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An important information for readers

The current version is a shortened (“web-publishable” ©)
version of my presentation at the MCMP in Munich.
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An important information for readers

The current version is a shortened (“web-publishable” ©)
version of my presentation at the MCMP in Munich. If you are
interested in a copy of my original slides, presented in Munich,
could you please send an email to me in advance? | am happy
to forward these to you, of course. Many thanks!
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@ A short glimpse at A. Grothendieck’s work
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A portrait of A. Grothendieck




A. Grothendieck lecturing at IHES
(1958-1970)
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@® A further reformulation of Grothendieck’s inequality

191 /R2



Grothendieck’s inequality in matrix
form |

Theorem (Lindenstrauss-Pelczynski (1968))

LetF € {R,C} and m,n € N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (ai;) € M(m x n;F), for all F-Hilbert spaces H,
for all unit vectors uy, ..., uy,v1,...,v, € Sy the following
inequality is satisfied:

m n m n
‘ZZaij<ui,vj>H’ <K max{’ZZaijpiqj‘ Cpil =1 = \qj]}.

i=1j=1 i=1j=1
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Grothendieck’s inequality in matrix
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Theorem (Lindenstrauss-Pelczynski (1968))

LetF € {R,C} and m,n € N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (ai;) € M(m x n;F), for all F-Hilbert spaces H,
for all unit vectors uy, ..., uy,v1,...,v, € Sy the following
inequality is satisfied:

m n m n
‘ZZaij<ui,vj>H’ <K max{’ZZaijpiqj‘ Cpil =1 = \qj]}.

i=1j=1 i=1j=1

The smallest possible value of the corresponding constant K is
denoted by K7.. Itis called Grothendieck’s constant.
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Grothendieck’s inequality in matrix
form |

Theorem (Lindenstrauss-Pelczynski (1968))

LetF € {R,C} and m,n € N. Then there exists a universal
constant K > 0 - not depending on m and n - such that for all
matrices A = (ai;) € M(m x n;F), for all F-Hilbert spaces H,
for all unit vectors uy, ..., uy,v1,...,v, € Sy the following
inequality is satisfied:

m n m n
‘ZZaij<ui,vj>H’ <K max{’ZZaijpiqj‘ Cpil =1 = \qj]}.

i=1j=1 i=1j=1

The smallest possible value of the corresponding constant K is
denoted by KZ. Itis called Grothendieck’s constant. Computing
the exact numerical value of this constant is an open problem
(unsolved since 1953)!
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Grothendieck’s inequality in matrix
form Il

Theorem (“Little Grothendieck Inequality” — R. E. Rietz
(1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let k, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices over F. Then
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Grothendieck’s inequality in matrix
form Il

Theorem (“Little Grothendieck Inequality” — R. E. Rietz
(1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let k, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices over IF. Then ki, = 1/E[| X|], where
X ~TFN;(0,1):

s 4
kg == and kG = —.
¢ 9 ¢ r
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Grothendieck’s inequality in matrix
form Il

Theorem (“Little Grothendieck Inequality” — R. E. Rietz
(1974), H. Niemi (1983))

LetF € {R,C} and H be an arbitrary Hilbert space overF. Let
n € N. Let k%, denote the Grothendieck constant, derived from
Grothendieck’s inequality “restricted” to the set of all positive
semidefinite n x n-matrices over IF. Then ki, = 1/E[| X|], where
X ~TFN;(0,1):

4
K =2 and kS = =
0= G=_

From now on we are primarily shedding some light on the real
case in this talk (i. e., F = R). However, we allow the use of all
matrices A € M(m x n;R) of any size, and we analyse
thoroughly first non-trivial parts of the complex case.
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Encapsulation of K& - most recent
results

Until present the following encapsulation of K% holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):
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Until present the following encapsulation of K% holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

()
1,676 < K& < ~1,782.
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Brave Conjecture
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Encapsulation of K& - most recent
results

Until present the following encapsulation of K% holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

()
1,676 < K& < ~1,782.

7T
2In(1 + v/2)
Screening these numbers we might be tempted to guess

venturously the following

Brave Conjecture

Is KE = 7 =T(3)
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Encapsulation of K& - most recent
results

Until present the following encapsulation of K% holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,
due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

()
1,676 < K& < ~1,782.

7T
2In(1 + v/2)
Screening these numbers we might be tempted to guess

venturously the following

Brave Conjecture
Is KE = f:r(%) ~1,7727?
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Encapsulation of K& - most recent
results
Until present the following encapsulation of K% holds, primarily
thanks to R. E. Rietz (1974), J. L. Krivine (1977), and recently,

due to an impressive work of M. Braverman, K. Makarychev, Y.
Makarychev, and A. Naor (2011):

(" T
1,676 < Kiv < —————— ~1,782.
7 21 +v?2)

Screening these numbers we might be tempted to guess
venturously the following

Brave Conjecture
Is K¢ =m=T (7) ~1,772? Or is it rather K& = L ~ 1,732,

where v = Y00, (—1)¢) — F()~0,577215664901533...
denotes the Euler-Mascheroni constant...?
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The left side of Grothendieck’s
inequality rewritten

Let m,n € N, A € M(m x n;F),u := (u1,...,uy) € S% and
vi= (v1,...,v,)" € S% be given, where
Sy :={w € H : |lw|| = 1} denotes the unit sphere in H.
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The left side of Grothendieck’s
inequality rewritten

Let m,n € N, A € M(m x n;F),u := (u1,...,uy) € S% and
vi= (v1,...,v,)" € S% be given, where
Sy :={w € H : |lw|| = 1} denotes the unit sphere in H.

