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An important information for readers

The current version is a shortened (“web-publishable” ,)
version of my presentation at the MCMP in Munich.

If you are
interested in a copy of my original slides, presented in Munich,
could you please send an email to me in advance? I am happy
to forward these to you, of course. Many thanks!
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A portrait of A. Grothendieck
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A. Grothendieck lecturing at IHES
(1958-1970)
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Excerpt from A. Grothendieck’s
handwritten lecture notes I
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Grothendieck’s inequality in matrix
form I

Theorem (Lindenstrauss-Pelczyński (1968))
Let F ∈ {R,C} and m,n ∈ N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (aij) ∈M(m× n;F), for all F-Hilbert spaces H,
for all unit vectors u1, . . . , um, v1, . . . , vn ∈ SH the following
inequality is satisfied:

∣∣∣ m∑
i=1

n∑
j=1

aij〈ui, vj〉H
∣∣∣ ≤ K max

{∣∣∣ m∑
i=1

n∑
j=1

aijpiqj
∣∣∣ : |pi| = 1 = |qj |

}
.

The smallest possible value of the corresponding constant K is
denoted by KF

G. It is called Grothendieck’s constant. Computing
the exact numerical value of this constant is an open problem
(unsolved since 1953)!
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Grothendieck’s inequality in matrix
form II

Theorem (“Little Grothendieck Inequality” – R. E. Rietz
(1974), H. Niemi (1983))
Let F ∈ {R,C} and H be an arbitrary Hilbert space over F. Let
n ∈ N. Let kFG denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n× n-matrices over F. Then

kFG = 1/E
[
|X|

]
, where

X ∼ FN1(0, 1):
kRG = π

2 and kCG = 4
π
.

From now on we are primarily shedding some light on the real
case in this talk (i. e., F = R). However, we allow the use of all
matrices A ∈M(m× n;R) of any size, and we analyse
thoroughly first non-trivial parts of the complex case.
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Encapsulation of KR
G - most recent

results

Until present the following encapsulation of KR
G holds, primarily

thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

1, 676 < KR
G

(!!)
<

π

2 ln(1 +
√

2)
≈ 1, 782 .

Screening these numbers we might be tempted to guess
venturously the following

Brave Conjecture
Is KR

G =
√
π = Γ

(
1
2

)
≈ 1, 772? Or is it rather KR

G = 1
γ ≈ 1, 732,

where γ =
∑∞
n=2(−1)n ζ(n)

n = −Γ′(1) ≈ 0, 577215664901533 . . .
denotes the Euler-Mascheroni constant...?
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The left side of Grothendieck’s
inequality rewritten

Let m,n ∈ N, A ∈M(m× n;F), u := (u1, . . . , um)> ∈ SmH and
v := (v1, . . . , vn)> ∈ SnH be given, where
SH := {w ∈ H : ‖w‖ = 1} denotes the unit sphere in H.

Firstly, note that

m∑
i=1

n∑
j=1

aij〈ui, vj〉H = tr (ΓH(u, v)∗A) = 〈A,ΓH(u, v)〉,

is precisely the Hilbert-Schmidt inner product (or the Frobenius
inner product) of the matrices A ∈M(m× n;F) and
ΓH(u, v) ∈M(m× n;F), where

ΓH(u, v) :=


〈v1, u1〉H 〈v2, u1〉H . . . 〈vn, u1〉H
〈v1, u2〉H 〈v2, u2〉H . . . 〈vn, u2〉H

...
...

...
...

〈v1, um〉H 〈v2, um〉H . . . 〈vn, um〉H

 .
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The right side of Grothendieck’s
inequality rewritten

Let m,n ∈ N, A ∈M(m× n;F), p := (p1, . . . , pm)> ∈
(
S0)m and

q := (q1, . . . , qn)> ∈
(
S0)n be given, where

S0 := {z ∈ F : |z| = 1} denotes the unit “sphere” in F = F0+1.
Similarly as before, we obtain

m∑
i=1

n∑
j=1

aijpiqj = tr (ΓF(p, q)∗A) = 〈A,ΓF(p, q)〉,

where now ΓF(p, q) := qp∗.

In the real case (i. e., if F = R) we have

ΓR(p, q) =


±1 ∓1 . . . ±1
∓1 ∓1 . . . ∓1
...

