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The Standard Black-Merton-Scholes
Model Revisited

Let (£2,.%#,P) be a given probability space, T <
oo a finite time horizon and W = (Wy)g<i<T
be a standard Brownian motion in R (SBM).
Information is modelled as the augmented nat-
ural filtration FW = {#WV | 0 <t < T} of the
SBM W, where W = 7.

Consider two tradable assets:

e A riskless bond with (non-stochastic) price
process B = (Bt)o<¢<T:

e A stock with stochastic price process S =
(St)o<t<T-

B is modelled as B; := e, where r > 0 (risk-
free rate of interest), and S follows a geometric
Brownian motion:



dSy = St dRy,

where R; = ut + oW} denotes the cumulated
return process (x>0 and o > 0). Thus:

(1t5)

1
St So exp (,ut + oWy — 50275)

So exp (R, — %[R, R]:)

= Spé(R),. [% stochastic exponential

Let f € LO(,.Z,P) be an arbitrary contingent
claim such as a European call option, a credit
swap or a reverse convertible bond.

Problem: Does there exists a consistent price
system for f, and is it possible to eliminate
(large parts of) the intrinsic risk of f by repli-
cating f through a hedging portfolio?



Well-known Idea: We move to a 'risk-neutral
universe’, where no 'money-machines’ exist and
the stock has no 'drift’!

Theorem 1 Assume the standard BMS-model
and let Q ~P on Z). TFAE:

(1) The discounted price process SP =

% is a
Q-martingale;
. dQ w—r
) i Z, where Z, = éa( - W)T.

U—r

IS known as the Girsanov kernel resp.
(0
'market price of risk' or 'Sharpe ratio’.

Since Q ~ P, Q is an equivalent martingale
measure (EMM).



Hence again, in the standard BMS-model there
exists a uniqgue EMM, consequently a unique
risk-neutral price. The BMS-model is com-

plete.

Imperfections of the BMS-model:

e Log returns do not behave according to a
Normal distribution;

e Volatilities change stochastically over time
and are clustered.

Therefore, we turn our attention to...



Semimartingales with Lévy Processes in
View

From now on, we assume that a complete
probability space (Q2,.#,P) is given which in ad-
dition is endowed with a filtration F = (%;);>0
satisfying the usual conditions (such as FW).

Definition 1 (Semimartingale) A process X =
(X,) in R% whose path is right continuous and
has left limits ('cadlag’ resp. 'RCLL") is called
a semimartingale (w.r.t. P and IF) if there exist
an adapted local martingale M and an adapted
process A of finite variation such that

X=M+A.

If in addition the process A is predictable and
Ag = 0, the decomposition of X even is unique.
In this case, X is called a special semimartin-
gale and X := A the compensator of X.



Examples: Standard Brownian motion, geo-
metric Brownian motion, the Poisson process,
and the compound Poisson process are semi-
martingales.

Fractional Brownian motion (if H # 1) and
processes of type |W|%, where0O < a < 1land W
IS a standard Brownian motion, do not belong
to the class of semimartingales.

Stability properties: The class . of semi-
martingales has a vector space structure. .¥
can be equipped with a topology such that it
even turns into a Fréchet space. Due to ItG's
formula, . is an algebra and stable under C2-
functions on open sets. Moreover, . is stable
under convex functions. In particular, it is a
lattice (e.g., X AY =3(X+Y — |X - Y])).



Definition 2 (Lévy Process) A process X =
(Xt)¢>0 in RY s a F-Lévy process if

(i) X is cadlag;
(ii) Xg=0 a.s.;

(iii) X is adapted and has independent incre-
ments w.r.t. F (independent from the past);

(iv) If0 <s<t, then X,— X, 2 X, , (stationary
increments).

In the following, we only consider the case d =
1 (to simplify notation).



Examples: Brownian motion, the Poisson pro-
cess, Cauchy and a-stable processes belong to
the class of Lévy processes.

Processes of type (at + ocW; + Yi)¢>0, Where
a,0 € R, Y is a compound Poisson process and
W is a SBM (in R), are Lévy processes as well.

Further examples: Variance Gamma (VG), Nor-
mal Inverse Gaussian (NIG), CGMY, the Hy-
perbolic model, and the Meixner process.

