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An important information for readers

The current version is a shortened (“web-publishable” ,)
version of my presentation in Birmingham.

If you are interested
in a copy of my original slides, presented in Birmingham, could
you please send an email to me in advance? I am happy to
forward these to you, of course. Many thanks!
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A portrait of A. Grothendieck
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A. Grothendieck lecturing at IHES
(1958-1970)
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Excerpt from A. Grothendieck’s
handwritten lecture notes I
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Grothendieck’s inequality in matrix
form I

Theorem (Lindenstrauss-Pelczyński (1968))
Let F ∈ {R,C} and m, n ∈ N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A =

(
aij
)
∈M(m× n;F), for all F-Hilbert spaces H, for

all unit vectors u1, . . . , um, v1, . . . , vn ∈ SH the following inequality
is satisfied:∣∣∣ m∑

i=1

n∑
j=1

aij〈ui, vj〉H
∣∣∣ ≤ K max

{∣∣∣ m∑
i=1

n∑
j=1

aijpiqj

∣∣∣ : pi, qj ∈ {−1, 1}
}
.

The smallest possible value of the corresponding constant K is
denoted by KF

G. It is called Grothendieck’s constant. Computing
the exact numerical value of this constant is an open problem
(unsolved since 1953)!
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Grothendieck’s inequality in matrix
form II

Theorem (R. E. Rietz (1974), H. Niemi (1983))
Let F ∈ {R,C} and H be an arbitrary Hilbert space over F. Let
n ∈ N. Let KF

GH denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n× n-matrices over F. Then

KR
GH =

π

2
and KC

GH =
4
π
.

From now on are going to consider the real case (i. e., F = R)
only. Nevertheless, we allow an unrestricted use of all matrices
A ∈M(m× n;R) for any m, n ∈ N in GT.
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Grothendieck’s inequality in matrix
form III

Until present the following encapsulation of KR
G holds, primarily

thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

1, 676 < KR
G

(!!)
<

π

2 ln(1 +
√

2)
≈ 1, 782 .

Screening these numbers we might be tempted to guess the
following

Conjecture
Is KR

G =
√
π = Γ

( 1
2

)
≈ 1, 772?

14 / 61



Grothendieck’s inequality in matrix
form III

Until present the following encapsulation of KR
G holds, primarily

thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

1, 676 < KR
G

(!!)
<

π

2 ln(1 +
√

2)
≈ 1, 782 .

Screening these numbers we might be tempted to guess the
following

Conjecture
Is KR

G =
√
π = Γ

( 1
2

)
≈ 1, 772?

14 / 61



Grothendieck’s inequality in matrix
form III

Until present the following encapsulation of KR
G holds, primarily

thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

1, 676 < KR
G

(!!)
<

π

2 ln(1 +
√

2)
≈ 1, 782 .

Screening these numbers we might be tempted to guess the
following

Conjecture
Is KR

G =
√
π = Γ

( 1
2

)
≈ 1, 772?

14 / 61



Grothendieck’s inequality in matrix
form III

Until present the following encapsulation of KR
G holds, primarily

thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

1, 676 < KR
G

(!!)
<

π

2 ln(1 +
√

2)
≈ 1, 782 .

Screening these numbers we might be tempted to guess the
following

Conjecture
Is KR

G =
√
π

= Γ
( 1

2

)
≈ 1, 772?

14 / 61



Grothendieck’s inequality in matrix
form III

Until present the following encapsulation of KR
G holds, primarily

thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

1, 676 < KR
G

(!!)
<

π

2 ln(1 +
√

2)
≈ 1, 782 .

Screening these numbers we might be tempted to guess the
following

Conjecture
Is KR

G =
√
π = Γ

( 1
2

)

≈ 1, 772?

14 / 61



Grothendieck’s inequality in matrix
form III

Until present the following encapsulation of KR
G holds, primarily

thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

1, 676 < KR
G

(!!)
<

π

2 ln(1 +
√

2)
≈ 1, 782 .

Screening these numbers we might be tempted to guess the
following

Conjecture
Is KR

G =
√
π = Γ

( 1
2

)
≈ 1, 772?

14 / 61



Grothendieck’s inequality rewritten I

By transforming Grothendieck’s inequality into an equivalent
inequality between traces of matrix products (respectively
Hilbert-Schmidt inner products) we are lead to a surprising
interpretation which reveals deep links to combinatorial (binary)
optimisation, semidefinite programming (SDP) and multivariate
statistics, built on suitable non-linear mappings between
correlation matrices.

We will sketch this approach which might lead to a constructive
improvement of Krivine’s upper bound π

2 ln(1+
√

2)
. At least it also

can be reproduced in this approach.
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Grothendieck’s inequality rewritten II
Let m, n ∈ N,A ∈M(m× n;R), u := (u1, . . . , um)> ∈ Sm

H and
v := (v1, . . . , vn)> ∈ Sn

H be given, where SH := {w ∈ H : ‖w‖ = 1}
denotes the unit sphere in H.