...
...

...
±1 ∓1 . . . ±1

 .
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A lurking curse of dimensionality in
Grothendieck’s inequality? I

A Natural Question
Suppose, we have an urn which contains m · n white balls and
m · n black balls; hence 2 ·m · n white and black balls
altogether. How many possibilities do we have to place m · n
balls from this urn, with replacement, in a box consisting of
m · n empty cells, such that after the realisation of such a
placement in any of these cells there will be exactly one ball?

Answer
There are 2mn = (exp(m ln(2)))n > (exp(0.65m))n possibilities
(a simple proof by induction shows you why). Already a small
real matrix ΓR(p, q) consisting of m = 5 rows and n = 5
columns allows 33’554’432 different versions; each one
consisting solely of mn numbers εij ∈ {−1, 1}!
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A lurking curse of dimensionality in
Grothendieck’s inequality? II

Theorem (J. M. Hendrickx and A. Olshevsky (2010))
Unless P = NP there is no polynomial time algorithm which,
given a real matrix A with entries in {−1, 0, 1}, approximates
max

{∣∣∣∑m
i=1

∑n
j=1 aijpiqj

∣∣∣ : pi, qj ∈ {−1, 1}
}

to some fixed error
with running time polynomial in the dimensions of the matrix.
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Full matrix representation of the Hilbert
space vectors

Pick all m+ n Hilbert space unit vectors
u1, u2, . . . , um, v1, v2, . . . , vn ∈ H and represent them as

ΓH(u, v) =


〈v1, u1〉 〈v2, u1〉 . . . 〈vn, u1〉
〈v1, u2〉 〈v2, u2〉 . . . 〈vn, u2〉

...
...

...
...

〈v1, um〉 〈v2, um〉 . . . 〈vn, um〉


Does this matrix look familiar to you?
It is a part of something larger...
Namely:
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Block matrix representation I




〈v1, u1〉 〈v2, u1〉 . . . 〈vn, u1〉
〈v1, u2〉 〈v2, u2〉 . . . 〈vn, u2〉

...
...

...
...

〈v1, um〉 〈v2, um〉 . . . 〈vn, um〉



〈u1, v1〉 〈u1, v2〉 . . . 〈u1, vn〉
〈u2, v1〉 〈u2, v2〉 . . . 〈u2, vn〉

...
...

...
...

〈um, v1〉 〈um, v2〉 . . . 〈um, vn〉


T


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Block matrix representation I
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...
...

...
...

〈u1, vn〉 〈u2, vn〉 . . . 〈um, vn〉


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Block matrix representation II



〈u1, u1〉 〈u2, u1〉 . . . 〈um, u1〉
〈u1, u2〉 〈u2, u2〉 . . . 〈um, u2〉

...
...

...
...

〈u1, um〉 〈u2, um〉 . . . 〈um, um〉

〈v1, u1〉 〈v2, u1〉 . . . 〈vn, u1〉
〈v1, u2〉 〈v2, u2〉 . . . 〈vn, u2〉

...
...

...
...

〈v1, um〉 〈v2, um〉 . . . 〈vn, um〉
〈u1, v1〉 〈u2, v1〉 . . . 〈um, v1〉
〈u1, v2〉 〈u2, v2〉 . . . 〈um, v2〉

...
...

...
...

〈u1, vn〉 〈u2, vn〉 . . . 〈um, vn〉

〈v1, v1〉 〈v2, v1〉 . . . 〈vn, v1〉
〈v1, v2〉 〈v2, v2〉 . . . 〈vn, v2〉

...
...

...
...

〈v1, vn〉 〈v2, vn〉 . . . 〈vn, vn〉


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Block matrix representation III



1 〈u2, u1〉 . . . 〈um, u1〉
〈u1, u2〉 1 . . . 〈um, u2〉

...
...

...
...

〈u1, um〉 〈u2, um〉 . . . 1

〈v1, u1〉 〈v2, u1〉 . . . 〈vn, u1〉
〈v1, u2〉 〈v2, u2〉 . . . 〈vn, u2〉

...
...

...
...

〈v1, um〉 〈v2, um〉 . . . 〈vn, um〉
〈u1, v1〉 〈u2, v1〉 . . . 〈um, v1〉
〈u1, v2〉 〈u2, v2〉 . . . 〈um, v2〉

...
...

