I/tm,V2> cee <Mmavn>

Does this matrix look familiar to you?
It is a part of something larger...
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

Uy, Up, .., Uy, Vi, V2, ..., v, € H and represent them as
(ur,vi)  (ur,v2) oo (U, vp)
(uz,v1> <u2,V2> e <Lt2,v,,>
<I/tm,V1> <I/tm,V2> cee <Mmavn>

Does this matrix look familiar to you?
It is a part of something larger...
Namely:
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Block matrix representation |

<u1,\11> <u1,V2> (ul,vn>
(ug,vi)  (up,vay ... (ua,vy)
<um.,v1) <um;v2> coo (thmy V)

(uy,vi)  Aup,va) oo (ug,vm)

<M2,V1> (uz,V2> <I/t2,vn>

<unn Vl) <um7 V2> . <um7 Vn>
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Block matrix representation |

(up,vi) (ur,va) ... (up,vy)
(up,vi) (ua,va) ... (up,vy)
(tmyv1) (s va) oo (U, Vi)

(ur,vi) (uz,vi) ... (um,v1)

(ui,va) (ua,v2) ... (um,v2)

<u1,'v,,) <u2,.vn> e (umyvn)

20/R1



Block matrix representation |

(up,vi) (ur,va) ... (up,vy)
(up,vi) (ua,va) ... (up,vy)
(tmyv1) (s va) oo (U, Vi)

(vi,ur) (viyup) ... (Vi Um)

(vo,ury  (va,up) ... (vo,up)

<v,,,'u1) <vn,.u2> coe (Vs )

219 /R1



Block matrix representation |l

<M1,M1> <M1,M2> <u1,um> (ul,v1> <Lt1,V2>
(ug,ur)  (up,up) ... (up,uy) (upg,vi) (uz,va) ...
(U ur) (U un) oo (s tt) (U, V1) (U, v2) ...
(viyur) (viyua) oo (visum)  (vi,vi) o (viova) Ll
(vo,u1)  (va,up) .. (vo,um)  (va,vi) (va,va) ...
Gt i) e i) omvi) v
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Block matrix representation Il

1 <M1,M2> <Lt1,Ltm> <M1,V1> <u1,V2> (ul,vn>
(up, uy) 1 coo (uayuy) (uayvi)  (ua,v2) oo {ua,vn)
(yur)  (um,up) ... 1 (um, vi) (tum,v2) oo (s vn)
(vi,ur) (viyup) ... (Vi up) 1 (vi,va) .. (Vi,vn)
(va,u1) (va,un) ... (va,um)y  (v2,vi) 1 oo (v,
<Vnu M1> <Vn7 u2> cee <Vn7 um> <Vi17 V1> <Vma V2> cee 1

29 R1



A refresher of a few definitions |

Let n € N. We put

PSD(n;R) :={S: S € M(n x n;R) and S is positive semidefinite}.
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A refresher of a few definitions |

Let n € N. We put
PSD(n;R) :={S: S € M(n x n;R) and S is positive semidefinite}.

Recall that PSD(n;R) is a closed convex cone which (by
definition!) consists of symmetric matrices only.
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A refresher of a few definitions |

Let n € N. We put
PSD(n;R) :={S: S € M(n x n;R) and S is positive semidefinite}.

Recall that PSD(n;R) is a closed convex cone which (by
definition!) consists of symmetric matrices only.

Moreover, we consider the set

C(n;R) := {S € PSD(n;R) such that S;; = 1 for all i € [n]}.
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A refresher of a few definitions Il

Letd,k € Nand (H, (-,-)) be an arbitrary d-dimensional Hilbert
space (i.e, H = 1§). Let wi,ws, ..., w; € H. Put
wi=(wi,...,w) " € H and S := (wiiwal ... twy) €

M(d x k;R). The matrix I';;(w,w) € PSD(k; R), defined as

Tr(w,w)i = (wi, wy) = (ST5) (i,j €[kl :=={1,2,...,k})

i

is called Gram matrix of the vectors wy,...,w, € H.
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A refresher of a few definitions Il

Letd,k € Nand (H, (-,-)) be an arbitrary d-dimensional Hilbert
space (i.e, H = 1§). Let wi,ws, ..., w; € H. Put
wi=(w,...,w)" € H*and § := (wllwzl Iwk) €

M(d x k;R). The matrix I';;(w,w) € PSD(k; R), defined as

Ca(w,w)i = (wi,wj) = (STS)’./

is called Gram matrix of the vectors wy,...,w, € H.
Observe that
(ur,vi) (ui,v2) ... (u1,vn)
(ug,vi) (up,va) ... (uz,vp)
(Umsv1)  (Umsv2) oo (U Vi)

is not a Gram matrix!

o2 Ry



A refresher of a few definitions Il
Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
pi=(p1, 2, ..., ) €R"and C € PSD(n; R).
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A refresher of a few definitions Il

Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
pi=(p1, 2, ..., ) €R"and C € PSD(n; R).

Recall that ¢ is an n-dimensional Gaussian random vector with
respect to the “parameters” ;1 and C (short: £ ~ N, (i, C)) if and
only if for all a € R”" there exists 1, ~ N;(0, 1) such that

n

(a,&) = Za,{i = (a, p) + /{a,Ca)n,

i=1
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A refresher of a few definitions Il

Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let

w= (1, p2, -, pn) " € R"and C € PSD(n; R).