Firstly, note that

m∑
i=1

n∑
j=1

aij〈ui, vj〉H = tr
(
A> ΓH(u, v)

)
= 〈A,ΓH(u, v)〉,

is precisely the Hilbert-Schmidt inner product (or the Frobenius
inner product) of the matrices A ∈M(m× n;R) and
ΓH(u, v) ∈M(m× n;R), where

ΓH(u, v) :=


〈u1, v1〉H 〈u1, v2〉H . . . 〈u1, vn〉H
〈u2, v1〉H 〈u2, v2〉H . . . 〈u2, vn〉H

...
...

...
...

〈um, v1〉H 〈um, v2〉H . . . 〈um, vn〉H

 .
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Grothendieck’s inequality rewritten III

Let m, n ∈ N,A ∈M(m× n;R), p := (p1, . . . , pm)> ∈
(
S0
)m and

q := (q1, . . . , qn)> ∈
(
S0
)n be given, where S0 := {−1, 1}

denotes the unit “sphere” in R = R0+1.
Similarly as before, we obtain

m∑
i=1

n∑
j=1

aijpiqj = tr
(
A> ΓR(p, q)

)
= 〈A,ΓR(p, q)〉,

where now

ΓR(p, q) := pq> =


±1 ∓1 . . . ±1
∓1 ∓1 . . . ∓1
...

...
...

...
±1 ∓1 . . . ±1

 .
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors
u1, u2, . . . , um, v1, v2, . . . , vn ∈ H and represent them as


〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉


Does this matrix look familiar to you?
It is a part of something larger...
Namely:
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Block matrix representation I




〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉



〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉


T


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Block matrix representation I



〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉
〈u1, v1〉 〈u2, v1〉 . . . 〈um, v1〉
〈u1, v2〉 〈u2, v2〉 . . . 〈um, v2〉

...
...

...
...

〈u1, vn〉 〈u2, vn〉 . . . 〈um, vn〉


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Block matrix representation I


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...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉
〈v1, u1〉 〈v1, u2〉 . . . 〈v1, um〉
〈v2, u1〉 〈v2, u2〉 . . . 〈v2, um〉

...
...

...
...

〈vn, u1〉 〈vn, u2〉 . . . 〈vn, um〉


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Block matrix representation II



〈u1, u1〉 〈u1, u2〉 . . . 〈u1, um〉
〈u2, u1〉 〈u2, u2〉 . . . 〈u2, um〉

...
...

. . .
...

〈um, u1〉 〈um, u2〉 . . . 〈um, um〉

〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

. . .
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉
〈v1, u1〉 〈v1, u2〉 . . . 〈v1, um〉
〈v2, u1〉 〈v2, u2〉 . . . 〈v2, um〉

...
...

...
...

〈vn, u1〉 〈vn, u2〉 . . . 〈vn, um〉

〈v1, v1〉 〈v1, v2〉 . . . 〈v1, vn〉
〈v2, v1〉 〈v2, v2〉 . . . 〈v2, vn〉

...
...

. . .
...

〈vn, v1〉 〈vm, v2〉 . . . 〈vn, vn〉


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Block matrix representation III



1 〈u1, u2〉 . . . 〈u1, um〉
〈u2, u1〉 1 . . . 〈u2, um〉

...
...

. . .
...

〈um, u1〉 〈um, u2〉 . . . 1

〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

. . .
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉
〈v1, u1〉 〈v1, u2〉 . . . 〈v1, um〉
〈v2, u1〉 〈v2, u2〉 . . . 〈v2, um〉

...
...

...
...

〈vn, u1〉 〈vn, u2〉 . . . 〈vn, um〉

1 〈v1, v2〉 . . . 〈v1, vn〉
〈v2, v1〉 1 . . . 〈v2, vn〉

...
...

. . .
...

〈vn, v1〉 〈vm, v2〉 . . . 1


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A refresher of a few definitions I

Let n ∈ N. We put

PSD(n;R) := {S : S ∈M(n× n;R) and S is positive semidefinite}.

Recall that PSD(n;R) is a closed convex cone which (by
definition!) consists of symmetric matrices only.
Moreover, we consider the set

C(n;R) :=
{

S ∈ PSD(n;R) such that Sii = 1 for all i ∈ [n]
}
.
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A refresher of a few definitions II

Let d, k ∈ N and (H, 〈·, ·〉) be an arbitrary d-dimensional Hilbert
space (i. e, H = ld2). Let w1,w2, . . . ,wk ∈ H. Put
w := (w1, . . . ,wk)

> ∈ Hk and S :=
(
w1 | w2 | . . . | wk

)
∈

M(d × k;R). The matrix ΓH(w,w) ∈ PSD(k;R), defined as

ΓH(w,w)ij := 〈wi,wj〉 =
(
S>S

)
ij

(
i, j ∈ [k] := {1, 2, . . . , k}

)
is called Gram matrix of the vectors w1, . . . ,wk ∈ H.