...
...

〈u1, vn〉 〈u2, vn〉 . . . 〈um, vn〉

1 〈v2, v1〉 . . . 〈vn, v1〉
〈v1, v2〉 1 . . . 〈vn, v2〉

...
...

...
...

〈v1, vn〉 〈v2, vn〉 . . . 1



23 / 62



The matrices ΓV (u, v) and the Gram
matrix I

Let (V, 〈·, ·〉) be an arbitrary inner product space over F and
m,n ∈ N. Let u1, u2, . . . , um ∈ V and v1, v2, . . . , vn ∈ V . We put

ΓV (u, v)ij := 〈vj , ui〉 ((i, j) ∈ [m]× [n]) ,

where u := (u1, . . . , um) ∈ V m and v := (v1, . . . , vn) ∈ V n.

If m = k = n and u = w = v ∈ V k then ΓV (w,w) is called Gram
matrix of the vectors w1, w2, . . . , wk ∈ V .
Hence, our approach actually is the following
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The matrices ΓV (u, v) and the Gram
matrix II

Observation
Let m,n ∈ N and (V, 〈·, ·〉) be an arbitrary inner product space
over F ∈ {R,C} and u1, u2, . . . , um, v1, v2, . . . , vn ∈ V . Put
u⊕ v := (u1, . . . , um, v1, . . . , vn), where u := (u1, . . . um) and
v := (v1, . . . vn). Then

ΓV (u⊕ v, u⊕ v) X=
(

ΓV (u, u) ΓV (u, v)
ΓV (u, v)∗ ΓV (v, v)

)
.
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A recollection of a few definitions I

Let n ∈ N and F ∈ {R,C}. Then PSD(n;F) denotes the set of
all Hermitian positive semidefinite n× n-matrices with entries in
F. Recall that a Hermitian matrix A ∈M(n× n;F) is called
positive semidefinite if 〈Ax, x〉Fn = x∗Ax ≥ 0 for all x ∈ Fn.

Moreover, we consider the set

C(n;F) :=
{
S ∈ PSD(n;F) such that Sii = 1 for all i ∈ [n]

}
.

An element of C(n;F) is called correlation matrix. C(n;R) is
also known as ”n-elliptope“ in convex algebraic geometry.
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A recollection of a few definitions II

Let n ∈ N. Fix a probability space (Ω,F ,P) and let
ξ := (ξ1, ξ2, . . . , ξn)> : Ω −→ Rn be a random vector. Let
µ := (µ1, µ2, . . . , µn)> ∈ Rn and C ∈ PSD(n;R).

Recall that ξ is
an n-dimensional Gaussian random vector with respect to the
“parameters” µ and C (short: ξ ∼ Nn(µ,C)) if and only if for all
a ∈ Rn there exists ηa ∼ N1(0, 1) such that

〈a, ξ〉 =
n∑
i=1

aiξi = 〈a, µ〉+
√
〈a,Ca〉 ηa

Note that we don’t require here that C is invertible!
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A recollection of a few definitions III

Following Feller, the real n×n-matrix V(ξ) := E[ξ ξ>] defined as

V(ξ)ij := E[ξ ξ>]ij := E[ξiξj ]− E[ξi]E[ξj ]
(!)= Cij

(
i, j ∈ [n]

)
is known as the variance matrix of the Gaussian random vector
ξ.

However, if the variance matrix C is invertible then the density
function of ξ ∼ Nn(µ,C) exists and is given by

ϕµ,C(x) := 1
(2π)n/2

√
det (C)

exp
(
−1

2〈x− µ,C
−1(x− µ)〉

)
,

where x ∈ Rn.
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Complex Gaussian random vectors I

Definition
Let Z ≡ (X1 + i Y1, X2 + i Y2, . . . , Xn + i Yn)> be an
n-dimensional complex random vector. Put
ξ := (X1, . . . , Xn)>, η := (Y1, . . . , Yn)>. Then Z is a complex
Gaussian random vector if the real 2n-dimensional random
vector (ξ>, η>)> is a Gaussian random vector.