Firstly, note that

m n
> aij{uivi)n

i=1j=1
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The left side of Grothendieck’s
inequality rewritten

Let m,n € N, A € M(m x n;F),u := (u1,...,uy) € S% and
vi= (v1,...,v,)" € S% be given, where
Sy :={w € H : |lw|| = 1} denotes the unit sphere in H.

Firstly, note that

ZZGZJ wi, v g =t (U (u,v)*A) =

i=1j=1
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The left side of Grothendieck’s
inequality rewritten

Let m,n € N, A € M(m x n;F),u := (u1,...,uy) € S% and
vi= (v1,...,v,)" € S% be given, where

Sy :={w € H : |lw|| = 1} denotes the unit sphere in H.
Firstly, note that

ZZ aij(ui, vj) g =t (Ug(u 0)*A) = (A, Ty (u,0)),

is precisely the Hilbert-Schmidt inner product (or the Frobenius
inner product) of the matrices A € M(m x n;F) and
Iy (u,v) € M(m x n;F), where

(vi,unyg (vo,un)g ... (Un,ul)m

o o (v, un) (U, u2)
) i (W1, u2)H V2, U2)H - ns U2) H
I'r(u,v) =

<1'1-“m,\/ll <1,‘~2.[l,,,>// <1'n-“m>ll

18 /RrH



The right side of Grothendieck’s
inequality rewritten

Letm,n € N, A € M(m x n;F),p:= (p1,...,pm)' € (S°)" and
q:=(q1,-..,q,)" € (S°)" be given, where
SY:= {2 € F : |z| = 1} denotes the unit “sphere” in F = FO*1,

Similarly as before, we obtain

D> agpigs =tr(le(p. )" A) = (A, Te(p.q)),

i=1j=1

where now ' (p, q) == gp*.
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The right side of Grothendieck’s
inequality rewritten

Letm,n € N, A € M(m x n;F),p:= (p1,...,pm)' € (S°)" and
q:=(q1,-..,q,)" € (S°)" be given, where
SY:= {2 € F : |z| = 1} denotes the unit “sphere” in F = FO*1,

Similarly as before, we obtain
SN aigpigy =tr(Ue(p.q)* A) = (A, Tx(p.q)),
i=1j=1

where now ' (p. q) == qp”.
In the real case (i.e., if F = R) we have

+1 F1 ... #+1

F1 F1 ... F1
FR(pa Q) = : . . .
+1 F1 ... +1

1A /R2



A lurking curse of dimensionality in
Grothendieck’s inequality? |

A Natural Question

Suppose, we have an urn which contains m - n white balls and
m - n black balls; hence 2 - m - n white and black balls
altogether. How many possibilities do we have to place m - n
balls from this urn, with replacement, in a box consisting of

m - n empty cells, such that after the realisation of such a
placement in any of these cells there will be exactly one ball?
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A lurking curse of dimensionality in
Grothendieck’s inequality? |

A Natural Question

Suppose, we have an urn which contains m - n white balls and
m - n black balls; hence 2 - m - n white and black balls
altogether. How many possibilities do we have to place m - n
balls from this urn, with replacement, in a box consisting of

m - n empty cells, such that after the realisation of such a
placement in any of these cells there will be exactly one ball?

Answer

There are 2" = (exp(m1n(2)))" > (exp(0.65m))" possibilities
(a simple proof by induction shows you why). Already a small
real matrix I'r (p, q) consisting of m =5 rows andn =5
columns allows 33'554°432 different versions; each one
consisting solely of mn numbers e;; € {—1,1}!

17 /R2



A lurking curse of dimensionality in
Grothendieck’s inequality? Il

Theorem (J. M. Hendrickx and A. Olshevsky (2010))
Unless P = N P there is no polynomial time algorithm which,
given a real matrix A with entries in {—1,0, 1}, approximates
max {‘ ity 2 aijpiqj‘ :ping; € {—1, 1}} to some fixed error
with running time polynomial in the dimensions of the matrix.
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors
UL, UD, - - -, U, U1, V2, . . ., Uy, € H and represent them as
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

UL, UD, - - -, U, U1, V2, . . ., Uy, € H and represent them as
<’U1,U1> <U27U1> cee <Un7u1>
P, v) (v1,u2)  (va,uz) ... (vp,usz)
H\UW,V) =

(U1, Um) (V2 U)o (Upy U)
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

UL, UD, - - -, U, U1, V2, . . ., Uy, € H and represent them as
(v1,u1)  (va,u1) ... (vp,uqp)
For(une) = (v1,u2)  (vg,uz) ... (vp,us)
(U1, Um) (V2 U)o (Upy U)