Observe that 
〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉


is not a Gram matrix!
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A refresher of a few definitions III
Let n ∈ N. Fix a probability space

(
Ω,F ,P

)
and let

ξ := (ξ1, ξ2, . . . , ξn)> : Ω −→ Rn be a random vector. Let
µ := (µ1, µ2, . . . , µn)> ∈ Rn and C ∈ PSD(n;R).

Recall that ξ is an n-dimensional Gaussian random vector with
respect to the “parameters” µ and C (short: ξ ∼ Nn(µ,C)) if and
only if for all a ∈ Rn there exists ηa ∼ N1(0, 1) such that

〈a, ξ〉 =
n∑

i=1

aiξi = 〈a, µ〉+
√
〈a,Ca〉 ηa

Note that we don’t require here that C is invertible! Following
Feller, the matrix V(ξ) defined as

V(ξ)ij := E[ξiξj]− E[ξi]E[ξj]
(!)
= Cij

(
i, j ∈ [n]

)
is known as the variance matrix of the Gaussian random vector
ξ.
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Structure of correlation matrices I

Proposition
Let n ∈ N and Σ =

(
σij
)
∈M(n× n;R). TFAE:

(i) Σ ∈ PSD(n;R) and σii = 1 for all i ∈ [n].
(ii) Σ ∈ C(n;R).
(iii) There exist vectors x1, . . . , xn ∈ Sn−1 such that σij = 〈xi, xj〉

for all i, j ∈ [n].
(iv) Σ = Γln2(x, x) for some x = (x1, . . . , xn)> ∈

(
Sn−1

)n.
(v) Σ = V(ξ) is a correlation matrix, induced by some

n-dimensional Gaussian random vector ξ ∼ Nn(0,Σ).
In particular, condition (i) implies that σij ∈ [−1, 1] for all i, j ∈ [n].
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Structure of correlation matrices II

Observation
Let k ∈ N. Then the sets

{
S : S = xx> for some x ∈ {−1, 1}k

}
and

{
Θ : Θ ∈ C(k;R) and rk(Θ) = 1

}
coincide.

Proposition (K. R. Parthasarathy (2002))
Let k ∈ N. C(k;R) is a compact and convex subset of the
k2-dimensional vector space M(k × k;R). Any k × k-correlation
matrix of rank 1 is an extremal point of the set C(k;R).
In particular, the (finite) set of all k × k-correlation matrices of
rank 1 is not convex.
Let k ∈ N. Put

C1(k;R) :=
{

Θ : Θ ∈ C(k;R) and rk(Θ) = 1
}
.
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Canonical block injection of A

A naturally appearing question is the following:

Having gained - important - additional structure by “enlarging”
the m× n-matrix ΓH(u, v) to a (m + n)× (m + n)-correlation
matrix, how could this gained information be used to rewrite
Grothendieck’s inequality accordingly? To answer this question,
let us also “embed” the m× n-matrix A suitably!

Definition
Let m, n ∈ N and A ∈M(m× n;R) arbitrary. Put

Â :=
1
2

(
0 A

A> 0

)
Let us call M((m + n)× (m + n);R) 3 Â the canonical block
injection of A.
Observe that Â is symmetric, implying that Â = Â>.
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Observe that Â is symmetric, implying that Â = Â>.
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A further equivalent rewriting of GT I

Proposition
Let m, n ∈ N and A =

(
aij
)
∈M(m× n;R). Let K > 0. TFAE:

(i)

sup
(u,v)∈Sm

H×Sn
H

∣∣∣ m∑
i=1

n∑
j=1

aij〈ui, vj〉H
∣∣∣ ≤ K max

(p,q)∈{−1,1}m×{−1,1}n

∣∣∣ m∑
i=1

n∑
j=1

aijpiqj

∣∣∣
for all Hilbert spaces H over R.

(ii)
sup

Σ∈C(m+n;R)

|〈Â,Σ〉| ≤ K max
Θ∈C(m+n;R)

rk(Θ)=1

|〈Â,Θ〉| .

30 / 61



A further equivalent rewriting of GT I

Proposition
Let m, n ∈ N and A =

(
aij
)
∈M(m× n;R). Let K > 0. TFAE:

(i)

sup
(u,v)∈Sm

H×Sn
H

∣∣∣ m∑
i=1

n∑
j=1

aij〈ui, vj〉H
∣∣∣ ≤ K max

(p,q)∈{−1,1}m×{−1,1}n

∣∣∣ m∑
i=1

n∑
j=1

aijpiqj

∣∣∣
for all Hilbert spaces H over R.