Although this definition looks rather innocently, it isn’t ! It
contains a lot of (hidden) structure which extends the real
Gaussian case by far.
Since (ξ>, η>)> is a real Gaussian random vector the complex
matrices Γ := E[ZZ∗] (variance matrix) and C := E[ZZ>] both
are well-defined, such as µ := E[Z].
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Complex Gaussian random vectors II

Hence, the distribution of (ξ>, η>)> is fully specified by µ, Γ and
C. We write Z ∼ CNn(µ,Γ, C) if Z is an n-dimensional complex
Gaussian random vector.

A very important special case is given when µ = 0 and C = 0.
In this case CNn(0,Γ, 0) is shortened to CNn(0,Γ).
Z ∼ CNn(0,Γ) is known as proper complex Gaussian random
vector (with variance matrix Γ). The latter is a well-known
definition in electrical engineering science.
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Structure of C(n;R)

Proposition
Let n ∈ N and Σ = (σij) ∈M(n× n;R). TFAE:

(i) Σ ∈ PSD(n;R) and σii = 1 for all i ∈ [n].
(ii) Σ ∈ C(n;R).
(iii) There exist vectors x1, . . . , xn ∈ Sn−1 such that

σij = 〈xi, xj〉 for all i, j ∈ [n].
(iv) There exists a Hilbert space (L, 〈·, ·〉) over R such that

Σ = ΓL(x, x) for some x = (x1, . . . , xn) ∈ (SL)n.
(v) Σ = V(ξ) is a correlation matrix, induced by some

n-dimensional Gaussian random vector ξ ∼ Nn(0,Σ).
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Structure of C(n;C)

Proposition
Let n ∈ N and Σ = (σij) ∈M(n× n;C). TFAE:

(i) Σ ∈ PSD(n;C) and σii = 1 for all i ∈ [n].
(ii) Σ ∈ C(n;C).
(iii) There exist vectors z1, . . . , zn ∈ SCn such that σij = 〈zi, zj〉

for all i, j ∈ [n].
(iv) There exists a Hilbert space (L, 〈·, ·〉) over C such that

Σ = ΓL(z, z) for some z = (z1, . . . , zn) ∈ (SL)n.
(v) Σ = E[ξ ξ∗] is a complex correlation matrix, induced by

some proper complex Gaussian random vector
ξ ∼ CNn(0,Σ).
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Some geometry of correlation matrices

Observation
Let F ∈ {R,C} and k ∈ N. Then the sets{
S : S = xx∗ = ΓF(x, x) for some x ∈ (S0)k

}
and{

Θ : Θ ∈ C(k;F) and rk(Θ) = 1
}

coincide.

Proposition (K. R. Parthasarathy (2002))
Let k ∈ N. The k-elliptope C(k;R) is a compact and convex
subset of the k2-dimensional vector space M(k × k;R). Any
k × k-correlation matrix of rank 1 is an extreme point of the set
C(k;R) (yet not conversely).
In particular, the (finite) set of all real k × k-correlation matrices
of rank 1 is not convex.
Let k ∈ N. Put

C1(k;F) :=
{
Θ : Θ ∈ C(k;F) and rk(Θ) = 1

}
.
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Block injection of A

A naturally appearing question is the following:

Having “embedded” the m× n-matrix ΓH(u, v) in a
(m+ n)× (m+ n)- correlation matrix, how could this gained
information be used to reformulate Grothendieck’s inequality
accordingly? To answer this question, let us also “embed” the
m× n-matrix A suitably!

Definition
Let m,n ∈ N and A ∈M(m× n;F) arbitrary. Put

Â := 1
2

(
0 A
A∗ 0

)

Let us call M((m+ n)× (m+ n);F) 3 Â the canonical block
injection of A.
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A further reformulation of GT

Proposition
Let H be an arbitrary Hilbert space over F. Let m,n ∈ N and
A = (aij) ∈M(m× n;F). Let K > 0. TFAE:

(i)

max
‖ui‖=1=‖vj‖

∣∣∣ m∑
i=1

n∑
j=1

aij〈ui, vj〉H
∣∣∣ ≤ K max

|pi|=1=|qj |

∣∣∣ m∑
i=1

n∑
j=1

aijpiqj
∣∣∣ .

(ii)
max

Σ∈C(m+n;F)
|〈Â,Σ〉| ≤ K max

Θ∈C1(m+n;F)
|〈Â,Θ〉| .