Does this matrix look familiar to you?
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Full matrix representation of the Hilbert
space vectors

Pick all m + n Hilbert space unit vectors

UL, UD, - - -, U, U1, V2, . . ., Uy, € H and represent them as
(v1,u1)  (va,u1) ... (vp,uqp)
Py () = (v1,u2)  (vg,uz) ... (vp,us)
(U1, Um) (V2 U)o (Upy U)

Does this matrix look familiar to you?
It is a part of something larger...
Namely:
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Block matrix representation |

(vi,u1)  (vg,u1) ... (vn,u)
(vi,u2)  (va,u2) ... (v, us)
<U17um> <U27um> <Un~,um>

(up,v1)  (up,v2) ... (ug,vp)

(ug,v1)  (ug,va2) ... (ug,vy)

(um.,m) <’ltm.7/l)2> <um.,'un>

200/ A2



Block matrix representation |

(vi,ur)  (vo,u1) ... {vp,u1)
(vi,ug)  (vo,u2) ... (vp,u2)
(1, Um)  (Vo, U)o (U, Um)

(up,v1)  (ug,v1) ... (Um,v1)

<’1L1,’U2> <UQ,’U2> (um,1)2>

(u1,vn) (U2, vp) oo (Um,vp)

291 /RO



Block matrix representation |l

(up,ur)  (ug,ur) ... (um,ur) (v1,u1) (v, uq)
(uy,ug)  {ug,ug) ... {um,u2) (vi,u2) (ve,us)
<ul-,'um> <u2-, um> e <um-,.um,> <’U1>.um> <027 um> e
(u,v1)  (ug,v1) ... (Um,v1) (v1,v1)  (va,v1) ...
(ui,ve)  (ug,v2) ... (Um,v2) (v1,v2)  (va,v2) ...
(o) (W vm) oo (umyvn)  (o1,00) (0,0m) .

29 RO



Block matrix representation Il

1 (ug,ur) oo Aup,ur)  (v1,u1)  (va,u1) ... (Up,ur)
(uy,uz) 1 coo Aum,ug)  (vr,uz)  (ve,ug) ... (vp,uz)
(ur, um) (U, ) ... 1 (W1, um) V2, U)o {Un, Up)
(up,v1)  (ug,v1) ... (Um,v1) 1 (vg,v1) ... {(vp,v1)
(u,v9)  (ug,va) ... (Upm,ve) (v1,v9) 1 coo {vp,v2)
<U1, Un> <U2, vn> cee <uma vn> <Ula 'Un,> <027 Un,> ce 1

22 RO



The matrices 'y (u, v) and the Gram
matrix |

Let (V, (-,-)) be an arbitrary inner product space over F and
m,n € N. Let uy,usg,...,um € Vand vy, ve, ..., v, € V. We put

Ly (u,v)ij = (vj, u;) ((i,7) € [m] x [n]),

where u := (u1,...,uy) € V" and v := (vy,...,v,) € V™.

24 /RD



The matrices 'y (u, v) and the Gram
matrix |

Let (V, (-,-)) be an arbitrary inner product space over IF and
m,n € N. Let uy,usg,...,um € Vand vy, ve, ..., v, € V. We put

Ly (u,v)ij = (vj, u;) ((i,7) € [m] x [n]),

where u := (uy,...,up) € V®and v = (vq,...,v,) € V™
lfm=k=nandu=w=1v¢c VFthen 'y (w,w) is called Gram
matrix of the vectors wy, wo, ..., w; € V.

24 /RD



The matrices 'y (u, v) and the Gram
matrix |

Let (V, (-,-)) be an arbitrary inner product space over F and
m,n € N. Let uy,usg,...,um € Vand vy, ve, ..., v, € V. We put

Ly (u,v)ij = (vj, u;) ((i,7) € [m] x [n]),

where u := (uy,...,up) € V®and v = (vq,...,v,) € V™
lfm=k=nandu=w=1v¢c VFthen 'y (w,w) is called Gram
matrix of the vectors wy, wo, ..., w; € V.

Hence, our approach actually is the following
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The matrices 'y (u, v) and the Gram

matrix I
Observation
Letm,n € N and (V,(-,-)) be an arbitrary inner product space
overF € {R,C} and uy,ug, ..., Uy, v1,02,...,0, € V. Put
UDV = (UL, ..., Un,V1,...,Uy), Where u = (uy,...u,) and

v:= (v1,...v,). Then

venesn (R )
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A recollection of a few definitions |

Letn e Nand F € {R,C}. Then PSD(n; ) denotes the set of
all Hermitian positive semidefinite n x n-matrices with entries in
[F. Recall that a Hermitian matrix A € M(n x n;F) is called
positive semidefinite if (Ax, z)pn = z* Az > 0 for all x € F".
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A recollection of a few definitions |

Letn e Nand F € {R,C}. Then PSD(n: ") denotes the set of
all Hermitian positive semidefinite n x n-matrices with entries in
[7. Recall that a Hermitian matrix A € M(n x n;F) is called
positive semidefinite if (Ax, z)pn = z* Az > 0 for all x € F".

Moreover, we consider the set
C(n;F) := {S € PSD(n;F) such that S;; = 1 for all i € [n]}.