(ii)
sup

Σ∈C(m+n;R)

|〈Â,Σ〉| ≤ K max
Θ∈C(m+n;R)

rk(Θ)=1

|〈Â,Θ〉| .
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|〈Â,Θ〉| .

We don’t know whether condition (ii) holds for all matrices in
M((m + n)× (m + n);R).
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|〈Â,Σ〉| ≤ K max

Θ∈C1(m+n;R)
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GT versus NP-hard optimisation

Observation
On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):

max
Σ∈C(m+n;R)

|〈Â,Σ〉|

On the right side: an NP-hard, non-convex combinatorial
(Boolean) optimisation problem:

max
Θ∈C(m+n;R)

rk(Θ)=1

|〈Â,Θ〉|

Thus, Grothendieck’s constant KR
G is precisely the “integrality

gap”; i. e., the maximum ratio between the solution quality of
the NP-hard Boolean optimisation on the right side of GT and
of its SDP relaxation on the left side!
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1 An important information for readers

2 A very short glimpse at A. Grothendieck’s work in functional
analysis

3 A further reformulation of Grothendieck’s inequality

4 KR
G and correlation matrix transformations
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Schur product and the matrix f [A] I

Definition
Let ∅ 6= U ⊆ R and f : U −→ R a function. Let
A = (aij) ∈M(m× n;R) such that aij ∈ U for all (i, j) ∈ [m]× [n].

Define f [A] ∈M(m× n;R) - entrywise - as f [A]ij := f (aij) for all
(i, j) ∈ [m]× [n].

Guiding Example
The Schur product (or Hadamard product)

(aij) ∗ (bij) := (aijbij)

of matrices (aij) and (bij) leads to matrices A∗ k = f [A], where
f (x) := xk (k ∈ N).
The notation “f [A]” is used to highlight the difference between
the matrix f (A) originating from the spectral representation of A
(for normal matrices A) and the matrix f [A], defined as above !
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Schur product and the matrix f [A] II

Theorem
For any n ∈ N the set M(n× n;R) with the usual addition and
the Schur multiplication ∗ is a commutative Banach algebra
under the operator norm. Moreover,

PSD(n;R) ∗ PSD(n;R) ⊆ PSD(n;R) . 1

The set PSD(n;R) is a closed, convex, pointed, and solid cone
in M(n× n;R).

Corollary
Let n ∈ N Then

C(n;R) ∗ C(n;R) ⊆ C(n;R) .

1. This is known as the Schur Product Theorem.
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Correlation matrix transformation I

Corollary
Let 0 < r ≤ ∞ and f : [−r, r] −→ R such that on [−r, r]

f (x) =

∞∑
k=0

ak xk

for some nonnegative coefficients ak ≥ 0.

Then f (r) ≥ 0,
f ([0, r]) ⊆ [0, f (r)] and |f (t)| ≤ f (r) for all t ∈ [−r, r]. Moreover,

f [A] ∈ PSD(n; [−f (r), f (r)]) for all n ∈ N and A ∈ PSD(n; [−r, r]) .

If in addition r ≥ 1 and f 6= 0 then f (1) > 0, and

f
f (1)

[·] : C(n,R) −→ C(n,R) for every n ∈ N .
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Correlation matrix transformation II

Example
Let x ∈ [−1, 1].

g(x) :=
2
π

arcsin(x) =
2
π

∞∑
n=0

1
4n

(
2n
n

)
x2n+1

2n + 1

!
=

2
π

∞∑
n=0

Γ
(
n + 1

2

)
√
π n!

x2n+1

2n + 1
X
=

2
π

x 2F1
(1

2
,

1
2
,

3
2

; x2) ,
where for a, b, c ∈ C, satisfying <

(
c− (a + b)

)
> 0 and

z ∈ D = {z ∈ C : |z| < 1}

2F1
(
a, b, c; z

)
:=

Γ(c)

Γ(a)Γ(b)

∞∑
n=0

Γ(a + n)Γ(b + n)

Γ(c + n) n!
zn

denotes the hypergeometric function.
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Correlation matrix transformation III

Example
Let H be an arbitrary separable Hilbert space with ONB
(xn)n∈N0 . Let ψ ∈ H such that ‖ψ‖ > 0.

Consider the function

[−1, 1] 3 t 7→ hψ(t) :=
∞∑

n=0

|〈xn, ψ〉|2 tn .

Then hψ
‖ψ‖2 [·] : C(k,R) −→ C(k,R) for every k ∈ N .
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Correlation matrix transformation IV

Theorem
Let 1 ≤ r ≤ ∞. Let g : [−r, r] −→ R be a function such that for
each n ∈ N g

[
Σ
]

is a (n× n)-correlation matrix for all
(n× n)-correlation matrices Σ.