Note that we don’t know whether condition (ii) holds for all
matrices in M((m+ n)× (m+ n);F). If this were the case, GT
would turn out to be a corollary of a more general statement!
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GT versus NP-hard optimisation

Observation (Real Case: F = R)
On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):

max
Σ∈C(m+n;R)

|〈Â,Σ〉|

On the right side: an NP-hard, non-convex combinatorial
(Boolean) optimisation problem:

max
Θ∈C(m+n;R)

rk(Θ)=1

|〈Â,Θ〉|

Thus, Grothendieck’s constant KR
G is precisely the “integrality

gap”; i. e., the maximum ratio between the solution quality of
the NP-hard Boolean optimisation on the right side of GT and
of its SDP relaxation on the left side!
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Schur product and the matrix f [A] I

Definition
Let ∅ 6= U ⊆ F and f : U −→ F be a function. Let
A = (aij) ∈M(m× n;F) such that aij ∈ U for all
(i, j) ∈ [m]× [n]. Define f [A] ∈M(m× n;F) - entrywise - as
f [A]ij := f(aij) for all (i, j) ∈ [m]× [n].

Guiding Example
The Schur product (aka Hadamard product)

(aij) ∗ (bij) := (aijbij)

of matrices (aij) and (bij) leads to matrices A∗ k = f [A], where
f(x) := xk (k ∈ N).
The notation “f [A]” is used to highlight the difference between
the matrix f(A) originating from the spectral representation of A
(for normal matrices A) and the matrix f [A], defined as above !
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Schur product and the matrix f [A] II

Theorem
For any n ∈ N the set M(n× n;F) with the usual addition and
the Schur multiplication ∗ is a commutative Banach algebra
under the operator norm.

Moreover,

PSD(n;F) ∗ PSD(n;F) ⊆ PSD(n;F) .

In particular, C(n;F) ∗ C(n;F) ⊆ C(n;F).
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Grothendieck’s identity I

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889),
W. F. Sheppard (1898), A. Grothendieck (1953))
Let −1 ≤ ρ ≤ 1 and (X,Y )> ∼ N2(0,Σ2(ρ)), where

Σ2(ρ) :=
(

1 ρ
ρ 1

)
.

Consider the function sign : R −→ {−1, 1}, defined as
sign(x) := 1 if x ≥ 0 and sign(x) := −1 else. Then

E[sign(X)sign(Y )] = 2
π

arcsin(ρ) = 2
π

arcsin (E[XY ]) .

The following implication of Grothendieck’s identity can be read
often in related papers:
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Grothendieck’s identity II

Corollary
Let n ∈ N, u, v ∈ Sn−1 and ξ ∼ Nn(0, In). Then

E[sign(u>ξ)sign(v>ξ)] = 2
π

arcsin
(
u>v

)
.
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Gauss is lurking!

Observation
Let ρ ∈ [−1, 1]. Then

2
π

arcsin(ρ) = 2
π

∞∑
n=0

1
4n

(
2n
n

)
ρ2n+1

2n+ 1

!= 2
π

∞∑
n=0

Γ
(
n+ 1

2

)
√
π n!

ρ2n+1

2n+ 1
X= 2
π
ρ · 2F1

(1
2 ,

1
2 ,

3
2; ρ2

)
,

where

2F1 (a, b, c; z) := Γ(c)
Γ(a)Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)
Γ(c+ n)n! zn ,

z ∈ D and a, b, c ∈ F, satisfying −c /∈ N0 and < (c− a− b) > 0,
denotes the famous, classical Gauss hypergeometric function .
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Grothendieck’s identity in matrix form I

Corollary
Let k ∈ N and Σ ∈ C(k;R) be an arbitrarily given (k × k)-
correlation matrix. Then also 2

π arcsin[Σ] ∈ C(k;R) . There
exists a Gaussian random vector ξ ∼ Nk(0,Σ) such that

1
arcsin(1) arcsin[Σ] = 2

π
arcsin[Σ] = E

[
Θ(ξ)

]
,

where
Θ(ξ(ω))ij := sign(ξi(ω))sign(ξj(ω))

for all ω ∈ Ω, and for all i, j ∈ [k]. Θ(ξ(ω)) is a correlation matrix
of rank 1 for all ω ∈ Ω.
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Grothendieck’s identity in matrix form II

