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The Standard Black-Merton-Scholes
Model Revisited

Let (Ω, F ,P) be a given probability space, T <

∞ a finite time horizon and W = (Wt)0≤t≤T
be a standard Brownian motion in R (SBM).
Information is modelled as the augmented nat-
ural filtration FW = {FW

t | 0 ≤ t ≤ T} of the
SBM W , where FW

T = F .

Consider two tradable assets:

• A riskless bond with (non-stochastic) price
process B = (Bt)0≤t≤T ;

• A stock with stochastic price process S =
(St)0≤t≤T .

B is modelled as Bt := ert, where r > 0 (risk-
free rate of interest), and S follows a geometric
Brownian motion:
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dSt = St dRt,

where Rt := µt + σWt denotes the cumulated

return process (µ ≥ 0 and σ > 0). Thus:

St
(Itô)
= S0 exp

(
µt + σWt −

1

2
σ2t

)

= S0 exp
(
Rt −

1

2
[R, R]t

)

= S0 E (R)t .
[
←− stochastic exponential

]

Let f ∈ L0(Ω, F ,P) be an arbitrary contingent

claim such as a European call option, a credit

swap or a reverse convertible bond.

Problem: Does there exists a consistent price

system for f , and is it possible to eliminate

(large parts of) the intrinsic risk of f by repli-

cating f through a hedging portfolio?
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Well-known Idea: We move to a ’risk-neutral

universe’, where no ’money-machines’ exist and

the stock has no ’drift’ !

Theorem 1 Assume the standard BMS-model

and let Q ∼ P on FW
T . TFAE:

(i) The discounted price process SB := S
B is a

Q-martingale;

(ii)
dQ
dP

= ZT , where ZT = E
(
− µ− r

σ
W

)
T

.

µ− r

σ
is known as the Girsanov kernel resp.

’market price of risk’ or ’Sharpe ratio’.

Since Q ∼ P, Q is an equivalent martingale

measure (EMM).
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Hence again, in the standard BMS-model there

exists a unique EMM, consequently a unique

risk-neutral price. The BMS-model is com-

plete.

Imperfections of the BMS-model:

• Log returns do not behave according to a

Normal distribution;

• Volatilities change stochastically over time

and are clustered.

Therefore, we turn our attention to...
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Semimartingales with Lévy Processes in

View

From now on, we assume that a complete

probability space (Ω, F ,P) is given which in ad-

dition is endowed with a filtration F = (Ft)t≥0

satisfying the usual conditions (such as FW ).

Definition 1 (Semimartingale) A process X =

(Xt) in Rd whose path is right continuous and

has left limits (’càdlàg’ resp. ’RCLL’) is called

a semimartingale (w.r.t. P and F) if there exist

an adapted local martingale M and an adapted

process A of finite variation such that

X = M + A .

If in addition the process A is predictable and

A0 = 0, the decomposition of X even is unique.

In this case, X is called a special semimartin-

gale and X̃ := A the compensator of X.
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Examples: Standard Brownian motion, geo-

metric Brownian motion, the Poisson process,

and the compound Poisson process are semi-

martingales.

Fractional Brownian motion (if H 6= 1
2) and

processes of type |W |α, where 0 < α < 1 and W

is a standard Brownian motion, do not belong

to the class of semimartingales.

Stability properties: The class S of semi-

martingales has a vector space structure. S

can be equipped with a topology such that it

even turns into a Fréchet space. Due to Itô’s

formula, S is an algebra and stable under C2-

functions on open sets. Moreover, S is stable

under convex functions. In particular, it is a

lattice (e. g., X ∧ Y = 1
2(X + Y − |X − Y |)).
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Definition 2 (Lévy Process) A process X =

(Xt)t≥0 in Rd is a F-Lévy process if

(i) X is càdlàg;

(ii) X0 = 0 a.s.;

(iii) X is adapted and has independent incre-

ments w.r.t. F (independent from the past);

(iv) If 0 ≤ s ≤ t, then Xt−Xs
d
= Xt−s (stationary

increments).