Then g([0, 1]) ⊆ [0, 1], g(1) = 1
and |g(t)| ≤ 1 for all t ∈ [−1, 1].
Moreover, g[A] ∈ PSD(n;R) for all A ∈ PSD(n; [−r, r]) and all
n ∈ N.
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Correlation matrix transformation and
Schoenberg’s Theorem

Even more holds:

Theorem (Schoenberg (1942), Rudin (1959), Guillot and
Rajaratnam (2012))
Let 0 < α ≤ ∞ and g : (−α, α) −→ R be an arbitrary function.
TFAE:

(i) g[A] ∈ PSD(n;R) for all A ∈ PSD(n; (−α, α)) and all n ∈ N.
(ii) g is a smooth function that admits a power series

representation g(x) =
∑∞

k=0 bkxk on (−α, α) for some
sequence (bn), consisting of nonnegative numbers only.

Q: How can we link an NP-hard non-convex Boolean
optimisation problem and its convex SDP relaxation?
A: Apply “suitable” correlation matrix transforms!
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Grothendieck’s identity I

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889),
W. F. Sheppard (1898))
Let −1 ≤ t ≤ 1 and (ξ, η)> ∼ N2(0,Σt), where

Σt :=

(
1 t
t 1

)
.

Consider the function sign : R −→ {−1, 1}, defined as
sign := 11[0,∞) − 11(−∞,0). Then ξ ∼ N1(0, 1), η ∼ N1(0, 1),
E[ξη] = t, and

E[sign(ξ)sign(η)] = 4P(ξ ≤ 0, η ≤ 0)− 1 = 4 Φ0,Σt

(
0, 0
)
− 1

=
2
π

arcsin(t) =
2
π

arcsin
(
E[ξη]

)
.
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Grothendieck’s identity II

Corollary
Let k ∈ N, k ≥ 2. Let Σ ∈ C(k;R) an arbitrarily given correlation
matrix.

Then also 2
π arcsin[Σ] ∈ C(k;R). There exists a Gaussian

random vector ξ ∼ Nk(0,Σ) such that

2
π

arcsin[Σ] = E
[
Θ(ξ)

]
,

where
Θ(ξ(ω))ij := sign(ξi(ω))sign(ξj(ω))

for all ω ∈ Ω, and for all i, j ∈ [k]. Θ(ξ(ω)) is a correlation matrix
of rank 1 for all ω ∈ Ω, and we have

max
Θ∈C(k;R)

rank(Θ)=1

|〈Â,Θ〉| ≥ E
[
|〈Â,Θ(ξ)〉|

]
≥ |〈Â,E

[
Θ(ξ)

]
〉| = 2

π
|〈Â, arcsin[Σ]〉| .
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[
Θ(ξ)

]
〉| = 2

π
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Krivine’s constant reproduced I

Example

f (x) := sinh(x) =

∞∑
n=0

x2n+1

(2n + 1)!
(x ∈ R)

g(y) := sin(y) =
∞∑

n=0

(−1)n y2n+1

(2n + 1)!

(!)
=

1
i

f (i y) (y ∈ R)

f (c∗) = 1 iff c∗ = ln(1 +
√

2)

A bit more generally, the following (still special) case holds:
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Krivine’s constant reproduced II

Corollary
Let m, n ∈ N, A ∈M(m× n;R), u := (u1, u2, . . . , um)> ∈ Sm

H and
v := (v1, v2, . . . , vn)> ∈ Sn

H. Put S := ΓH(u, v). Let 0 < r ≤ ∞ and
f : (−r, r) −→ R be a function such that f satisfies the
“correlation assumptions”.

Assume that f (c∗) = 1 for some
0 < c∗ < r. Then

max
Θ∈C1(m+n;R)

∣∣∣〈Â,Θ〉∣∣∣ ≥ 2
π

∣∣∣tr(A>(c∗S)
)∣∣∣ =

2c∗

π

∣∣∣tr(A> ΓH(u, v)
)∣∣∣ .

Hence,

KR
G ≤

π

2 c∗
.
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∣∣∣〈Â,Θ〉∣∣∣ ≥ 2
π

∣∣∣tr(A>(c∗S)
)∣∣∣

=
2c∗

π

∣∣∣tr(A> ΓH(u, v)
)∣∣∣ .

Hence,

KR
G ≤

π

2 c∗
.