Let X = (X;) be an arbitrary Lévy process in
R. Letue R and t > 0. Put

ox, () =Py (u) 1= E[e"X1] = / P (da).
R



Theorem 2 (Lévy-Khintchine Formula) Let
X be a Lévy process. Then there exists a
Radon measure v on #8(R) such that v({0}) =

0, [22 Alv(dx) < oo, and parameters o € R,
R
o > 0 such that

px,(w) =B[N = e = (u),  (x)

where

2 2 |
2u —z'ozu-l—I! (1—ewx—l-iux]l(_l,l)(az))y(dac).

o

(u) =

Conversely, given any such triplet («,o?,v),
there exists a probability space (X2,.%#,P) and a
corresponding Lévy process X with character-
istic function (x) - unique in distribution.

The (non-random) triple (o, 02, v) is called the
local characteristics of X. v is known as the
LLévy measure. Note that the local character-
istics depends on X. Consequently, we also
make use of the notation (a**, (cX)2, ).
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Remark and Definition 1 Let X be an arbi-
trary adapted and cadlag process.
AXg = Xs— X = Xg—lim Xy
uls

denotes the jump of X at time s > 0, where we
put Xq_ = Xg. All paths of X are continuous
except for the jumps. Moreover, X_ is left-
continuous, locally bounded and predictable,
hence adapted. AX denotes the correspond-
ing jump process. If X is continuous, then of
course, AX = 0.

For every w € 2, the random set

Mw) = {(s, AXS(w)))s > 0, AX,(w) # 0}

iIs at most countable.
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The jump measure of X is defined as the map-
ping

ix S X %(@i x R ) — N U {oc},
samples time range of X

Jjx(w, B) := card(M(w) N B),

where w € €2 and B is an arbitrary Borel set in
RT x R. j, counts, w-by-w, the number of all
s > 0 such that AX,(w) # 0 and (s, AXs(w)) €
B.

In particular, if X is a Lévy process, the set
B :=[0,t] x A (where t is fixed and A is a Borel
set in R) induces the random measure

NMw) := Ny(w, A) = jx(w,[0,¢] x A)

which - in the Lévy case (!) - even leads to
a Poisson process NN = (N\),., of intensity
v(N):

E[N]\] = E[Ny(-,A)] = tv(A) for all t > 0.
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Theorem 3 (Lévy Decomposition) Let X be

a Lévy process with local characteristics (o, 02, v).
T hen

X = A+ M+ Mm@

is the sum of three independent Lévy processes,
where

N
(i) Ay :=at+ 3 Y; is a finite variation com-

1 =1
pound Poisson process with drift having

only jumps of size at least 1 (where N\ .=
R\ (—1,1) and Y; := AXT_/\),

. d : . .
(ii) Mf .= oWy =W 2, is a Brownian motion,

(iii) Mtd = [ x(Ni(-,dx) —tv(dx)) is a pure-
(_171)
Jump martingale having only jumps of size

less than 1.

Corrolary 1 A Lévy process is a semimartin-
gale.
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The Stochastic Logarithm: The Germ of
Financial Mathematics?

Theorem 4 (Stochastic Exponential) Let X
be an R-valued semimartingale such that Xg =
0. Put

Vii= J] QA+ AX,) -e D%,
0<s<t

Then for almost all w € 2 the infinite product
is absolutely convergent, and V. = (V4) is an
adapted purely discontinuous process which is
of finite variation. Put

T 1= exp (Xt _ %[X, X],{r‘) V.

Then Zg =1, and Z = (Z;) is the unique semi-
martingale which is a solution of the following
stochastic integral equation

Z=1 —I—/Z_ dX .
Moreover, Z = 7 (1 + AX).

14



The semimartingale Z is called the stochastic
exponential of the semimartingale X and is de-
noted by &(X). If X is a local martingale, so
is &(X).

Examples: If W is a standard Brownian mo-
tion, &(W); = exp(W; —4t), and if N is a Pois-
son process, then &(N); = 2.

Let X be a Lévy process with local characteris-

tics (a,02,v). Assume that the Laplace trans-

form E[e?**1] < oo for all z in some B,(0).