Recall that ¢ is an n-dimensional Gaussian random vector with
respect to the “parameters” ;1 and C (short: £ ~ N, (i, C)) if and
only if for all a € R”" there exists 1, ~ N;(0, 1) such that

n

(a,&) = Za,{i = (a,p) + /{a,Ca) n,

i=1

Note that we don’t require here that C is invertible!
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A refresher of a few definitions Il

Let n € N. Fix a probability space (2, 7,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
pi=(p1, 2, ..., ) €R"and C € PSD(n; R).

Recall that ¢ is an n-dimensional Gaussian random vector with
respect to the “parameters” ;1 and C (short: £ ~ N, (i, C)) if and
only if for all a € R”" there exists 1, ~ N;(0, 1) such that

n

(a,&) = Za,{i = (a, p) + /{a,Ca)n,

i=1

Note that we don’t require here that C is invertible! Following
Feller, the matrix V(¢) defined as

V(&) = E[&§] — E[&GIE[S] o Cy  (irj € [n])

is known as the variance matrix of the Gaussian random vector
£.

2 /R1



Structure of correlation matrices |

Proposition
Letn € Nand ¥ = (0;) € M(n x n;R). TFAE:

27 /R1



Structure of correlation matrices |

Proposition
Letn € Nand ¥ = (0;) € M(n x n;R). TFAE:
(i) X € PSD(n;R) and o;; = 1 for all i € [n].
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Structure of correlation matrices |

Proposition

Letn € Nand ¥ = (0;) € M(n x n;R). TFAE:
(i) X € PSD(n;R) and o;; = 1 for all i € [n].
(i) ¥ e C(n;R).
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Structure of correlation matrices |

Proposition
Letn € Nand ¥ = (0;) € M(n x n;R). TFAE:
(i) X € PSD(n;R) and o;; = 1 for all i € [n].
(i) £ € CcmR).
(iii)y There exist vectors xi,...,x, € S"~! such that o;; = (x;, x;)
foralli,j € [n].
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Proposition
Letn € Nand ¥ = (0;) € M(n x n;R). TFAE:
(i) X € PSD(n;R) and o;; = 1 for all i € [n].
(i) £ € CcmR).
(iii)y There exist vectors xi,...,x, € S"~! such that o;; = (x;, x;)
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(iv) ¥ =Tp(x,x) forsomex = (xi,...,x,)" € (" 1)".
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Structure of correlation matrices |

Proposition

Letn € Nand ¥ = (0;) € M(n x n;R). TFAE:

(i) X € PSD(n;R) and o;; = 1 for all i € [n].

(i) ¥ e C(mR).

(iii)y There exist vectors xi,...,x, € S"~! such that o;; = (x;, x;)
for alli,j € [n].

(iv) ¥ =Tp(x,x) forsomex = (xi,...,x,)" € (" 1)".

(v) X =V(&) is a correlation matrix, induced by some
n-dimensional Gaussian random vector { ~ N,(0,%).
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Structure of correlation matrices |

Proposition
Letn € Nand ¥ = (0;) € M(n x n;R). TFAE:
(i) X € PSD(n;R) and o;; = 1 for all i € [n].

(i) © € C(mR).

(i) There exist vectors xy, ... ,x, € "' such that o;; = (x;, x;)
foralli,j € [n].

(iv) ¥ =Tp(x,x) for somex = (xi,...,x,)" € (5" ")".

(v) X =V(&) is a correlation matrix, induced by some
n-dimensional Gaussian random vector £ ~ N,(0,X).

In particular, condition (i) implies thato;; € [—1,1] for alli,j € [n].

27 R1



Structure of correlation matrices Il

Observation
Letk € N. Then the sets {S: S = xx' for somex € {—1,1}}}
and {©: © € C(k;R) and rk(©) = 1} coincide.
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Structure of correlation matrices Il

Observation
Letk € N. Then the sets {S: S = xx' for some x € {—1,1}}}
and {©: © € C(k;R) and rk(©) = 1} coincide.

Proposition (K. R. Parthasarathy (2002))

Letk € N. C(k;R) is a compact and convex subset of the
k?-dimensional vector space M(k x k;R). Any k x k-correlation
matrix of rank 1 is an extremal point of the set C(k;R).
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Letk € N. C(k;R) is a compact and convex subset of the
k?-dimensional vector space M(k x k;R). Any k x k-correlation
matrix of rank 1 is an extremal point of the set C(k;R).

In particular, the (finite) set of all k x k-correlation matrices of
rank 1 is not convex.
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Structure of correlation matrices Il

Observation
Letk € N. Then the sets {S: S = xx' for some x € {—1,1}}}
and {©: © € C(k;R) and rk(©) = 1} coincide.

Proposition (K. R. Parthasarathy (2002))

Letk € N. C(k;R) is a compact and convex subset of the
k?-dimensional vector space M(k x k;R). Any k x k-correlation
matrix of rank 1 is an extremal point of the set C(k;R).

In particular, the (finite) set of all k x k-correlation matrices of
rank 1 is not convex.

Let k € N. Put

Ci(k;R) :={©:0 € C(k;R) and rk(©) = 1}.