45 / 61



Krivine’s constant reproduced II

Corollary
Let m, n ∈ N, A ∈M(m× n;R), u := (u1, u2, . . . , um)> ∈ Sm

H and
v := (v1, v2, . . . , vn)> ∈ Sn

H. Put S := ΓH(u, v). Let 0 < r ≤ ∞ and
f : (−r, r) −→ R be a function such that f satisfies the
“correlation assumptions”. Assume that f (c∗) = 1 for some
0 < c∗ < r. Then

max
Θ∈C1(m+n;R)
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Krivine’s constant reproduced III

Somewhat more generally, we have

Corollary
Let m, n ∈ N, A ∈M(m× n;R), u := (u1, u2, . . . , um)> ∈ Sm

H and
v := (v1, v2, . . . , vn)> ∈ Sn

H. Put S := ΓH(u, v). Let 0 < r ≤ ∞ and
f , g : (−r, r) −→ R be two functions such that both, f and g
satisfy the “correlation assumptions”.

Assume that f (c∗) = 1 for
some 0 < c∗ < r. Then

max
Θ∈C1(m+n;R)

∣∣∣〈Â,Θ〉∣∣∣ ≥ 2
π

∣∣∣tr(A> arcsin ◦g[c∗ ΓH(u, v)]
)∣∣∣ ≈ ??
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∣∣∣〈Â,Θ〉∣∣∣ ≥

2
π

∣∣∣tr(A> arcsin ◦g[c∗ ΓH(u, v)]
)∣∣∣ ≈ ??

46 / 61



Krivine’s constant reproduced III

Somewhat more generally, we have

Corollary
Let m, n ∈ N, A ∈M(m× n;R), u := (u1, u2, . . . , um)> ∈ Sm

H and
v := (v1, v2, . . . , vn)> ∈ Sn

H. Put S := ΓH(u, v). Let 0 < r ≤ ∞ and
f , g : (−r, r) −→ R be two functions such that both, f and g
satisfy the “correlation assumptions”. Assume that f (c∗) = 1 for
some 0 < c∗ < r. Then

max
Θ∈C1(m+n;R)
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Krivine rounding schemes revisited I

Natural Question
Can we possibly “remove” or cleverly substitute the arcsin
function?

Recall that the invertible function 2
π arcsin : [−1, 1] −→ [−1, 1]

transforming correlation matrices into correlation matrices
arrived as a result of an explicit hard calculation of the
non-trivial double integral

Hf ,g(t) := E[f (ξ) g(η)] ,

where ξ, η ∼ N(0, 1) are correlated via E[ξ η] = t ∈ [−1, 1] and
f := g := sign = 11[0,∞) − 11(−∞,0).
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Krivine rounding schemes revisited II

Definition (Braverman, Makarychev, Makarychev, Naor
(2011))
Fix k ∈ N. Let G1,G2 ∼ Nk(0, Ik) be independent (standard)
Gaussian random vectors. Let t ∈ [−1, 1]. Put f̃ (x) := f ( 1√

2
x)

and g̃(y) := g( 1√
2

y), where x, y ∈ Rk and f , g are bounded.

Put

Hf ,g(t) := E
[
f̃ (G1)g̃(tG1 +

√
1− t2 G2)

]
=

∫
R2k

f̃ (x) g̃(tx +
√

1− t2 y)γ2k(d(x, y))

(!)
=

∫
Rk

f̃ (x)E
[
g̃(tx +

√
1− t2 G2)

]
γk(dx)
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Krivine rounding schemes revisited II

Corollary
Let k ∈ N, −1 < t < 1 and f , g be as above. Then

Hf ,g(t) =
1

(2π)k (1− t2)k/2

∫
R2k

f̃ (x) g̃(y) exp
(−‖x‖2 − ‖y‖2 + 2t〈x, y〉

2(1− t2)

)
d2k(x, y)

=
1

πk (1− t2)k/2

∫
R2k

f (x) g(y) exp
(−‖x‖2 − ‖y‖2 + 2t〈x, y〉

1− t2

)
d2k(x, y) .
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A lurking Mehler kernel

Observation
Fix k ∈ N. Let G ∼ Nk(0, Ik) be a (standard) Gaussian random
vector. Let −1 < t < 1 and g be as above.

Then

Λtg̃(x) := E
[
g̃(tx +

√
1− t2 G)

]
=

∫
Rk

g̃(y) Mt(x, y)γk(dy) = E
[
g̃ Mt(x,G)

]
,

where

Mt(x, y) :=
1

(1− t2)k/2 exp
(
−

t2
(
‖x‖2 + ‖y‖2

)
− 2t〈x, y〉

2(1− t2)

)
=

ϕ0,Σ(t)(x, y)

ϕ0,Ik(x)ϕ0,Ik(y)
.
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A bird’s eye view - from the complex
plane I

For the moment assume that in additon f (−x) = −f (x) for all
x ∈ Rk or g(−y) = −g(y) for all y ∈ Rk. Having Fourier transform
techniques in mind, let us assume further that the function
z 7→ Hf ,g(z) can be analytically extended to a suitable domain in
C, containing ±i.