An element of C(n;[F) is called correlation matrix.
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A recollection of a few definitions |

Letn e Nand F € {R,C}. Then PSD(n; ) denotes the set of
all Hermitian positive semidefinite n x n-matrices with entries in
[7. Recall that a Hermitian matrix A € M(n x n;F) is called
positive semidefinite if (Ax, z)pn = z* Az > 0 for all x € F".

Moreover, we consider the set
C(n;F) := {S € PSD(n;F) such that S;; = 1 for all i € [n]}.

An element of C'(n;F) is called correlation matrix. C'(n;R) is
also known as "n-elliptope” in convex algebraic geometry.

20 /RD



A recollection of a few definitions Il

Let n € N. Fix a probability space (2, F,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
pi= (1, 2, .., i) € R*and C € PSD(n;R).
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A recollection of a few definitions Il

Let n € N. Fix a probability space (2, F,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
wi=(p1, 2, ..., pn) " € R*and C € PSD(n;R). Recall that ¢ is
an n-dimensional Gaussian random vector with respect to the
“parameters” p and C' (short: £ ~ N, (u, C)) if and only if for all
a € R™ there exists 1, ~ N1(0, 1) such that

Z(JL& = (a, 1) (a,Ca)n,

27 IRD



A recollection of a few definitions Il

Let n € N. Fix a probability space (2, F,P) and let
€:=(£,6,...,&)" : Q — R" be a random vector. Let
wi=(p1, 2, ..., pn) " € R*and C € PSD(n;R). Recall that ¢ is
an n-dimensional Gaussian random vector with respect to the
“parameters” ;o and C (short: £ ~ N, (u, C)) if and only if for all
a € R™ there exists 1, ~ N1(0, 1) such that

Z(UEL = (a, i) (a,Ca)ng

Note that we don’t require here that C is invertible!

27 IRD



A recollection of a few definitions Il

Following Feller, the real n x n-matrix V(<) = £[¢ ¢ '] defined as

V(€)iy = ElE€T); = Eleit)] - BB 2 Cy (i € [n))

is known as the variance matrix of the Gaussian random vector

&.
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A recollection of a few definitions Il

Following Feller, the real n x n-matrix V(<) = £[¢ ¢ '] defined as

V(€)= Ele¢ )y = Bl6] — EGIEG] 20y (i € [n)

N

is known as the variance matrix of the Gaussian random vector
€.

However, if the variance matrix C is invertible then the density
function of £ ~ N,,(u, C) exists and is given by

1 1 -
oucl®) 1= G e o (e O =) )

where z ¢ R™.

29 /RO



Complex Gaussian random vectors |

Definition

letZ= (X1 +iY1,Xo4+1iYs,...,X,, +iY,)" be an
n-dimensional complex random vector. Put
€:=(X1,....,Xn) ",n:=(¥1,...,Y,) . Then Z is a complex
Gaussian random vector if the real 2n-dimensional random
vector (¢7,17)T is a Gaussian random vector.

29 /R2



Complex Gaussian random vectors |

Definition

letZ= (X1 +iY1,Xo4+1iYs,...,X,, +iY,)" be an
n-dimensional complex random vector. Put
€:=(X1,....,Xn) ",n:=(¥1,...,Y,) . Then Z is a complex
Gaussian random vector if the real 2n-dimensional random
vector (¢7,1n7)T is a Gaussian random vector.

Although this definition looks rather innocently, it isn't! It
contains a lot of (hidden) structure which extends the real
Gaussian case by far.
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Complex Gaussian random vectors |

Definition

letZ= (X1 +iY1,Xo4+1iYs,...,X,, +iY,)" be an
n-dimensional complex random vector. Put
€:=(X1,....,Xn) ",n:=(¥1,...,Y,) . Then Z is a complex
Gaussian random vector if the real 2n-dimensional random
vector (¢7,1n7)T is a Gaussian random vector.

Although this definition looks rather innocently, it isn't! It
contains a lot of (hidden) structure which extends the real
Gaussian case by far.

Since (¢7,1n7) T is a real Gaussian random vector the complex
matrices I := E[ZZ*] (variance mairix) and C' := E[ZZ "] both
are well-defined, such as ;. := E[Z].

29 /R2



Complex Gaussian random vectors |l

Hence, the distribution of (¢7,7T) T is fully specified by u, I and
C. We write Z ~ CN, (i, I', C) if Z is an n-dimensional complex
Gaussian random vector.

20/R2



Complex Gaussian random vectors |l

Hence, the distribution of (¢7,7T) T is fully specified by u, I and
C. We write Z ~ CN, (i, I', C) if Z is an n-dimensional complex
Gaussian random vector.

A very important special case is given when = 0 and C = 0.
In this case CN,,(0,T",0) is shortened to CN,,(0,T").

Z ~ CN,(0,T) is known as proper complex Gaussian random
vector (with variance matrix I'). The latter is a well-known
definition in electrical engineering science.

20 /R



Structure of C(n;R)

Proposition
Letn € N and ¥ = (0;;) € M(n x n;R). TFAE:
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Structure of C(n;R)

Proposition

Letn € N and ¥ = (0;;) € M(n x n;R). TFAE:

(i) X e PSD(n;R) and oi; = 1 for alli € [n].