29 /RY



Canonical block injection of A

A naturally appearing question is the following:
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Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by “enlarging”
the m x n-matrix I'y(u, v) to a (m + n) x (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly?
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Canonical block injection of A
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Having gained - important - additional structure by “enlarging”
the m x n-matrix I'y(u, v) to a (m + n) x (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly? To answer this question,
let us also “embed” the m x n-matrix A suitably!

Definition

Let m,n € Nand A € M(m x n;R) arbitrary. Put

~ 1(0 A
A‘_z(AT o)

Let us call M((m + n) x (m +n); R) 3 A the canonical block
injection of A.
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Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by “enlarging”
the m x n-matrix I'y(u, v) to a (m + n) x (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly? To answer this question,
let us also “embed” the m x n-matrix A suitably!

Definition
Let m,n € Nand A € M(m x n;R) arbitrary. Put

~ 1(0 A
A'_2<AT o)

Let us call M((m + n) x (m +n); R) 3 A the canonical block
injection of A.

Observe that A is symmetric, implying that A = AT .
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Proposition
Letm,n € N and A = (a;) € M(m x n;R). LetK > 0. TFAE:
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A further equivalent rewriting of GT |

Proposition
Letm,n € N and A = (a;) € M(m x n;R). LetK > 0. TFAE:
(i)

n

m
E a;ipiqj
i=1 j

=1

sup ‘Zm:zn:aij(u,-7vj)y‘ <K

max
11 {—1,1}n
wwyespxsy =1 o () e{-1.1}"x{-1,1}

for all Hilbert spaces H over R.



A further equivalent rewriting of GT |

Proposition
Letm,n € N and A = (a;) € M(m x n;R). LetK > 0. TFAE:
(i)

n

m
DD apig;
i=1 j

=1

m n
sup ‘ZZ“U(uhvj)H‘ <K e

(uw)ESExSy 21 =1

for all Hilbert spaces H over R.

(i _

sup (A, %) <K max [(A,0).

DeC(m+n;R) R
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A further equivalent rewriting of GT Il

Proposition
Letm,n e NandA = (a;) € M(m x n;R). LetK > 0. TFAE:
(i)

n m n

m
a;i(ui, vi) max a;ipiqi
22 eyt ‘ <p,q>e{—1,1}'ﬂx{—1,1}"’ZZ P

i=1 j=I i=1 j=I

max
(u,v)ESY xS}

for all Hilbert spaces H over R.
(i) R R
max |(A,X)| <K max [(A,0)].
»eC(m+n;R) 0eC(m+mR)
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A further equivalent rewriting of GT Il

Proposition
Letm,n e NandA = (a;) € M(m x n;R). LetK > 0. TFAE:
(i)

m
max E
(u,v)ESY xS}

i=1 j=I

m n
a;i(u;, v; ‘ < max ’ E E aiipiq;
7 ) ] (p)e{—1,1}mx{—1,1}n par yetdj

for all Hilbert spaces H over R.
(ii) N
max [(A,X) <K max |[(4,0)].
YeC(m+mR) € (m+n;R)
We don’t know whether condition (ii) holds for all matrices in
M((m + n) x (m+n);R).
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GT versus NP-hard optimisation

Observation

On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):

max _|(A,5)
YeC(m+nR)
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GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):
max  |(A,2)]

YeC(m+nR)
On the right side: an NP-hard, non-convex combinatorial
(Boolean) optimisation problem:

~

max [(A, ©)]
©cC(m+mR)
rk(©)=1
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GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):
max  |(A,2)]

YeC(m+nR)
On the right side: an NP-hard, non-convex combinatorial
(Boolean) optimisation problem:

max [(A, ©)]
©cC(m+mR)
rk(©)=1
Thus, Grothendieck’s constant K3 is precisely the “integrality
gap’”; i.e., the maximum ratio between the solution quality of
the NP-hard Boolean optimisation on the right side of GT and

of its SDP relaxation on the left side!
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@ K? and correlation matrix transformations
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Schur product and the matrix f[A] |

Definition
Let() U CRandf: U — R afunction. Let
A = (a;) € M(m x n;R) such that a;; € U for all (i,) € [m] x [n].
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Schur product and the matrix f[A] |

Definition

Let) £ U CRandf: U — R a function. Let

A = (a;) € M(m x n;R) such that a;; € U for all (i,) € [m] x [n].
Define f[A] € M(m x n;R) - entrywise - as f[A];; := f(a;) for all
(i,7) € [m] x [n].
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Schur product and the matrix f[A] |

Definition

Let) £ U CRandf: U — R a function. Let

A = (a;) € M(m x n;R) such that a;; € U for all (i,) € [m] x [n].
Define f[A] € M(m x n;R) - entrywise - as f[A];; := f(a;) for all
(i,7) € [m] x [n].

Guiding Example
The Schur product (or Hadamard product)
(ayj) * (byj) := (ayby)

of matrices (a;;) and (b;;) leads to matrices A** = f[A], where

f(x) :=x*(k € N).
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Schur product and the matrix f[A] |

Definition

Let) £ U CRandf: U — R a function. Let

A = (a;) € M(m x n;R) such that a;; € U for all (i,) € [m] x [n].
Define f[A] € M(m x n;R) - entrywise - as f[A];; := f(a;) for all
(i,7) € [m] x [n].