Then

1
i
Hf ,g(i) = i Hf ,g(−i) =

1
2k/2

∫
Rk

f̃ (x)

∫
Rk

g̃(y) K(x, y)dky dkx

= 2k/2
∫
Rk

f (x)

∫
Rk

g(y) K(x, y)dky dkx ,

where

52 / 61



A bird’s eye view - from the complex
plane I

For the moment assume that in additon f (−x) = −f (x) for all
x ∈ Rk or g(−y) = −g(y) for all y ∈ Rk. Having Fourier transform
techniques in mind, let us assume further that the function
z 7→ Hf ,g(z) can be analytically extended to a suitable domain in
C, containing ±i. Then

1
i
Hf ,g(i) = i Hf ,g(−i) =

1
2k/2

∫
Rk

f̃ (x)

∫
Rk

g̃(y) K(x, y)dky dkx

= 2k/2
∫
Rk

f (x)

∫
Rk

g(y) K(x, y)dky dkx ,

where

52 / 61



A bird’s eye view - from the complex
plane I

For the moment assume that in additon f (−x) = −f (x) for all
x ∈ Rk or g(−y) = −g(y) for all y ∈ Rk. Having Fourier transform
techniques in mind, let us assume further that the function
z 7→ Hf ,g(z) can be analytically extended to a suitable domain in
C, containing ±i. Then

1
i
Hf ,g(i) = i Hf ,g(−i) =

1
2k/2

∫
Rk

f̃ (x)

∫
Rk

g̃(y) K(x, y)dky dkx

= 2k/2
∫
Rk

f (x)

∫
Rk

g(y) K(x, y)dky dkx ,

where

52 / 61



A bird’s eye view - from the complex
plane I

For the moment assume that in additon f (−x) = −f (x) for all
x ∈ Rk or g(−y) = −g(y) for all y ∈ Rk. Having Fourier transform
techniques in mind, let us assume further that the function
z 7→ Hf ,g(z) can be analytically extended to a suitable domain in
C, containing ±i. Then

1
i
Hf ,g(i) = i Hf ,g(−i) =

1
2k/2

∫
Rk

f̃ (x)

∫
Rk

g̃(y) K(x, y)dky dkx

= 2k/2
∫
Rk

f (x)

∫
Rk

g(y) K(x, y)dky dkx ,

where

52 / 61



A bird’s eye view - from the complex
plane II

K(x, y) := sin
(
〈x, y〉

)
ϕ0,I2k(x, y)

=
1

(2π)k sin
(
〈x, y〉

)
exp

(
− ‖x‖

2 + ‖y‖2

2

)
.

A similar non-trivial integral was explicitly calculated by H.
König in 2001, leading to his conjecture whether KR

G = π
2 ln(1+

√
2)

- which had been refuted in 2011 only (cf. [1]) !
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Krivine rounding schemes revisited III

Example

Let k ∈ N and −1 < t < 1. Let α =
(
α1, . . . , αk

)> ∈ (0, 1)k and
β =

(
β1, . . . , βk

)> ∈ (0, 1)k. Consider

Rk 3 x 7→ χα(x) := 1− 2
k∏

i=1

11(
−∞,Φ

−1(αi)√
2

](xi
)
.

Then χα(x) ∈ {−1, 1} for all x ∈ Rk, and

Hχα,χβ
(t)

(!)
= 1− 2

( k∏
i=1

αi +

k∏
i=1

βi

)
+ 4cΣ(t)(α, β) ,

where cΣ(t) denotes the 2k-dimensional Gaussian copula with
respect to the correlation matrix Σ(t)!

54 / 61



Krivine rounding schemes revisited III

Example
Let k ∈ N and −1 < t < 1.

Let α =
(
α1, . . . , αk

)> ∈ (0, 1)k and
β =

(
β1, . . . , βk

)> ∈ (0, 1)k. Consider

Rk 3 x 7→ χα(x) := 1− 2
k∏

i=1

11(
−∞,Φ

−1(αi)√
2

](xi
)
.

Then χα(x) ∈ {−1, 1} for all x ∈ Rk, and

Hχα,χβ
(t)

(!)
= 1− 2

( k∏
i=1

αi +

k∏
i=1

βi

)
+ 4cΣ(t)(α, β) ,

where cΣ(t) denotes the 2k-dimensional Gaussian copula with
respect to the correlation matrix Σ(t)!

54 / 61



Krivine rounding schemes revisited III

Example
Let k ∈ N and −1 < t < 1. Let α =

(
α1, . . . , αk

)> ∈ (0, 1)k and
β =

(
β1, . . . , βk

)> ∈ (0, 1)k.

Consider

Rk 3 x 7→ χα(x) := 1− 2
k∏

i=1

11(
−∞,Φ

−1(αi)√
2

](xi
)
.