Then X; = at + oW+ My, where o := E[X1] <

oo and My := [x(N¢(-,dx) —tv(dx)). Let dS; =
R

St (ppdt+ prdXy), where p and p are continuous
and deterministic functions. Then

Sy = Soé"(/o ,usds—l—/de)t
/ !
Soexp ( /O o ps dWs + /O ps d M,

2.2

+ /Ot(Oéps+M8—U/208 )ds)

X H (1 + psAMs) : eXD(—pSAMS).
0<s<t
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The mapping X — &(X) = Z can be inverted
if almost all paths of Z and Z_ do not go
through 0 (cf. Jacod (1979), Foldes (1990),
Choulli et al (1998), Kallsen/Shiryaev (2001),
Jacod/Shiryaev (2nd ed. 2002)).

Theorem 5 (Stochastic Logarithm) Let

Sy = {X c .S ‘ { AX = —1} is evanescent, Xg = O}
and

ST = {Z cs ‘ {ZZ_ = 0} is evanescent, Zg = 1}.
Then the mapping

&S5 = A

is bijective, and its inverse is given by
LIS =
1
7 / S dZ—1.
Z_
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In analogy to real analysis, £ (2) := [ 4 dZ—1
is called the stochastic logarithm of Z. Note
that AL (Z) = FAZ.

Corrolary 2 Let Z ¢ /{. TFAE:
(i) Z is a local martingale;

(ii) There exists a unique local martingale M &€

S5 such that Z = &(M) (outside some
evanescent set);

(iii) Z(Z) is a local martingale.

Proposition 1 Let U,V € 7. ThenUV € 7
and

LUV)=2U)+2(V)+ |2U),2V)|.
Moreover, % c S and

2(3)=1-20) - V.o

In particular, (*/{,-) is a commutative group.
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Theorem 6 (Modelling of Asset Prices) Let
S € & such that Sg # 0 a.s. andég c ST
(asset price process). Then there exists a unique
semimartingale R € 3 (the cumulated re-
turn process) such that S = Sg&(R), namely
R=2(%).

Let N € 5”1 (numeraire — e. g., a price process
of Euros) and put SN := % (e.g., the Euro

price process of S). Then 2 S—o c S, and

SN = Sp&(Yn),
where
SN

Yy = g(%)—I—R—I—[/N_dR, %} = z(SO

) €S

Lemma 1 Let X ¢ . and Z € /. Then % €
S7, and

AZ
"AX,

[ Ldizx) = Xo+[22).x] + ¥

O<s<e Zs

Xo—|2(2)-X]
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Proof. WLOG, let Xg =0. Then
1 1 1
/Ed[Z,X] — /Z—d[Z X]—I—/A ) dlz, x]

= | Z2(2),X|+ Y ( ) AlZ, X]s

O<s<e

'z(Z),X + Y A( )AZSAXS.
) O0<s<e

Since AZL(Z) = £%, we have

[z(Z),X} — [3(2),X}C+ S AZSAXS,

O<s<e ST
and the first equation follows.

On the other hand, due to Proposition 1,
1
< ()X

1-2(2)- |2, %]X}
= _[2(2),X] - HZ%}X}

= —[2(2),X]- 3 AZSA(%)SAXS
0<s<e

—/%ﬁzxy -
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Theorem 7 (Log-Version of Girsanov) LetQ
be an arbitrary probability measure on % such
that Q is equivalent tolP and Q = P on %y. Put
7 = Ep{ﬁ% %}), where 0 <t < T. Then Zg =
1 P-a.s., and both, Z and % have strictly posi-
tive paths P-a.s.. In particular, Z and 4 can be
represented as a stochastic exponential respec-
tively, £ (Z) exists, and AL (Z) = 7~ AZ > —1
(outside some evanescent set). Moreover, Z is
a uniformly integrable P-martingale. If M &
M oc(P), then M € M 5c(Q), where

—

M = M+[M,$(%)}

AZ
AMs,.