(i) ¥ e C(n;R).

(iii) There exist vectors x1, . ..,x, € S"~! such that
oij = (xi,x;) foralli,j € [n].

(iv) There exists a Hilbert space (L, (-,-)) over R such that
Y. =Tp(x,x) forsome x = (z1,...,xy,) € (Sp)".

(v) X =V(&) is a correlation matrix, induced by some
n-dimensional Gaussian random vector { ~ N,,(0, ).
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Proposition
Letn e Nand ¥ = (0;;) € M(n x n;C). TFAE:
(i) X € PSD(n;C) and o;; =1 for alli € [n].
(i) X e C(n;C).
(i) There exist vectors z, ..., z, € Scr such that o;; = (z;, z;)
foralli,j € [n].

(iv) There exists a Hilbert space (L, (-,-)) over C such that
Y =Tr(z,2) forsome z = (z1,...,2,) € (S.)".
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Structure of C'(n; C)

Proposition

Letn e Nand ¥ = (0;;) € M(n x n;C). TFAE:

(i) X € PSD(n;C) and o;; =1 for alli € [n].

(i) X e C(n;C).

(i) There exist vectors z, ..., z, € Scr such that o;; = (z;, z;)
foralli,j € [n].

(iv) There exists a Hilbert space (L, (-,-)) over C such that
Y =Tp(z,z) forsome z = (z1,...,2,) € (S)".

(v) ¥ =E[¢£&*] is a complex correlation matrix, induced by
some proper complex Gaussian random vector
£ ~ CN,(0,%).
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Some geometry of correlation matrices

Observation

LetF € {R,C} and k € N. Then the sets

{S: S =axa* =Ty(z,z) for some x € (S°)*} and
{©:0 € C(k;F) and rk(©) = 1} coincide.
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Proposition (K. R. Parthasarathy (2002))
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Some geometry of correlation matrices

Observation

LetF € {R,C} and k € N. Then the sets

{S: S =axa* =Ty(z,z) for some x € (S°)*} and
{©:0 € C(k;F) and rk(©) = 1} coincide.

Proposition (K. R. Parthasarathy (2002))

Let k € N. The k-elliptope C(k;R) is a compact and convex
subset of the k?-dimensional vector space M(k x k;R). Any

k x k-correlation matrix of rank 1 is an extreme point of the set
C(k;R) (yet not conversely).

In particular, the (finite) set of all real k& x k-correlation matrices
of rank 1 is not convex.

Let £ € N. Put

Ci(k;F) :={©:0 € C(k;F) and rk(©) = 1}.
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Block injection of A

A naturally appearing question is the following:
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A naturally appearing question is the following:

Having “embedded” the m x n-matrix I'z7(u,v) in a

(m 4+ n) x (m + n)- correlation matrix, how could this gained
information be used to reformulate Grothendieck’s inequality

accordingly? To answer this question, let us also “embed” the
m x n-matrix A suitably!
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Block injection of A

A naturally appearing question is the following:

Having “embedded” the m x n-matrix I'z7(u,v) in a

(m 4+ n) x (m + n)- correlation matrix, how could this gained
information be used to reformulate Grothendieck’s inequality

accordingly? To answer this question, let us also “embed” the
m x n-matrix A suitably!

Definition
Let m,n € Nand A € M(m x n;F) arbitrary. Put

~ 1(0 A
A'_2<A* 0)

Let us call M((m +n) x (m +n);F) > A the canonical block
injection of A.

Ry



A further reformulation of GT

Proposition
Let H be an arbitrary Hilbert space overF. Let m,n € N and
A = (a;j) € M(m x n; F). Let K > 0. TFAE:

(i)

ZZ(Z” Ui, Vj H‘ K max Zzaszz(b’

i=1 =1 Ipi|=1=|g;| i=1j=1

flus H 2 IIvJII
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(ii)
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25 /RD



A further reformulation of GT

Proposition
Let H be an arbitrary Hilbert space overF. Let m,n € N and
A = (a;j) € M(m x n; F). Let K > 0. TFAE:

(i)

ZZ(Z” Ui, Vj H‘ K max Zzaszz(b’

i=1 =1 Ipi|=1=|g;| i=1j=1

flus H 2 IIvJII

(ii)
max [(A,X)| <K max [(4,0)].
2eC(m+n;F) 0cC (m+n;F)
Note that we don’t know whether condition (ii) holds for all
matrices in M((m + n) x (m + n);F). If this were the case, GT
would turn out to be a corollary of a more general statement!