Guiding Example
The Schur product (or Hadamard product)

(aj) * (byj) == (aijbij)
of matrices (a;;) and (b;;) leads to matrices A** = f[A], where
f(x) :=x*(k € N).
The notation “f[A]” is used to highlight the difference between

the matrix f(A) originating from the spectral representation of A
(for normal matrices A) and the matrix f[A], defined as above !
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Schur product and the matrix f[A] |I

Theorem

For any n € N the set M(n x n;R) with the usual addition and
the Schur multiplication  is a commutative Banach algebra
under the operator norm. Moreover,

PSD(n;R) x PSD(n;R) C PSD(n;R) .

1. This is known as the Schur Product Theorem.
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the Schur multiplication  is a commutative Banach algebra
under the operator norm. Moreover,

PSD(n;R) x PSD(n;R) C PSD(n;R) .

The set PSD(n; R) is a closed, convex, pointed, and solid cone
inM(n x n; R).

1. This is known as the Schur Product Theorem.
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Schur product and the matrix f[A] |I

Theorem

For any n € N the set M(n x n;R) with the usual addition and
the Schur multiplication  is a commutative Banach algebra
under the operator norm. Moreover,

PSD(n;R) x PSD(n;R) C PSD(n;R) .

The set PSD(n; R) is a closed, convex, pointed, and solid cone
inM(n x n; R).

Corollary
Letn € N Then

C(m;R)*« C(m;R) C C(n; R).

1. This is known as the Schur Product Theorem.
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Correlation matrix transformation |

Corollary
Let0O <r<ooandf:[—r,r] — R such that on [—r,r]

flx) = Z ag x*
k=0

for some nonnegative coefficients a; > 0.
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Correlation matrix transformation |

Corollary
Let0 < r < oo andf :[—r,r] — R such that on [—r, r]

flx) = Z a x*
k=0

for some nonnegative coefficients ay > 0. Then f(r) > 0,
f([0,r]) C[0,f(r)] @and |f(r)| < f(r) forallt € [—r,r].
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Correlation matrix transformation |

Corollary
Let0 < r < oo andf :[—r,r] — R such that on [—r, r]

flx) = Z a x*
k=0

for some nonnegative coefficients a, > 0. Then f(r) > 0,
f([0,r]) C[0,f(r)] @and |f(z)| < f(r) for allt € [—r,r]. Moreover,

fIA] € PSD(n; [—f(r),f(r)]) foralln € N and A € PSD(n; [—r,r]).
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Correlation matrix transformation |

Corollary
Let0 < r < oo andf :[—r,r] — R such that on [—r, r]

flx) = Zakxk
k=0
for some nonnegative coefficients a, > 0. Then f(r) > 0,
f([0,r]) C[0,f(r)] @and |f(z)| < f(r) for allt € [—r,r]. Moreover,
fIA] € PSD(n; [—f(r),f(r)]) foralln € N and A € PSD(n; [—r,r]).

If in addition r > 1 andf # 0 thenf(1) > 0, and

LH : C(n,R) — C(n,R) foreveryn € N.

f(1)
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Correlation matrix transformation Il

Example
Letx e [—1,1].
2 2 =1 21\ x*t!
gx) = ;arcsm 7r24"< >2n+1

n=0
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Correlation matrix transformation Il

Example
Letx e [—1,1].
2 2 1 [2n) »*!
glx) = arcsin(x) = W§M<n>2n+l
12 if(n—k%) K2l
oo JVrn! 2n+1
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Correlation matrix transformation Il

Example
Letx e [—1,1].
2 2 o~ 1 210\ x2tl
s) = ﬁa““““)—w%zw(n)znﬂ
) 1
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Correlation matrix transformation Il

Example
Letx e [—1,1].
2 2 1 [2n) »*!
) = Jaint) = 255 () 5
n—=
2 X+ L) 2,2 <1 13 2)
= = =—X e X
T a1 w2

where fora,b,c € C, satisfying R(c — (a + b)) > 0 and
zeD={zeC: |7 <1}

I'(c) OoFa+n r'b+n) ,

I
a)l'(b n:O c+n)n!

2F1(a,b,c Z) =

denotes the hypergeometric function.
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Correlation matrix transformation Ill

Example

Let H be an arbitrary separable Hilbert space with ONB
(Xn)nen, - Lety € H such that ||| > 0.
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Example

Let H be an arbitrary separable Hilbert space with ONB
(xn)nen,- Lety € H such that ||v|| > 0. Consider the function

(o]
(113 £ hy() =[x, )
n=0
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Correlation matrix transformation Ill

Example

Let H be an arbitrary separable Hilbert space with ONB
(xn)nen,- Lety € H such that ||v|| > 0. Consider the function

(o]
(113 £ hy() =[x, )
n=0

Then IIZTP []: C(k,R) — C(k,R) for every k € N.