= M— [M,D%(Z)]C - Z<
<s<e S

(The cadlag version of) Z is known as the den-
Sity process.
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Proposition 2 Let Q, Z be as in Theorem 7.
Then £ (Z) is a Lévy process if and only if
log(Z) is a Lévy process. Moreover,

VD%(Z) — VIog(Z) o ¢_17
where Y(y) .= €Y —1 (y € R).
Theorem 7 immediately implies a generalisa-
tion of a result of Kazamaki which had been

proven for continuous local martingales only
(cf. Kazamaki (1994)):

Corrolary 3 (Girsanov Transformation) Let
Q and Z be as in Theorem 7. Then the map-

ping
Pp o - Aoc(P) — M5c(Q)
1
M — M+ [M,X(Eﬂ
is an (algebraic) isomorphism, and CDIPjé(N) =

N+IN, Z(Z)] = &5 (N) forany N € Mo (Q).

Problem: How do we choose 'good’ density
processes Z, i.e., 'good’ ELMMs?
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e Given an arbitrary (incomplete!) semimartin-
gale market (S, N), any density process Zp g
— originating from any ELMM Q ~ P — can
be represented as a stochastic exponential:

Zy o = E(X).

In accordance with the BMS case, we call
—X = —2Z(Zpy) market price of risk pro-
Cess.

e Interesting observation in the BMS case:

w—r 1 SB
_ - W—g(ZP,@)—(gOg)(S—C)),
where g . /5 — 37 is given by
Ep[X¢]
X), = ——F X — E,[X¢]).
g(X), VarP[Xt]( t — Ep[Xy])

Problem: Let (S,N) be as above and Q an
arbitrary ELMM on %#. Then

dQ - - SN
dfng((gog)(S—O»T'
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How do we construct g7 If we know (all) g,
we know (all) Q!

Definition 3 Let M € A|5co(P) w.r.t. F. M
satisfies the strong property of predictable rep-
resentation (SPPR) if the linear operator

T:Ly(B) — Mo o(P)
H — /HdM

IS onto.

Theorem 8 (He/Wang/Yan (1992)) Let X
be a Lévy process and F = FX the augmented
natural filtration of X. Assume that X is a
(local) martingale. Then X satisfies the SPPR
if and only if X is a standard Brownian motion
or a compensated Poisson process, up to a
constant factor.

23



Theorem 9 Let M € .#|5c o(P) satisfy the SPPR,
and let Q, Z be as in Theorem 7. Then there
exists a predictable process H such that

Z =K, [‘;%\ﬁ,] = g(/HdM) = exp(YH)

outside some evanescent set, where
¢ 1t
H .__ 2 c c .
Y, ._/OHSdMS—E/OHSd[M ,M]8—|—(f>l<]fHdM)t.

Proof. X := L(Z) € Mo o(P). Since Z =

&(X), the SPPR of M (applied to X)implies
the second equation. X :=log(Z) = log(£(X))
is the logarithmic transform of X = Z(exp(X)).
Now apply Lemma 2.6 of [J. Kallsen, A. N.
Shiryaev (2002). The cumulant process and
Esscher’s change of measure. FS 6, 397-428]. ]

Corrolary 4 Let Q be as in Theorem 7. Then
E, [‘fi% ga.W] = &(f HAW), where H is " -predictable,
and

— t
Wy 1= Wt—/o Hsds

defines a Q-Brownian motion W.
24



Corrolary 5 (Exponential Utility and Hedging)

Let M € M5 o(P) satisfy the SPPR, and let

Q, H be as in Theorem 9.

dQ dQ\i g H
<d—IP’)} =a’ + 07,

where

T 1 T
o = E@[/o HSdMS_E/o HS2 d[M€, Mc]s}

and
H.—F I Zs \ _ BZs .
B @[O<§S:§T< °9 (Zs—> Zo_ )}
Consequently,
dQ dQ
By p 109 ()] = o

if and only if M is continuous.

If in addition log(Z) resp. Z(Z) is a Lévy
process, we can calculate BH more explicitly:

H
o= [ @ D dny= [ (y-en) VoI ay)

where f(z) :=log(z+1) —x (z > —1).
25



Conclusion

Stochastic logarithms appear to be the key in-
gredients in financial mathematics! They do
not only describe relative returns and link hedg-
ing with the calculation of minimal entropy
martingale measures - and hence with utility-
indifference. They even determine the struc-
ture of the Girsanov transformation.
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