In the following, we only consider the case d =

1 (to simplify notation).
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Examples: Brownian motion, the Poisson pro-

cess, Cauchy and α-stable processes belong to

the class of Lévy processes.

Processes of type (at + σWt + Yt)t≥0, where

a, σ ∈ R, Y is a compound Poisson process and

W is a SBM (in R), are Lévy processes as well.

Further examples: Variance Gamma (VG), Nor-

mal Inverse Gaussian (NIG), CGMY, the Hy-

perbolic model, and the Meixner process.

Let X = (Xt) be an arbitrary Lévy process in

R. Let u ∈ R and t ≥ 0. Put

ϕXt
(u) = P̂Xt

(u) := E[eiuXt] =
∫

R

eiux PXt
(dx) .

9



Theorem 2 (Lévy-Khintchine Formula) Let

X be a Lévy process. Then there exists a

Radon measure ν on B(R) such that ν({0}) =

0,
∫
R

x2 ∧ 1 ν(dx) < ∞, and parameters α ∈ R,

σ ≥ 0 such that

ϕXt
(u) = E[eiuXt] = e−tψ(u) = ϕ t

X1
(u), (∗)

where

ψ(u) :=
σ2u2

2
−iαu+

∫

R

(
1−eiux+iux11(−1,1)(x)

)
ν(dx).

Conversely, given any such triplet (α, σ2, ν),

there exists a probability space (Ω, F ,P) and a

corresponding Lévy process X with character-

istic function (∗) - unique in distribution.

The (non-random) triple (α, σ2, ν) is called the

local characteristics of X. ν is known as the

Lévy measure. Note that the local character-

istics depends on X. Consequently, we also

make use of the notation (αX , (σX)2, νX).
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Remark and Definition 1 Let X be an arbi-

trary adapted and càdlàg process.

∆Xs := Xs −Xs− = Xs − lim
u↑s

Xu

denotes the jump of X at time s ≥ 0, where we

put X0− := X0. All paths of X are continuous

except for the jumps. Moreover, X− is left-

continuous, locally bounded and predictable,

hence adapted. ∆X denotes the correspond-

ing jump process. If X is continuous, then of

course, ∆X = 0.

For every ω ∈ Ω, the random set

M(ω) :=
{
(s,∆Xs(ω))

∣∣∣s > 0,∆Xs(ω) 6= 0
}

is at most countable.
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The jump measure of X is defined as the map-

ping

jX : Ω︸︷︷︸
samples

× B( R+︸︷︷︸
time

× R︸︷︷︸
range of X

) −→ N0 ∪ {∞},

jX(ω, B) := card(M(ω) ∩B),

where ω ∈ Ω and B is an arbitrary Borel set in

R+ × R. jX counts, ω-by-ω, the number of all

s > 0 such that ∆Xs(ω) 6= 0 and (s,∆Xs(ω)) ∈
B.

In particular, if X is a Lévy process, the set

B := [0, t]×Λ (where t is fixed and Λ is a Borel

set in R) induces the random measure

NΛ
t (ω) := Nt(ω,Λ) := jX(ω, [0, t]× Λ)

which - in the Lévy case (!) - even leads to

a Poisson process NΛ = (NΛ
t )t≥0 of intensity

ν(Λ):

E[NΛ
t ] = E[Nt(·,Λ)] = tν(Λ) for all t ≥ 0.
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Theorem 3 (Lévy Decomposition) Let X be

a Lévy process with local characteristics (α, σ2, ν).

Then

X = A + Mc + Md

is the sum of three independent Lévy processes,

where

(i) At := αt +
NΛ

t∑
i=1

Yi is a finite variation com-

pound Poisson process with drift having

only jumps of size at least 1 (where Λ :=

R \ (−1,1) and Yi := ∆X
TΛ

i
),

(ii) Mc
t := σWt

d
= Wσ2t is a Brownian motion,

(iii) Md
t :=

∫
(−1,1)

x(Nt(·, dx)− tν(dx)) is a pure-

jump martingale having only jumps of size

less than 1.