29 /RY



Correlation matrix transformation IV

Theorem

Let1 <r<oo. Letg:[—r,r] — R be a function such that for
eachn € N g[X] is a (n x n)-correlation matrix for all
(n x n)-correlation matrices X.
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Correlation matrix transformation IV

Theorem

Let1 <r<oo. Letg:[—r,r] — R be a function such that for
eachn € N g[X] is a (n x n)-correlation matrix for all

(n x n)-correlation matrices .. Then g([0,1]) C [0,1], g(1) =1
and |g(r)| < 1 forallt € [-1,1].
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Correlation matrix transformation IV

Theorem

Let1 <r<oo. Letg:[—r,r] — R be a function such that for
eachn € N g[X] is a (n x n)-correlation matrix for all

(n x n)-correlation matrices .. Then g([0,1]) C [0,1], g(1) =1
and |g(r)| < 1 forallt € [-1,1].

Moreover, g|A] € PSD(n;R) for all A € PSD(n;[—r,r|) and all
n e N.

20/R1



Correlation matrix transformation and
Schoenberg’s Theorem

Even more holds:
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Correlation matrix transformation and
Schoenberg’s Theorem

Even more holds:

Theorem (Schoenberg (1942), Rudin (1959), Guillot and
Rajaratnam (2012))

Let0 < a<ooandg:(—a,a) — R be an arbitrary function.
TFAE:
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Theorem (Schoenberg (1942), Rudin (1959), Guillot and
Rajaratnam (2012))

Let0 < a<ooandg:(—a,a) — R be an arbitrary function.
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(i) glA] € PSD(n;R) for all A € PSD(n; (—a, ) and alln € N.
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Correlation matrix transformation and
Schoenberg’s Theorem

Even more holds:

Theorem (Schoenberg (1942), Rudin (1959), Guillot and

Rajaratnam (2012))

Let0 < a<ooandg:(—a,a) — R be an arbitrary function.

TFAE:

(i) glA] € PSD(n;R) for all A € PSD(n; (—a, ) and alln € N.

(il) g is a smooth function that admits a power series
representation g(x) = 22, bixk on (—a, a) for some
sequence (b,), consisting of nonnegative numbers only.
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Correlation matrix transformation and
Schoenberg’s Theorem

Even more holds:
Theorem (Schoenberg (1942), Rudin (1959), Guillot and
Rajaratnam (2012))
Let0 < a<ooandg:(—a,a) — R be an arbitrary function.
TFAE:
(i) glA] € PSD(n;R) for all A € PSD(n; (—a, ) and alln € N.
(il) g is a smooth function that admits a power series
representation g(x) = 22, bixk on (—a, a) for some
sequence (b,), consisting of nonnegative numbers only.

Q: How can we link an NP-hard non-convex Boolean
optimisation problem and its convex SDP relaxation?
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Correlation matrix transformation and
Schoenberg’s Theorem

Even more holds:

Theorem (Schoenberg (1942), Rudin (1959), Guillot and
Rajaratnam (2012))
Let0 < a < oo andg: (—a,a) — R be an arbitrary function.
TFAE:
(i) glA] € PSD(n;R) for all A € PSD(n; (—a, ) and alln € N.
(il) g is a smooth function that admits a power series
representation g(x) = 22, bixk on (—a, a) for some
sequence (b,), consisting of nonnegative numbers only.

Q: How can we link an NP-hard non-convex Boolean
optimisation problem and its convex SDP relaxation?

A: Apply “suitable” correlation matrix transforms!
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@ Grothendieck’s identity
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Grothendieck’s identity |

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889),
W. F. Sheppard (1898))
Let—1<t<1land(&n)" ~Ny0,%,), where

It
s (1)
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Theorem (Grothendieck’s identity - T. S. Stieltjes (1889),
W. F. Sheppard (1898))

Let—1<t<1and(&n)" ~Ny0,%,), where

1 ¢t
s (1)

Consider the function sign: R — {—1, 1}, defined as
sign = ]1[0,00) — ]1(_0070).
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Theorem (Grothendieck’s identity - T. S. Stieltjes (1889),
W. F. Sheppard (1898))

Let—1<t<1and(&n)" ~Ny0,%,), where
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s (1)

Consider the function sign: R — {—1, 1}, defined as
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Theorem (Grothendieck’s identity - T. S. Stieltjes (1889),
W. F. Sheppard (1898))

Let—1<t<1and(&n)" ~Ny0,%,), where

1 ¢t
s (1)

Consider the function sign: R — {—1, 1}, defined as
sign = ]1[0,00) — ]1(_0070). Then &~ Ny (0, 1), n ~ Ni (0, 1),
E[¢{n] =t, and

Elsign(¢)sign(n)] = 4P(£<0,n<0)—1=4%)x,(0,0) —1

2 2 ,
= = arcsin(f) = — arcsin (El¢n)) .
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Grothendieck’s identity

Corollary

Letk € Nk > 2. Let X € C(k;R) an arbitrarily given correlation
matrix.
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Grothendieck’s identity

Corollary

Letk e Nk > 2. Let¥ € C(k;R) an arbitrarily given correlation
matrix. Then also 2 arcsin[%] € C(k;R).
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Grothendieck’s identity

Corollary

Letk € Nk > 2. Let X € C(k;R) an arbitrarily given correlation
matrix. Then also 2 arcsin[Y] € C(k;R). There exists a Gaussian
random vector £ ~ Ni(0, %) such that

%arcsin[E] =E[0()],
where
O(&(w));j := sign(&i(w))sign(§;(w))

for allw € 2, and for all i,j € [k].
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Grothendieck’s identity