25 /RD



GT versus NP-hard optimisation

Observation (Real Case: F = R)
On the left side of GT: a convex conic optimisation problem
(since it is SDP) and hence of polynomial worst-case
complexity (P)):
max (4, X)]|
2eC(m+n;R)
On the right side: an NP-hard, non-convex combinatorial
(Boolean) optimisation problem:

max |<g, O)]
0eC (m+n;R)
rk(©)=1
Thus, Grothendieck’s constant K¢ is precisely the “integrality
gap”; i.e., the maximum ratio between the solution quality of
the NP-hard Boolean optimisation on the right side of GT and
of its SDP relaxation on the left side!
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@ Equality in mean
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Schur product and the matrix f[A] |

Definition

Let) AU CFand f : U — F be a function. Let

A = (a;5) € M(m x n;F) such that a;; € U for all

(i,7) € [m] x [n]. Define f[A] € M(m x n;F) - entrywise - as
flAlij := f(ay;) forall (i,7) € [m] x [n].
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Guiding Example
The Schur product (aka Hadamard product)

(aij) * (bij) == (aijbij)
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f(z):=2* (k € N).
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Schur product and the matrix f[A] |

Definition

Let) AU CFand f : U — F be a function. Let

A = (a;5) € M(m x n;F) such that a;; € U for all

(i,7) € [m] x [n]. Define f[A] € M(m x n;F) - entrywise - as
flAlij := f(ay;) forall (i,7) € [m] x [n].

Guiding Example
The Schur product (aka Hadamard product)
(aiz) * (bij) := (ai;bij)
of matrices (a;;) and (b;;) leads to matrices A** = f[A], where
f(z):=2* (k € N).
The notation “f[A]” is used to highlight the difference between

the matrix f(A) originating from the spectral representation of A
(for normal matrices A) and the matrix f[A], defined as above !
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Schur product and the matrix f|A] Il

Theorem

For any n € N the set M(n x n;F) with the usual addition and
the Schur multiplication  is a commutative Banach algebra
under the operator norm.

29 /RD



Schur product and the matrix f|A] Il

Theorem
For any n € N the set M(n x n;F) with the usual addition and
the Schur multiplication  is a commutative Banach algebra
under the operator norm. Moreover,

PSD(n;F)« PSD(n;F) C PSD(n;F).

In particular, C(n;F) « C(n; ) C C(n;F).
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Grothendieck’s identity |

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889),
W. F. Sheppard (1898), A. Grothendieck (1953))

Let—1<p<land(X,Y)" ~ Ny0,%(p)), where

Ya(p) = (; /1)> :

Consider the function sign: R — {—1, 1}, defined as
sign(x) := 1 ifx > 0 and sign(x) := —1 else. Then

E[sign(X)sign(Y')] = %arcsin(p) _ % arcsin (E[XY]).
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Grothendieck’s identity |

Theorem (Grothendieck’s identity - T. S. Stieltjes (1889),
W. F. Sheppard (1898), A. Grothendieck (1953))
Let—1<p<1land(X,Y)" ~ Ny(0,%s(p)), where

Ya(p) = (; /1)> :

Consider the function sign: R — {—1, 1}, defined as
sign(x) := 1 ifx > 0 and sign(x) := —1 else. Then

E[sign(X)sign(Y')] = %arcsin(p) _ % arcsin (E[XY]).

The following implication of Grothendieck’s identity can be read
often in related papers:

a0/ R



Grothendieck’s identity

Corollary
Letn € N, u,v € S ! and ¢ ~ N,(0,1,,). Then

E[sign(u " &)sign(v' )] = %arcsin (uTv) .
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Gauss is lurking!

Observation

Letp € [-1,1]. Then

2 . 2 X1 (2n) pPtt
aresin(p) = = 7;)47 (n) o+ 1

[\]
I

L ir(”%) P!

1
LZ R (2 =
~ Vmnl 2n+1 7rp21<2’2

727/))7
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Gauss is lurking!

Observation
Letp € [-1,1]. Then

i 1 <2n> p¥ntl

=0 4 \n ) 2n+1
1

o0 F(n+§) p2n+1

LIy

= F<13~ 2)
VL TR T e AP AR

2 .
- arcsin(p) =

SER®

o
[~

where

I'(c) i Fa+n)I'(b+n) ,

21 (,0:6:2) = Froyp) (¢ +n)n!

)
n=0

z €D anda,b,c €T, satisfying —c ¢ No and R (c —a — b) > 0,
denotes the famous, classical Gauss hypergeometric function.
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Grothendieck’s identity in matrix form |

Corollary

Letk € NandX € C(k;R) be an arbitrarily given (k x k)-
correlation matrix. Then also 2 arcsin[%] € C(k;R) . There
exists a Gaussian random vector { ~ N (0,X) such that

1 arcsin[Y] = 2 arcsin[X] = E[O(9)],

arcsin(1) 7r

where
O(§(w))ij := sign(&(w))sign(&;(w))

forallw € Q, and for alli, j € [k]. ©(¢(w)) is a correlation matrix
of rank 1 for all w € ().
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Grothendieck’s identity in matrix form I

Corollary

Letk = m+n, where m,n € N. Let> € C(k;R) be an
arbitrarily given (k x k)-correlation matrix. Then

2|(, avcsinfs])| = [(A,E[O())] < EI(A 6()] < _max [(£,6)].
rank(@}:l

for all matrices A € M (m x n;R).
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The complex case: Haagerup’s identity
revisited |

Lemma (U. V. Haagerup (1987))
Letz € D and (Z,W)" ~ CNy(0,%2(z)). Then

/2 cos? (u)
E[sign(Z)sign(W)] = z / du

\/1 — |2]2 sin?
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The complex case: Haagerup’s identity
revisited |

Lemma (U. V. Haagerup (1987))
Letz € D and (Z,W)" ~ CNy(0,%2(z)). Then

w/2 2
E[sign(Z)sign(W)] = 2 / cos”(v) du

\/1 — |2]2 sin?