Corrolary 1 A Lévy process is a semimartin-

gale.
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The Stochastic Logarithm: The Germ of
Financial Mathematics?

Theorem 4 (Stochastic Exponential) Let X

be an R-valued semimartingale such that X0 =
0. Put

Vt :=
∏

0<s≤t

(1 + ∆Xs) · e−∆Xs .

Then for almost all ω ∈ Ω the infinite product
is absolutely convergent, and V = (Vt) is an
adapted purely discontinuous process which is
of finite variation. Put

Zt := exp
(
Xt −

1

2
[X, X]ct

)
· Vt .

Then Z0 = 1, and Z = (Zt) is the unique semi-
martingale which is a solution of the following
stochastic integral equation

Z = 1 +
∫

Z− dX .

Moreover, Z = Z−(1 + ∆X).
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The semimartingale Z is called the stochastic
exponential of the semimartingale X and is de-
noted by E (X). If X is a local martingale, so
is E (X).

Examples: If W is a standard Brownian mo-
tion, E (W )t = exp(Wt− 1

2t), and if N is a Pois-
son process, then E (N)t = 2Nt.

Let X be a Lévy process with local characteris-
tics (α, σ2, ν). Assume that the Laplace trans-
form E[e−zX1] < ∞ for all z in some Br(0).
Then Xt = αt+σWt +Mt, where α := E[X1] <
∞ and Mt :=

∫
R

x(Nt(·, dx)− tν(dx)). Let dSt =

St−(µtdt+ρtdXt), where µ and ρ are continuous
and deterministic functions. Then

St = S0 E
( ∫ •

0
µs ds +

∫
ρ dX

)
t

= S0 exp
( ∫ t

0
σρs dWs +

∫ t

0
ρs dMs

+
∫ t

0

(
αρs + µs − σ2ρs

2

2

)
ds

)

×
∏

0<s≤t

(1 + ρs∆Ms) · exp(−ρs∆Ms).
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The mapping X 7→ E (X) = Z can be inverted

if almost all paths of Z and Z− do not go

through 0 (cf. Jacod (1979), Foldes (1990),

Choulli et al (1998), Kallsen/Shiryaev (2001),

Jacod/Shiryaev (2nd ed. 2002)).

Theorem 5 (Stochastic Logarithm) Let

S∼
0 :=

{
X ∈ S

∣∣∣ {∆X = −1} is evanescent, X0 = 0
}

and

S ∗
1 :=

{
Z ∈ S

∣∣∣ {ZZ− = 0} is evanescent, Z0 = 1
}
.

Then the mapping

E : S∼
0

'−→ S ∗
1

X 7→ E (X)

is bijective, and its inverse is given by

L : S ∗
1

'−→ S∼
0

Z 7→
∫ 1

Z−
dZ − 1 .
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In analogy to real analysis, L (Z) :=
∫ 1

Z− dZ−1
is called the stochastic logarithm of Z. Note
that ∆L (Z) = 1

Z−∆Z.

Corrolary 2 Let Z ∈ S ∗
1 . TFAE:

(i) Z is a local martingale;

(ii) There exists a unique local martingale M ∈
S∼

0 such that Z = E (M) (outside some
evanescent set);

(iii) L (Z) is a local martingale.

Proposition 1 Let U, V ∈ S ∗
1 . Then UV ∈ S ∗

1
and

L (UV ) = L (U) + L (V ) +
[
L (U), L (V )

]
.

Moreover, 1
V ∈ S ∗

1 and

L
(1

V

)
= 1−L (V )−

[
V,

1

V

]
.