Corollary

Letk € Nk > 2. Let X € C(k;R) an arbitrarily given correlation
matrix. Then also 2 arcsin[Y] € C(k;R). There exists a Gaussian
random vector £ ~ Ni(0, %) such that

2 arcsin[X] = E[©()],

™

where
O(&(w));j := sign(&i(w))sign(§;(w))

forallw € Q, and for all i,j € [k]. ©({(w)) is a correlation matrix
of rank 1 for all w € €2, and we have
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Grothendieck’s identity

Corollary

Letk € Nk > 2. Let X € C(k;R) an arbitrarily given correlation
matrix. Then also 2 arcsin[Y] € C(k;R). There exists a Gaussian
random vector £ ~ Ni(0, %) such that

2 arcsin[X] = E[©()],
s
where
O(&(w))yj := sign(&i(w))sign(&j(w))
forallw € Q, and for all i,j € [k]. ©({(w)) is a correlation matrix
of rank 1 for allw € Q, and we have

max [(3,0)] > B|A. ()] > |, E[0©])] = 2| arcsin[})].
rank(@j:l
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Krivine’s constant reproduced |

Example

(xeR)
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Example
e x2n+1
f(x) :=sinh(x) = ; g 1] (xeR)
oo 2n+1 o 1
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Krivine’s constant reproduced |

Example
S x2n+1
f(x) := sinh(x) = 2 G T Tl (x € R)
oo 2n+1 |
g) = sinGs) = S (-1 e U Ay) bem)

f(c*) = 1iff* =1In(1 +V2)
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Krivine’s constant reproduced |

Example
S x2n+1
f(x) :=sinh(x) = ; g 1] (xeR)
oo 2n+1 |
g) = sinGs) = S (-1 e U Ay) bem)

f(c*) = 1iff* =1In(1 +V2)

A bit more generally, the following (still special) case holds:
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Krivine’s constant reproduced Il

Corollary

Letmn € N, A€ M(m x m;R), u:= (u1,uz,...,u,) € S%and
vi= (vi,va,...,vn) " €S PutS :=Ty(u,v). Let0 < r < co and
f:(=r,r) — R be a function such that f satisfies the
“correlation assumptions”.
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Corollary

Letmn € N, A€ M(m x m;R), u:= (u1,uz,...,u,) € S%and
vi= (vi,va,...,vn) " €S PutS :=Ty(u,v). Let0 < r < co and
f:(=r,r) — R be a function such that f satisfies the
“correlation assumptions”. Assume that f(c*) = 1 for some
0<c*<r. Then
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Krivine’s constant reproduced Il

Corollary
Letmn € N, A€ M(m x m;R), u:= (u1,uz,...,u,) € S%and
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Letmn € N, A€ M(m x m;R), u:= (u1,uz,...,u,) € S%and
vi= (vi,va,...,vn) " €S PutS :=Ty(u,v). Let0 < r < co and
f:(=r,r) — R be a function such that f satisfies the
“correlation assumptions”. Assume that f(c*) = 1 for some
0<c*<r. Then
n 2 Ty
max ‘(A, @)‘ > = ‘tr(A (c S))’

0eC(m+mR)
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Corollary

Letmn € N, A€ M(m x m;R), u:= (u1,uz,...,u,) € S%and
vi= (vi,va,...,vn) " €S PutS :=Ty(u,v). Let0 < r < co and
f:(=r,r) — R be a function such that f satisfies the
“correlation assumptions”. Assume that f(c*) = 1 for some
0<c*<r. Then

2c*
T

‘ ~

(A,G))‘ > %‘tr(AT(c*S))’ -

max l‘r(AT Ca(u, v))’ .

0eC(m+mR)
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Corollary

Letmn € N, A€ M(m x m;R), u:= (u1,uz,...,u,) € S%and
vi= (vi,va,...,vn) " €S PutS :=Ty(u,v). Let0 < r < co and
f:(=r,r) — R be a function such that f satisfies the
“correlation assumptions”. Assume that f(c*) = 1 for some
0<c*<r. Then

" 2 T o 2 T ’
@EC{?%H;R)‘(A,@)‘ > 7T(z‘r(A (c S))’ = = (AT Tuw,v)| -
Hence,

\]
9
*
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Somewhat more generally, we have

Corollary

Letmne N, A€ M(m x m;R), u:= (uy,uz,...,u,) € Shand
vi=(vi,v2,...,vn) ! €84 PutS:=Ty(u,v). Let0 < r < co and
f,g: (—r,r) — R be two functions such that both, f and g
satisfy the “correlation assumptions”.
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Somewhat more generally, we have

Corollary

Letmne N, A€ M(m x m;R), u:= (uy,uz,...,u,) € Shand
vi=(vi,v2,...,vn) ! €84 PutS:=Ty(u,v). Let0 < r < co and
f,g: (—r,r) — R be two functions such that both, f and g
satisfy the “correlation assumptions”. Assume thatf(c*) = 1 for
some 0 < ¢* < r. Then

2
A,@( > —‘trAT in og[c* T (u, ’%??
@eCIlr(lziin;R)k I - (A" arcsinog[c* T (u, v)])
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Natural Question
Can we possibly “remove” or cleverly substitute the arcsin
function?
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Natural Question

Can we possibly “remove” or cleverly substitute the arcsin
function?