However, our completely different approach reveals a surprising
structural similarity to Grothendieck’s identity, arising from
Proposition

Letz e Dand (Z,W)" ~ CNy(0,%2(2)) and

f(z,y) = <|i, i) for all (z,y) € R?\ {0} x R?\ {0}. Then

Elsign(2)sign(V)] = sign(z) [ [ 1(2.0) os,qo) () o dy.

A5 /RD



The complex case: Haagerup’s identity
revisited |l

Theorem
Letz e D and (Z,W)" ~ CN5(0,%5(2)). Then

Blsign(Z)sign()] = 5 =21 (5.5.2:14F)
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The complex case: Haagerup’s identity
revisited |l

Theorem
Letz € D and (Z,W)" ~ CNy(0,%2(z)). Then

_ 11
Blsign(2)sign(iV)] = & =27 (5. 5.2 12 )

Hence,

AR /RD



A unification of the real and the
complex case
Proposition

LetF € {R,C} and k = m + n, where m,n € N. Let H be an
arbitrary Hilbert space. Then

max
m n
u€SY weSY

(A fe[Da(w0)]) | = (A 2D v max |(A.6)],
rank(@j:l

for all matrices A € M (m x n;F), where

113

fr(p) =p- 2F1 <2, 2 2;p2> (pe[-1,1]) and cg := g O f(1)
and
o) == || - o Fy (; %,2; |z|2> (2 € D) and cc := % O 5
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@ Completely correlation preserving functions
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CCP functions |

A Natural Question

Letk = m + n, where m,n € N. How do we have to change our
approach to obtain the following:

(AS) <a max [(46)
O€C(k;F)
rank(©)=1

b

forall¥ ¢ C(k;F)andall A€ M(k;F)? cp ="
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A Natural Question
Letk = m + n, where m,n € N. How do we have to change our
approach to obtain the following:

(A ) < max |(4,0)],
O€C(k;F)
rank(©)=1

forall¥ ¢ C(k;F)andall A€ M(k;F)? cp ="

Key Idea
Inversion of the power series fr ? Unfortunately, the mapping

C(k;F) — C(k;F), 2 — fr[X]

in general is not onto (else 1,676 < K& <
contradiction)!

T~1,571-a
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CCP functions |

A Natural Question
Letk = m + n, where m,n € N. How do we have to change our
approach to obtain the following:

(A ) < max |(4,0)],
O€C(k;F)
rank(©)=1

forall¥ ¢ C(k;F)andall A€ M(k;F)? cp ="

Key Idea
Inversion of the power series fr ? Unfortunately, the mapping

C(k;F) — C(k;F), 2 — fr[X]

in general is not onto (else 1,676 < K& < 3 ~ 1,571 -a
contradiction)! However, inversion seemingly is not a bad idea...

18 /85



CCP functions I

Following the important concept of completely positive maps
(which however by definition are assumed to be linear) we
introduce the following
Definition
Letn € Nand g : [-1,1] — R be an arbitrary function.
(i) gis n-correlation-preserving (short: n-CP) if g[¥] is an
(n x m)-correlation matrix for all (n x n)-correlation
matrices X.
(ii) g is called completely correlation-preserving (short: CCP) if
g is n-correlation-preserving for all n € N.
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CCP functions Il

Theorem (Schoenberg (1942), Rudin (1959), Berg,
Christensen, Ressel (1984), Guillot, Khare and
Rajaratnam (2016))

Letg:[—1,1] — R be an arbitrary continuous function. TFAE:
(i) g is CCP

(i) g(1) =1and g[A] € PSD(n;R) forall A € PSD(n;[—1,1])
andn € N.

(ii) g admits a power series representation g(t) = 32 byt*
on [—1, 1] for some sequence (b,,), consisting of
non-negative numbers only and Y72, by, = 1.
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A correlation matrix preserving cross
transformation

Lemma
Let f,g:[—1,1] — R be two functions satisfying certain
“correlation preserving conditions®. Let m,n € N and

c S
Sps (ST D)

be an arbitrary (m + n) x (m + n)-correlation matrix. Assume
that f(c*) =1 forsome 0 < ¢* < 1.
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A correlation matrix preserving cross
transformation

Lemma
Let f,g:[—1,1] — R be two functions satisfying certain
“correlation preserving conditions®. Let m,n € N and

c s
Sps (ST D)

be an arbitrary (m + n) x (m + n)-correlation matrix. Assume
that f(c¢*) = 1 for some 0 < ¢* < 1. Then also the matrix

fC) - gles]
(.q[c*sﬂ f[c*D]>

is a (m 4+ n) x (m + n)-correlation matrix.
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@ Krivine’s upper bound and beyond
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Krivine revisited |

Example (Krivine reconfirmed)

Let m,n € Nand
c s
Sp (ST D)

be an arbitrary (m + n) x (m + n)-correlation matrix.
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Example (Krivine reconfirmed)