In particular, (S ∗
1 , ·) is a commutative group.
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Theorem 6 (Modelling of Asset Prices) Let
S ∈ S such that S0 6= 0 a.s. and S

S0
∈ S ∗

1
(asset price process). Then there exists a unique
semimartingale R ∈ S∼

0 (the cumulated re-
turn process) such that S = S0 E (R), namely
R = L

(
S
S0

)
.

Let N ∈ S ∗
1 (numeraire – e. g., a price process

of Euros) and put SN := S
N (e. g., the Euro

price process of S). Then SN

S0
∈ S ∗

1 , and

SN = S0E (YN),

where

YN := L (
1

N
)+R+

[ ∫
N−dR,

1

N

]
= L

(SN

S0

)
∈ S∼

0 .

Lemma 1 Let X ∈ S and Z ∈ S ∗
1 . Then 1

Z ∈
S ∗

1 , and
∫ 1

Z
d[Z, X] = X0 +

[
L (Z), X

]c
+

∑

0<s≤•

∆Zs

Zs
∆Xs

= X0 −
[
L

(1

Z

)
, X

]
.
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Proof. WLOG, let X0 = 0. Then
∫ 1

Z
d[Z, X] =

∫ 1

Z−
d[Z, X] +

∫
∆

(1

Z

)
d[Z, X]

=
[
L (Z), X

]
+

∑

0<s≤•
∆

(1

Z

)
s
∆[Z, X]s

=
[
L (Z), X

]
+

∑

0<s≤•
∆

(1

Z

)
s
∆Zs∆Xs .

Since ∆L (Z) = ∆Z
Z− , we have

[
L (Z), X

]
=

[
L (Z), X

]c
+

∑

0<s≤•

∆Zs

Zs−
∆Xs ,

and the first equation follows.

On the other hand, due to Proposition 1,
[
L

(1

Z

)
, X

]
=

[
1−L (Z)−

[
Z,

1

Z

]
, X

]

= −[L (Z), X]−
[[

Z,
1

Z

]
, X

]

!
= −[L (Z), X]−

∑

0<s≤•
∆Zs∆

(1

Z

)
s
∆Xs

= −
∫ 1

Z
d[Z, X] . ¤
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Theorem 7 (Log-Version of Girsanov) Let Q
be an arbitrary probability measure on F such

that Q is equivalent to P and Q = P on F0. Put

Zt := EP
[
dQ
dP

∣∣∣Ft

]
), where 0 ≤ t ≤ T . Then Z0 =

1 P-a.s., and both, Z and 1
Z have strictly posi-

tive paths P-a.s.. In particular, Z and 1
Z can be

represented as a stochastic exponential respec-

tively, L (Z) exists, and ∆L (Z) = 1
Z−∆Z > −1

(outside some evanescent set). Moreover, Z is

a uniformly integrable P-martingale. If M ∈
Mloc(P), then M̃ ∈ Mloc(Q), where

M̃ := M +
[
M, L

(1

Z

)]

= M −
[
M, L (Z)

]c −
∑

0<s≤•

∆Zs

Zs
∆Ms .

(The càdlàg version of) Z is known as the den-

sity process.
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Proposition 2 Let Q, Z be as in Theorem 7.
Then L (Z) is a Lévy process if and only if
log(Z) is a Lévy process. Moreover,

νL (Z) = νlog(Z) ◦ ψ−1,

where ψ(y) := ey − 1 (y ∈ R).

Theorem 7 immediately implies a generalisa-
tion of a result of Kazamaki which had been
proven for continuous local martingales only
(cf. Kazamaki (1994)):

Corrolary 3 (Girsanov Transformation) Let
Q and Z be as in Theorem 7. Then the map-
ping

ΦP,Q : Mloc(P)
'−→ Mloc(Q)

M 7−→ M +
[
M, L

(1

Z

)]

is an (algebraic) isomorphism, and Φ−1
P,Q(N) =

N+[N, L (Z)]
!
= ΦQ,P(N) for any N ∈ Mloc(Q).