Recall that the invertible function 2 arcsin : [-1,1] — [—1,1]
transforming correlation matrices into correlation matrices
arrived as a result of an explicit hard calculation of the
non-trivial double integral

Hy (1) == E[f(£) g(n)],

where £, ~ N(0, 1) are correlated via E[¢n] = € [-1, 1] and
fi=g:= sign = 11[0700) - ]1(,00’0).
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Definition (Braverman, Makarychev, Makarychev, Naor
(2011))

Fix k € N. Let G1, Gy ~ N(0, I;) be independent (standard)
Gaussian random vectors. Let 7 € [—1, 1]. Put f(x) ::f(\% X)

and g(y) := g(% y), where x,y € R¥ and £, g are bounded.
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Definition (Braverman, Makarychev, Makarychev, Naor
(2011))

Fix k € N. Let G1, G2 ~ Ni(0, Iy) be independent (standard)
Gaussian random vectors. Let r € [—1, 1]. Put f(x) ::f(\% X)

and g(y) := g(% y), where x,y € RF and f, g are bounded. Put

Hpo(t) = E[f(G1)Z(1Gi + V1 - £ Gy)]
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Definition (Braverman, Makarychev, Makarychev, Naor
(2011))

Fix k € N. Let G1, Gy ~ N(0, I;) be independent (standard)
Gaussian random vectors. Let 7 € [—1, 1]. Put f(x) ::f(\% X)

and g(y) := g(% y), where x,y € RF and f, g are bounded. Put

Hpo(t) = EIf tGl—i—\/l—tZGz]
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Definition (Braverman, Makarychev, Makarychev, Naor

(2011))
Fix k € N. Let G1, G2 ~ Ni(0, Iy) be independent (standard)
Gaussian random vectors. Let t € [—1, 1]. Put f(x) ::f(\% x)

and g(y) := g(% y), where x,y € RF and f, g are bounded. Put

tGl—i—\/l—tZGz]

glix+ V1 =2 y)y(d(x,y))

gtx+\/1—t2G2 ]’Yk (dx)

Hygo(t) =

—~
=

I
\\ﬁ
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Corollary
Letke N, -1 <t<1andf,g be as above. Then
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Corollary
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Corollary
Letke N, -1 <t<1andf,g be as above. Then

1 ) 5 — x> = Iy |* + 2¢(x,
e fad0a0) e (TS )

—lx||® = ||y||? X
_ 1 /Rz)cf(x)g(y) exp( H H HyH +2t< ’y>)d2k(x,y).

(1= 22 -7

Hpo(t) =

EQ/RY



A lurking Mehler kernel

Observation
Fixk € N. Let G ~ N(0,I;) be a (standard) Gaussian random
vector. Let —1 < t < 1 and g be as above.
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Ag(x) = E[g(tx++V1—-12G)]
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Observation
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vector. Let —1 < t < 1 and g be as above. Then

Ag(x) = E[g(tx++V1—-12G)]
/ ) Mi(x, y)vi(dy)
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A lurking Mehler kernel

Observation

Fixk € N. Let G ~ N(0,I;) be a (standard) Gaussian random
vector. Let —1 < t < 1 and g be as above. Then

Ag(x) = E[g(ex+ MG]
/ ¥) M (x, y)u(dy) = E[gMi(x,G)],

where
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Observation

Fixk € N. Let G ~ N(0,I;) be a (standard) Gaussian random
vector. Let —1 < t < 1 and g be as above. Then

Ag(x) = E[g(ex+ MG]
/ ¥) M (x, y)u(dy) = E[gMi(x,G)],

where

: 1 2 (1 + lIyll?) — 2¢¢x, v)
) = e (U )
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A lurking Mehler kernel

Observation

Fixk € N. Let G ~ N(0,I;) be a (standard) Gaussian random
vector. Let —1 < t < 1 and g be as above. Then

Ag(x) = E[g(ex+ MG]
/ ¥) M (x, y)u(dy) = E[gMi(x,G)],

where

1 2P + IIP) = 2¢0x,3)
Mt(x, y) = ( P k/2 eXp ( - ( 2(1y_ 22) > )
¥o E(r)(x y)
(7‘9(),]/\( )99()711\'( ) .
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A bird’s eye view - from the complex
plane |

For the moment assume that in additon f(—x) = —f(x) for all

x € R* or g(—y) = —g(y) for all y € R*. Having Fourier transform
techniques in mind, let us assume further that the function

z — Hy 4(z) can be analytically extended to a suitable domain in
C, containing +i.
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x € R* or g(—y) = —g(y) for all y € R*. Having Fourier transform
techniques in mind, let us assume further that the function

z — Hy 4(z) can be analytically extended to a suitable domain in
C, containing +i. Then

1 N _ k., gk
;nyg(l) - le,g( l - Zk/z /Rk /[R’\ )Cyd_)d
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x € R* or g(—y) = —g(y) for all y € R*. Having Fourier transform
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For the moment assume that in additon f(—x) = —f(x) for all

x € R* or g(—y) = —g(y) for all y € R*. Having Fourier transform
techniques in mind, let us assume further that the function

z — Hy 4(z) can be analytically extended to a suitable domain in
C, containing +i. Then

1 N N k., gk
Heli) = (=) = g [0 [ a0 Ky

= 22 [ 1) [ e Ky,

where
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A bird’s eye view - from the complex
plane I