Let m,n € Nand
c s
Sp (ST D)

be an arbitrary (m + n) x (m + n)-correlation matrix. Put
¢* :==In(1++2) and r* := 2 ¢*,
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Krivine revisited |

Example (Krivine reconfirmed)

Let m,n € N and
c s
Sp (ST D)

be an arbitrary (m + n) x (m + n)-correlation matrix. Put
¢* :=1In(1++/2) and r* := 2 ¢*. Then also the matrix

S sinh[¢*C]  sin[c*S] | ()
" \sin[e*S']  sinh[e*D]
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Krivine revisited |

Example (Krivine reconfirmed)

Let m,n € N and
c s
Sp (ST D)

be an arbitrary (m + n) x (m + n)-correlation matrix. Put
¢* :=1In(1++/2) and r* := 2 ¢*. Then also the matrix

5. sinh[¢*C]  sin[¢*S] \ () (sinh[5r*C] g ' [r*S]
" \sin[e*ST] sinh[e*D]) T \ g '[r*S'] sinh[Zr*D]
is a (m+n) x (m + n)-correlation matrix, where g denotes the

CCP function g(p) := 2 arcsin(p) = ;ﬁgf;, -1<p<l.

o
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Krivine revisited I

Example ctd.

Consequently, since g is CCP,
g o sinh[Zr*C] r*S e 2 s
( r*S’ gosinh[Zr*D] | — 9> = e it

is a (m + n) x (m + n)-correlation matrix, too.
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Krivine revisited I

Example ctd.

Consequently, since g is CCP,
g o sinh[Zr*C] r*S o 2 s
( r*S’ gosinh[Zr*D] | — 9> = T it

is a (m 4+ n) x (m + n)-correlation matrix, too. Hence,

lr(asT) = fe(a(es)")
1

1 ~ 2 ~ —~
= = < .
r* |<A’ T fR[EM - or* eergﬁ}k(;ﬂ@) ’<A7®>}
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Krivine revisited I

Example ctd.

Consequently, since g is CCP,
g o sinh[Zr*C] r*S e 2 s
( r*S’ gosinh[Zr*D] | — 9> = e it

is a (m 4+ n) x (m + n)-correlation matrix, too. Hence,

lr(asT) = (e s)T)]
T, ~2 . & 1 .
= - <
r (4, WfR[EM = eergfa()ig;R)KA@M'
Consequently,
-
KE < x T _ sin— (1)

o 2In(14+v2) sinh~1(1)"
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A first generalisation of Krivine’s
approach - sketch |

In the following we consider the case F = R.
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In the following we consider the case F = R.
Step 1: Substitute the function sign as follows:
(i) Letb: R — {—1,1}, where —1 < p < 1. Let
(X,Y)T ~ No(0,%2(p)). Assume that b is odd (i. e.,
b(—x) = —b(x) for all z € [-1,1]).
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A first generalisation of Krivine’s
approach - sketch |

In the following we consider the case F = R.
Step 1: Substitute the function sign as follows:
(i) Letb: R — {—1,1}, where —1 < p < 1. Let
(X,Y)T ~ No(0,%2(p)). Assume that b is odd (i. e.,
b(—xz) = —b(x) for all x € [—1, 1]). Consider E[b(X) b(Y)].
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A first generalisation of Krivine’s
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In the following we consider the case F = R.
Step 1: Substitute the function sign as follows:
(i) Letb: R — {—1,1}, where —1 < p < 1. Let
(X,Y)T ~ No(0,%2(p)). Assume that b is odd (i. e.,
b(—xz) = —b(x) for all x € [—1, 1]). Consider E[b(X) b(Y)].
Then

oo
!

EB(X)b(Y)]=p > (a2ns1(0)* (p°)" =t gu(p)
n=0
for some sequence (a,,(b))nen, € Si,. Hence, g, is a CCP
function (Schoenberg!).
(i) Assume that a;(b) # 0 (already implying that g, has an
inverse function g, ', defined around 0).
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domain of definition in C contains the line
{iy:—1<y<1}.
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(iii) Assume that gb_1 can be extended to a function whose
domain of definition in C contains the line
{iy:—1 <y < 1}. Let's denote this function also as g; .

(iv) Put fy(7) == Lg, ' (i7), where =1 < 7 < 1.

(v) Assume that f,(r*) = 1 for some 0 < r* < 1.

(vi) Assume that both, f, and g, satisfy the "correlation
preserving conditions®.

Step 2: Apply the above correlation matrix transformations to
the so constructed (real-valued) functions f;, and g,.

Observation
Given all of the assumptions (i) - (vi) above, we have:
1

R
KGST*'
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A phrase of G. H. Hardy

“.. at present | will say only that if a chess problem is, in the
crude sense, ‘useless’, then that is equally true of most of the
best mathematics; that very little of mathematics is useful
practically, and that that little is comparatively dull. The
'seriousness’ of a mathematical theorem lies, not in its practical
consequences, which are usually negligible, but in the
significance of the mathematical ideas which it connects...”

— A Mathematician’s Apology (1940)
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Thank you for your attention!

Are there any questions, comments or remarks?
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