Problem: How do we choose ’good’ density
processes Z, i. e., ’good’ ELMMs?
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• Given an arbitrary (incomplete!) semimartin-
gale market (S, N), any density process ZP,Q
– originating from any ELMM Q ∼ P – can
be represented as a stochastic exponential:

ZP,Q = E (X).

In accordance with the BMS case, we call
−X = −L (ZP,Q) market price of risk pro-
cess.

• Interesting observation in the BMS case:

−µ− r

σ
W = L

(
ZP,Q

) !
= (g ◦L )

(SB

S0

)
,

where g : S∼
0 −→ S∼

0 is given by

g(X)t := − EP[Xt]

VarP[Xt]
(Xt − EP[Xt]).

Problem: Let (S, N) be as above and Q an
arbitrary ELMM on F . Then

dQ
dP

?
= E

(
(g̃ ◦L )

(SN

S0

))
T

.
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How do we construct g̃ ? If we know (all) g̃,

we know (all) Q !

Definition 3 Let M ∈ Mloc,0(P) w.r.t. F. M

satisfies the strong property of predictable rep-

resentation (SPPR) if the linear operator

T : LM(P) −→−→ Mloc,0(P)

H 7−→
∫

HdM

is onto.

Theorem 8 (He/Wang/Yan (1992)) Let X

be a Lévy process and F = FX the augmented

natural filtration of X. Assume that X is a

(local) martingale. Then X satisfies the SPPR

if and only if X is a standard Brownian motion

or a compensated Poisson process, up to a

constant factor.
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Theorem 9 Let M ∈ Mloc,0(P) satisfy the SPPR,
and let Q, Z be as in Theorem 7. Then there
exists a predictable process H such that

Z = EP
[dQ
dP

∣∣∣F•
]
= E

( ∫
HdM

)
= exp(Y H)

outside some evanescent set, where

Y H
t :=

∫ t

0
HsdMs−1

2

∫ t

0
H2

s d[Mc, Mc]s+
(
f∗j∫

HdM

)
t
.

Proof. X̃ := L (Z) ∈ Mloc,0(P). Since Z =

E (X̃), the SPPR of M (applied to X̃) implies
the second equation. X := log(Z) = log(E (X̃))
is the logarithmic transform of X̃ = L (exp(X)).
Now apply Lemma 2.6 of [J. Kallsen, A. N.
Shiryaev (2002). The cumulant process and
Esscher’s change of measure. FS 6, 397-428]. ¤

Corrolary 4 Let Q be as in Theorem 7. Then
EP

[
dQ
dP

∣∣∣FW
•

]
= E (

∫
HdW ), where H is FW -predictable,

and

W̃t := Wt −
∫ t

0
Hsds

defines a Q-Brownian motion W̃ .

24



Corrolary 5 (Exponential Utility and Hedging)
Let M ∈ Mloc,0(P) satisfy the SPPR, and let
Q, H be as in Theorem 9.

EP
[dQ
dP

log
(dQ
dP

)]
= αH + βH ,

where

αH := EQ
[ ∫ T

0
Hs dMs − 1

2

∫ T

0
H2

s d[Mc, Mc]s
]

and

βH := EQ
[ ∑

0<s≤T

(
log

( Zs

Zs−

)
− ∆Zs

Zs−

)]
.

Consequently,

EP
[dQ
dP

log
(dQ
dP

)]
= αH

if and only if M is continuous.

If in addition log(Z) resp. L (Z) is a Lévy
process, we can calculate βH more explicitly:

βH

T
=

∫

R
f(x) νL (Z)(dx)=

∫

R
(1+y−ey) νlog(Z)(dy),

where f(x) := log(x + 1)− x (x > −1).
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Conclusion

Stochastic logarithms appear to be the key in-

gredients in financial mathematics! They do

not only describe relative returns and link hedg-

ing with the calculation of minimal entropy

martingale measures - and hence with utility-

indifference. They even determine the struc-

ture of the Girsanov transformation.
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