Then χα(x) ∈ {−1, 1} for all x ∈ Rk, and

Hχα,χβ
(t)

(!)
= 1− 2

( k∏
i=1

αi +

k∏
i=1

βi

)
+ 4cΣ(t)(α, β) ,

where cΣ(t) denotes the 2k-dimensional Gaussian copula with
respect to the correlation matrix Σ(t)!

54 / 61



Krivine rounding schemes revisited III

Example
Let k ∈ N and −1 < t < 1. Let α =

(
α1, . . . , αk

)> ∈ (0, 1)k and
β =

(
β1, . . . , βk

)> ∈ (0, 1)k. Consider

Rk 3 x 7→ χα(x) := 1− 2
k∏

i=1

11(
−∞,Φ

−1(αi)√
2

](xi
)
.

Then χα(x) ∈ {−1, 1} for all x ∈ Rk, and

Hχα,χβ
(t)

(!)
= 1− 2

( k∏
i=1

αi +

k∏
i=1

βi

)
+ 4cΣ(t)(α, β) ,

where cΣ(t) denotes the 2k-dimensional Gaussian copula with
respect to the correlation matrix Σ(t)!

54 / 61



Krivine rounding schemes revisited III

Example
Let k ∈ N and −1 < t < 1. Let α =

(
α1, . . . , αk

)> ∈ (0, 1)k and
β =

(
β1, . . . , βk

)> ∈ (0, 1)k. Consider

Rk 3 x 7→ χα(x) := 1− 2
k∏

i=1

11(
−∞,Φ

−1(αi)√
2

](xi
)
.

Then χα(x) ∈ {−1, 1} for all x ∈ Rk, and

Hχα,χβ
(t)

(!)
= 1− 2

( k∏
i=1

αi +

k∏
i=1

βi

)
+ 4cΣ(t)(α, β) ,

where cΣ(t) denotes the 2k-dimensional Gaussian copula with
respect to the correlation matrix Σ(t)!

54 / 61



Krivine rounding schemes revisited III

Example
Let k ∈ N and −1 < t < 1. Let α =

(
α1, . . . , αk

)> ∈ (0, 1)k and
β =

(
β1, . . . , βk

)> ∈ (0, 1)k. Consider

Rk 3 x 7→ χα(x) := 1− 2
k∏

i=1

11(
−∞,Φ

−1(αi)√
2

](xi
)
.

Then χα(x) ∈ {−1, 1} for all x ∈ Rk, and

Hχα,χβ
(t)

(!)
= 1− 2

( k∏
i=1

αi +

k∏
i=1

βi

)
+ 4cΣ(t)(α, β) ,

where cΣ(t) denotes the 2k-dimensional Gaussian copula with
respect to the correlation matrix Σ(t)!

54 / 61



Krivine rounding schemes revisited IV
A special case is the following (meanwhile not unknown !)

Example (Sheppard (1899))
Let k = 1. Then χ 1

2
= sign, and

E[sign
( X1√

2

)
sign

( X2√
2

)
] = Hχ 1

2
,χ 1

2
(t) = 4 cΣ(t)

(1
2
,

1
2
)
− 1

=
2
π

arcsin(t) =
2
π

arcsin
(
E[X1 X2]

)
.

A strong drawback: in general there is no closed form for values
of multivariate Gaussian copulas available. One has to rely on
approximation techniques and simulation methods here (such
as standard Monte Carlo). One significant point to observe is
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Krivine rounding schemes revisited V

Theorem
Let l2 ∼= H be a separable Hilbert space, m, n ∈ N, k := m + n
and f , g : Rk −→ R be bounded. Suppose the following
conditions are satisfied:

(i) H′f ,g(0) 6= 0 and Hf ,g(0) ≥ 0.

(ii) abs
(
H−1

f ,g

)
(c) = 1, for some c ≡ c(f , g) > 0.

Then for all u1, u2, . . . , um, v1, v2, . . . , vn ∈ SH there exist k
Rk-valued random vectors X1,X2, . . . ,Xm,Y1,Y2, . . . ,Yn such that
Xi ∼ Nk(0, Ik) for all i ∈ [m] and Yj ∼ Nk(0, Ik) for all j ∈ [n] and

1
c
E
[
f
( 1√

2
Xi
)

g
( 1√

2
Yj
)]

= 〈ui, vj〉H

for all (i, j) ∈ [m]× [n]. If f , g : Rk −→ {−1,+1} then KR
G ≤

1
c(f ,g) .
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A phrase of G. H. Hardy

“... at present I will say only that if a chess problem is, in the
crude sense, ’useless’, then that is equally true of most of the
best mathematics; that very little of mathematics is useful
practically, and that that little is comparatively dull. The
’seriousness’ of a mathematical theorem lies, not in its practical
consequences, which are usually negligible, but in the
significance of the mathematical ideas which it connects...”

– A Mathematician’s Apology (1940)
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Thank you for your attention!

Are there any questions, comments or remarks?
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