K(xay) = sin (<x7y>) 900712k(x7y)
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plane I

K(x,y)

sin ((x

1
(2m)

7y>) ©0,I (x7y)

sin ((x,y)) exp ( -

(1 + [Iv1>

2

).
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A bird’s eye view - from the complex
plane Il

K(x,y) = sin ((x,y)) (PO,lzk(xvy)
X 2 2
- Lo (- B DI

A similar non-trivial integral was explicitly calculated by H.
Kénig in 2001, leading to his conjecture whether K& = zm(lﬁrﬁ)

- which had been refuted in 2011 only (cf. [1])!
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Example
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Example
Letke Nand -1 <t< 1. Leta = (al,...,ak)T € (0,1)* and

B=(Bi,...,5) " €(0,1). Consider

Then x.(x) € {—1 1} for al/x € R" and

HXa,X[j( ) = 1 - (Hal + Hﬁt) +4C2(t)(a B)

where cy;) denotes the 2k-dimensional Gaussian copula with
respect to the correlation matrix ¥(t)!

BA/RT
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Example (Sheppard (1899))
Letk =1. Then X1 = sign, and

Eisign( L) sin(2)) = iy, (0
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Krivine rounding schemes revisited IV
A special case is the following (meanwhile not unknown !)

Example (Sheppard (1899))
Letk =1. Then X1 = sign, and

[SIgn(\X[)SIgn(\X—;)] = H,

2 2
= —arcsin(t) = = arcsin (E[X; X,]) .

™ 71'




Krivine rounding schemes revisited IV
A special case is the following (meanwhile not unknown !)

Example (Sheppard (1899))
Letk =1. Then X1 = sign, and

x (1) = 4es(5.5) — 1

1
2

[SIgn(\X[)SIgn(\X—;)] = H,

(ST

_ 2 arcsin(t) = 2 arsin (E[X; X2]) .
T T

A strong drawback: in general there is no closed form for values
of multivariate Gaussian copulas available. One has to rely on
approximation techniques and simulation methods here (such
as standard Monte Carlo). One significant point to observe is
that (by Sklar’s Theorem) the structure of copulas requires a
calculation of single quantile functions. Their values have to be
implemented as upper bounds of (large) multi-dimensional
integrals, originating from the underlying multi-dimensional
Gaussian distribution.
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Krivine rounding schemes revisited IV
A special case is the following (meanwhile not unknown !)

Example (Sheppard (1899))
Letk=1. Then x 1= sign, and

E[sign(X,)sign(X>)] = Hy ,x%(f) =des(5,5) — |

=

2 . 2 .
= - arcsin(t) = —arcsin (E[X1 X)) .
A strong drawback: in general there is no closed form for values
of multivariate Gaussian copulas available. One has to rely on
approximation techniques and simulation methods here (such
as standard Monte Carlo). One significant point to observe is
that (by Sklar's Theorem) the structure of copulas requires a
calculation of single quantile functions. Their values have to be
implemented as upper bounds of (large) multi-dimensional
integrals, originating from the underlying multi-dimensional
Gaussian distribution.
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Theorem

Letl, = H be a separable Hilbert space, m,n € N, k :=m +n
andf,g : R¥ — R be bounded. Suppose the following
conditions are satisfied:
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Theorem

Letl, = H be a separable Hilbert space, m,n € N, k :=m +n
andf,g : R¥ — R be bounded. Suppose the following
conditions are satisfied:

(i) Hf ,(0) # 0 and Hy,4(0) > 0.
(i) abs(H;,)(c) = 1, for some ¢ = c(f,g) > 0.
Then for all uy, uy, ..., um,vi,va,...,v, € Sy there exist k

R*-valued random vectors X1, X», ..., Xm, Y1,Ys, ..., Y, such that
Xi ~ Ni(0, 1) for all i € [m] and Y; ~ Ni(0,Iy) for all j € [n] and

BIF(75%) & 75%)] = ()

for all (i,j) € [m] x [n].
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Theorem

Letl, = H be a separable Hilbert space, m,n € N, k :=m +n
andf,g : R¥ — R be bounded. Suppose the following
conditions are satisfied:

(i) Hf ,(0) # 0 and Hy,4(0) > 0.
(i) abs(H;,)(c) = 1, for some ¢ = c(f,g) > 0.
Then for all uy, uy, ..., um,vi,va,...,v, € Sy there exist k

R*-valued random vectors X1, X», ..., Xm, Y1,Ys, ..., Y, such that
Xi ~ Ni(0, 1) for all i € [m] and Y; ~ Ni(0,Iy) for all j € [n] and

CE[F(55%) #(71)] = (o

c

for all (i,j) € [m] x [n]. Iff, g : R¥ — {—1,+1} then K3 < C(f{g).
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A phrase of G. H. Hardy

“.. at present | will say only that if a chess problem is, in the
crude sense, ‘useless’, then that is equally true of most of the
best mathematics; that very little of mathematics is useful
practically, and that that little is comparatively dull. The
'seriousness’ of a mathematical theorem lies, not in its practical
consequences, which are usually negligible, but in the
significance of the mathematical ideas which it connects...”

— A Mathematician’s Apology (1940)
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Thank you for your attention!

Are there any questions, comments or remarks?
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