Corollary
Let k = m+ n, where m,n ∈ N. Let Σ ∈ C(k;R) be an
arbitrarily given (k × k)-correlation matrix. Then

2
π
|〈Â, arcsin[Σ]〉| = |〈Â,E

[
Θ(ξ)

]
〉| ≤ E

[
|〈Â,Θ(ξ)〉|

]
≤ max

Θ∈C(k;R)
rank(Θ)=1

|〈Â,Θ〉| .

for all matrices A ∈M(m× n;R).
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The complex case: Haagerup’s identity
revisited I

Lemma (U. V. Haagerup (1987))
Let z ∈ D and (Z,W )> ∼ CN2

(
0,Σ2(z)

)
. Then

E[sign(Z)sign(W )] = z

∫ π/2

0

cos2(u)√
1− |z|2 sin2(u)

du

However, our completely different approach reveals a surprising
structural similarity to Grothendieck’s identity, arising from

Proposition
Let z ∈ D and (Z,W )> ∼ CN2

(
0,Σ2(z)

)
and

f(x, y) := 〈 x
‖x‖ ,

y
‖y‖〉 for all (x, y) ∈ R2 \ {0} × R2 \ {0}. Then

E[sign(Z)sign(W )] = sign(z)
∫
R2

∫
R2
f(x, y)ϕ0,Σ4(|z|)(x, y) d2x d2y .
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The complex case: Haagerup’s identity
revisited II

Theorem
Let z ∈ D and (Z,W )> ∼ CN2

(
0,Σ2(z)

)
. Then

E[sign(Z)sign(W )] = π

4 z · 2F1

(1
2 ,

1
2 , 2; |z|2

)
.

Hence,
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A unification of the real and the
complex case

Proposition
Let F ∈ {R,C} and k = m+ n, where m,n ∈ N. Let H be an
arbitrary Hilbert space. Then

max
u∈Sm

H ,v∈Sn
H

∣∣∣tr (AfF[ΓH(u, v)∗
]) ∣∣∣ = |〈Â, fF[Σ∗]〉| ≤ cF max

Θ∈C(k;F)
rank(Θ)=1

|〈Â,Θ〉| ,

for all matrices A ∈M(m× n;F), where

fR(ρ) := ρ · 2F1

(1
2 ,

1
2 ,

3
2; ρ2

)
(ρ ∈ [−1, 1]) and cR := π

2
(!)= fR(1)

and

fC(z) := |z| · 2F1

(1
2 ,

1
2 , 2; |z|2

)
(z ∈ D) and cC := 4

π

(!)= fC(1)
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CCP functions I

A Natural Question
Let k = m+ n, where m,n ∈ N. How do we have to change our
approach to obtain the following:

|〈Â,Σ〉| ≤ c̃F max
Θ∈C(k;F)
rank(Θ)=1

|〈Â,Θ〉| ,

for all Σ ∈ C(k;F) and all A ∈M(k;F)? c̃F =?

Key Idea
Inversion of the power series fF? Unfortunately, the mapping

C(k;F) −→ C(k;F),Σ 7→ fF[Σ]

in general is not onto (else 1, 676 < KR
G ≤ π

2 ≈ 1, 571 - a
contradiction)! However, inversion seemingly is not a bad idea...
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CCP functions II

Following the important concept of completely positive maps
(which however by definition are assumed to be linear) we
introduce the following

Definition
Let n ∈ N and g : [−1, 1] −→ R be an arbitrary function.

(i) g is n-correlation-preserving (short: n-CP) if g[Σ] is an
(n× n)-correlation matrix for all (n× n)-correlation
matrices Σ.

(ii) g is called completely correlation-preserving (short: CCP) if
g is n-correlation-preserving for all n ∈ N.
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CCP functions III

Theorem (Schoenberg (1942), Rudin (1959), Berg,
Christensen, Ressel (1984), Guillot, Khare and
Rajaratnam (2016))
Let g : [−1, 1] −→ R be an arbitrary continuous function. TFAE:

(i) g is CCP.
(ii) g(1) = 1 and g[A] ∈ PSD(n;R) for all A ∈ PSD(n; [−1, 1])

and n ∈ N.
(iii) g admits a power series representation g(t) =

∑∞
k=0 bkt

k

on [−1, 1] for some sequence (bn), consisting of
non-negative numbers only and

∑∞
k=0 bk = 1.
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A correlation matrix preserving cross
transformation

Lemma
Let f, g : [−1, 1] −→ R be two functions satisfying certain
”correlation preserving conditions“. Let m,n ∈ N and

Σ :=
(
C S
S> D

)

be an arbitrary (m+ n)× (m+ n)-correlation matrix. Assume
that f(c∗) = 1 for some 0 < c∗ ≤ 1.

Then also the matrix(
f [c∗C] g[c∗S]
g[c∗S>] f [c∗D]

)

is a (m+ n)× (m+ n)-correlation matrix.
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Krivine revisited I

Example (Krivine reconfirmed)
Let m,n ∈ N and

Σ :=
(
C S
S> D

)
be an arbitrary (m+ n)× (m+ n)-correlation matrix.

Put
c∗ := ln(1 +

√
2) and r∗ := 2

π c
∗. Then also the matrix

Σ̃ :=
(

sinh[c∗C] sin[c∗S]
sin[c∗S>] sinh[c∗D]

)
(!)=
(

sinh[π2 r
∗C] g−1[r∗S]

g−1[r∗S>] sinh[π2 r
∗D]

)

is a (m+ n)× (m+ n)-correlation matrix, where g denotes the
CCP function g(ρ) := 2

π arcsin(ρ) = fR(ρ)
fR(1) , −1 ≤ ρ ≤ 1.
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Krivine revisited II

Example ctd.
Consequently, since g is CCP,(

g ◦ sinh[π2 r
∗C] r∗S

r∗S> g ◦ sinh[π2 r
∗D]

)
= g

[
Σ̃
]

= 2
π
fR[Σ̃]

is a (m+ n)× (m+ n)-correlation matrix, too.

Hence,
∣∣∣∣∣tr(AS>)∣∣ = 1

r∗
∣∣tr(A (r∗ S)>)∣∣

= 1
r∗
∣∣〈Â, 2

π
fR[Σ̃]〉

∣∣ ≤ 1
r∗

max
Θ∈C1(k;R)

∣∣〈Â,Θ〉∣∣ .
Consequently,

KR
G ≤

1
r∗

= π

2 ln(1 +
√

2)
= sin−1(1)

sinh−1(1)
.
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A first generalisation of Krivine’s
approach - sketch I

In the following we consider the case F = R.

Step 1: Substitute the function sign as follows:
(i) Let b : R −→ {−1, 1}, where −1 ≤ ρ ≤ 1. Let

(X,Y )> ∼ N2(0,Σ2(ρ)). Assume that b is odd (i. e.,
b(−x) = −b(x) for all x ∈ [−1, 1]). Consider E[b(X) b(Y )].
Then

E[b(X) b(Y )] != ρ
∞∑
n=0

(a2n+1(b))2 (ρ2)n =: gb(ρ)

for some sequence (an(b))n∈N0 ∈ Sl2 . Hence, gb is a CCP
function (Schoenberg!).

(ii) Assume that a1(b) 6= 0 (already implying that gb has an
inverse function g−1

b , defined around 0).
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A first generalisation of Krivine’s
approach - sketch II

(iii) Assume that g−1
b can be extended to a function whose

domain of definition in C contains the line
{i y : −1 ≤ y ≤ 1}.

Let’s denote this function also as g−1
b .

(iv) Put fb(τ) := 1
i g
−1
b (iτ), where −1 ≤ τ ≤ 1.

(v) Assume that fb(r∗) = 1 for some 0 < r∗ ≤ 1.
(vi) Assume that both, fb and gb satisfy the ”correlation

preserving conditions“.

Step 2: Apply the above correlation matrix transformations to
the so constructed (real-valued) functions fb and gb.

Observation
Given all of the assumptions (i) - (vi) above, we have:

KR
G ≤

1
r∗
.
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A phrase of G. H. Hardy

“... at present I will say only that if a chess problem is, in the
crude sense, ’useless’, then that is equally true of most of the
best mathematics; that very little of mathematics is useful
practically, and that that little is comparatively dull. The
’seriousness’ of a mathematical theorem lies, not in its practical
consequences, which are usually negligible, but in the
significance of the mathematical ideas which it connects...”

– A Mathematician’s Apology (1940)
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Thank you for your attention!

Are there any questions, comments or remarks?
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